DirectMusic

This documentation covers the following Microsoft® DirectMusic® application programming interface (API) topics:

�SYMBOL 183 \f "Symbol" \s 11 \h �	About DirectMusic

�SYMBOL 183 \f "Symbol" \s 11 \h �	Why Use DirectMusic?

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusic Architecture

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusic Essentials

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusic Tutorials

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusic Reference

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusic Samples

About DirectMusic

DirectMusic is the musical component of the Microsoft® DirectX® API. Unlike the Microsoft® DirectSound® API, which is for the capture and playback of digital sound samples, DirectMusic works with message-based musical data, which is converted into wave samples, either in hardware or in a software synthesizer. The default software implementation uses the Microsoft® Software Synthesizer to create wave samples that are then streamed to DirectSound. Instrument voices are synthesized from samples according to the downloadable sounds (DLS) standard.

As well as supporting input in Musical Instrument Digital Interface (MIDI) format, DirectMusic can compose music at run time. This music is not algorithmically generated, but is based on elements authored by a human composer. (The authoring tool, Microsoft® DirectMusic® Producer, is documented separately.) The music is performed with variations and can respond dynamically to program events.

Like other components of DirectX, DirectMusic is based on the Component Object Model (COM).

DirectMusic delivers full functionality on Microsoft® Windows® 95, Microsoft® Windows® 98, and Microsoft® Windows® 2000. However, hardware acceleration is available only on Windows 2000 and Windows 98 Second Edition.

Why Use DirectMusic?

The DirectMusic API addresses fundamental requirements for delivering music on the Windows platform:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Consistent playback experience. By using downloadable sounds, an application can be sure that musical instruments will sound the same on all computers and can perform with instruments of its own design.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Jitter-free timing. Playback of MIDI-generated music has timing accuracy within two milliseconds.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Extensibility. DirectMusic does not restrict vendors to a base-level feature set.

 �SYMBOL 183 \f "Symbol" \s 11 \h �	Hardware acceleration. On Windows 98 Second Edition and Windows 2000, DirectMusic can stream its output to DLS-capable hardware synthesizers.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Software emulation. Computers without hardware acceleration are fully DirectMusic-capable with minimum impact on performance.

In addition, DirectMusic provides important features for easing application development and for enriching the user's experience:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Generic mechanism for loading and performing musical segments, regardless of the performance technology. DirectMusic supports standard MIDI files, authored music segments, and third-party technology equally.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Multiple performances. More than one piece of music can be played at once, with completely separate timing, instrument sets, and so on.

�SYMBOL 183 \f "Symbol" \s 11 \h �	More than 16 MIDI channels. By mapping performance channels to channel groups, DirectMusic breaks through the 16-channel limitation and makes it possible for any number of voices to be played simultaneously, up to the limits of the synthesizer.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Automated management of DLS instruments.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Dynamic and interactive playback. In combination with DirectMusic Producer, the DirectMusic performance engine can be used to create dynamic musical soundtracks based on stored compositional material. The music does not assume its final form until it is about to be played and can respond to program events.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Synchronization of all music playback through the use of a master clock.

DirectMusic Architecture

This section introduces the components of DirectMusic. The following topics are discussed:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Core and Performance Layers

�SYMBOL 183 \f "Symbol" \s 11 \h �	Overview of DirectMusic Objects and Interfaces (C/C++)

�SYMBOL 183 \f "Symbol" \s 11 \h �	Overview of DirectMusic Classes (Visual Basic)

�SYMBOL 183 \f "Symbol" \s 11 \h �	Overview of DirectMusic Data Flow

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusic Messages

�SYMBOL 183 \f "Symbol" \s 11 \h �	Downloadable Sounds

�SYMBOL 183 \f "Symbol" \s 11 \h �	Microsoft Software Synthesizer

For information about how to implement these components in your application, see DirectMusic Essentials.

Core and Performance Layers

The DirectMusic core layer manages timing and ports and provides services for managing DLS collections. It supports buffered, time-stamped MIDI input and output. By default, DirectMusic itself sequences the MIDI data.

The core layer also includes the Microsoft Software Synthesizer, which functions as the hardware emulation layer for DLS support. If the user’s computer does not have DLS hardware acceleration, the software synthesizer uses DLS to synthesize wave output from the sequenced MIDI data. Vendors can also create their own software synthesizers.

The DirectMusic performance layer is responsible for the higher-level aspects of music playback, including the loading and playback of MIDI files and the composition of music, based on elements authored in DirectMusic Producer or a similar application.

[C++]

The interfaces and related API elements for the core layer are declared in the Dmusicc.h header file, and those for the performance layer are in the Dmusici.h header file.

[Visual Basic]

DirectX for Visual Basic exposes primarily the performance layer. For specialized applications that need to work with multiple ports, manipulate DLS data at a low level, or create their own data tracks, use C++.

Overview of DirectMusic Objects and Interfaces

[Visual Basic]

The information in this section pertains only to applications written in C++. See Overview of DirectMusic Classes.

[C++]

In DirectMusic, it is helpful to make a distinction between objects and their COM interfaces because many objects have multiple interfaces. The object that supports the IDirectMusicCollection interface, for example, also supports the standard COM IPersistStream interface, as well as the IDirectMusicObject interface.

In this documentation, DirectMusic objects are referred to by the name of their principal or unique interface, but without the initial I; thus the object represented by IDirectMusicCollection is called the DirectMusicCollection object. Objects are also referred to by short names, such as collection, performance, segment, and track.

Interface pointers are often used as pointers to their objects so that these objects can be accessed through the methods of other interfaces. In fact, one interface, IDirectMusicDownloadedInstrument, has no unique methods of its own and is used only as a parameter to the methods of other interfaces.

DirectMusic consists of many COM objects and interfaces that are related to one another in rather complex ways. However, they can be divided into categories, according to their broad functionality, as follows:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Core Objects and Interfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Loader Objects and Interfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Instrument Objects and Interfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Tool Objects and Interfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Performance Objects and Interfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Composition Objects and Interfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Synthesizer Objects and Interfaces

Core Objects and Interfaces

[Visual Basic]

The information in this topic pertains only to applications written in C++. See Overview of DirectMusic Classes.

[C++]

The core objects handle the basic needs of DirectMusic: input, output, and timing. These objects are usually managed by other objects, such as DirectMusicPerformance, and you might never need to use their interfaces directly.

DirectMusic Object

The DirectMusic object, represented by the IDirectMusic interface, is used for creating ports and buffers, for connecting with DirectSound, and for setting up a master clock. There should not be more than one instance of this object per application.

Many applications never need to use the IDirectMusic interface directly. In this respect, it differs from other DirectX base interfaces. For example, IDirectSound is the starting point for every DirectSound application, performing essential tasks such as setting the cooperative level and creating sound buffers. In DirectMusic, most initialization is handled by other objects, such as DirectMusicPerformance, and these objects are created independently by direct calls to CoCreateInstance.

Port

Each device that sends or receives music data is encapsulated in a DirectMusicPort object. The methods of the IDirectMusicPort interface allow direct manipulation of the port, but most applications do not need to use these methods because the port is managed by the performance. For example, you assign channels to a port through the DirectMusicPerformance object so that data in those channels is correctly routed.

Buffer

The IDirectMusicBuffer interface represents the data currently ready to be played by the port (or read from the port). Most applications do not deal directly with the buffer object, but methods are available to manipulate its contents directly, if necessary.

Thru

The IDirectMusicThru interface is used to set up direct transmission of data from a capture port to another port.

Reference Clock

Objects that implement the IReferenceClock interface represent the master clock that synchronizes all DirectMusic activity and the latency clock of a port.

Loader Objects and Interfaces

[Visual Basic]

The information in this topic pertains only to applications written in C++. See Overview of DirectMusic Classes.

[C++]

Certain types of objects, such as DirectMusicCollection and DirectMusicStyle, have to be loaded (typically from a file) before they can be incorporated into a music performance. Others, such as DirectMusicSegment, can be either loaded or constructed at run time. The interfaces introduced in this section are essential for loading.

Loader

The DirectMusicLoader object, through its IDirectMusicLoader interface, manages the enumeration, caching, and loading of objects.

Stream

Data being read from a file or resource is represented by a stream object. Most applications do not have to deal directly with streams, which are created and managed by the loader. The stream object implements the following two interfaces:

�SYMBOL 183 \f "Symbol" \s 11 \h �	IStream streams the data from a file or resource and passes it to the object being loaded, which parses it by using its own implementation of IPersistStream.

�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirectMusicGetLoader has a single method that returns a pointer to the DirectMusicLoader object that created the stream. It is used when a reference to another object is found in a stream and the object being loaded needs to call the loader to load the referred to object.

For a closer look at the use of these interfaces in the loading process, see DirectMusic Loader.

Object

Every object in DirectMusic that represents a file or resource supports the IDirectMusicObject interface, which is used as a generic pointer by the loader. When an application has obtained a pointer to this interface, the IDirectMusicObject::QueryInterface method can be used to obtain a pointer to the object's own unique interface, such as IDirectMusicCollection or IDirectMusicStyle. However, you can usually obtain the interface that you need from the call to IDirectMusicLoader::GetObject.

The methods of IDirectMusicObject are used internally by the loader for identifying objects.

Instrument Objects and Interfaces

[Visual Basic]

The information in this topic pertains only to applications written in C++. See Overview of DirectMusic Classes.

[C++]

An instrument is an object that represents a basic musical timbre or other sound. For all ports except legacy hardware MIDI ports, each instrument is associated with its own set of downloadable sounds (DLS), which must be downloaded to the port before the instrument can be used.

Downloadable sounds can be handled at three levels of abstraction. At the highest level, you load a band from a file and let the band object handle the DLS downloading for the instruments. At the next level, you directly access individual instruments in a collection and download them to a port. At the lowest level, you work with the DLS data itself.

The following objects and interfaces are used for managing instruments.

Collection

Instruments are stored in a DirectMusicCollection object, which represents an instance of a DLS file. Once the DirectMusicCollection object has been loaded, the IDirectMusicCollection interface can be used to enumerate instruments in the collection and to obtain a pointer to an instrument that has a given MIDI patch number.

Instrument

An instrument from a collection is represented by a pointer to the IDirectMusicInstrument interface. This pointer can be passed to the IDirectMusicPerformance::DownloadInstrument or the IDirectMusicPort::DownloadInstrument method to download DLS data to a port.

Once an instrument has been downloaded, it is represented by an IDirectMusicDownloadedInstrument interface pointer. This pointer is used only to unload the instrument by calling IDirectMusicPort::UnloadInstrument.

Applications that need to download their own DLS data for an instrument (such as collection-editing tools) use the methods of the IDirectMusicPortDownload interface (implemented by the port object) to get that data to the synthesizer. When this interface is used to allocate a buffer for instrument data, an IDirectMusicDownload interface pointer is returned. The single method of this interface can be used to obtain a pointer to the buffer itself.

Band

The DirectMusicBand object represents a set of instruments and MIDI program changes for a musical segment. The band is created in an authoring tool and can be loaded separately from a file, or it can be part of an authored segment or style.

The IDirectMusicBand interface can be used to download and unload bands. It also has a method for creating a secondary segment from a band. This segment can be played by the performance to effect program changes.

The key differences between a collection and a band are as follows:

�SYMBOL 183 \f "Symbol" \s 11 \h �	A collection is a group of instruments available for use in the playback of any segment. A band is a group of instruments that actually plays a particular segment.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Instruments in a collection contain DLS data defining their timbre. Instruments in a band contain no such data but are linked to instruments in one or more collections.

�SYMBOL 183 \f "Symbol" \s 11 \h �	An instrument from a collection is not inherently associated with any particular performance channel (PChannel) of a segment. A band assigns the patch number of an instrument to each PChannel in a segment and assigns a voice priority to the channel.

�SYMBOL 183 \f "Symbol" \s 11 \h �	A collection does not contain any information about how the instruments are to be played. A band contains settings for the volume, pan, and transposition of each instrument.

Tool Objects and Interfaces

[Visual Basic]

The information in this topic pertains only to applications written in C++. See Overview of DirectMusic Classes.

[C++]

Tools are objects that intercept musical messages and process them before they are passed on to the port. All tools (except the output tool implemented by DirectMusic) are application-defined.

Tool

The IDirectMusicTool interface represents a single tool. The methods of this interface are implemented by the application or DLL to define the tool's functionality.

Graph

Tools are collected in a graph, represented by the IDirectMusicGraph interface, which is implemented by both the segment and the performance object. The interface is used for directing messages from one tool to the next, as well as for adding tools to the graph, retrieving pointers to individual tools, and shutting down the graph.

Performance Objects and Interfaces

[Visual Basic]

The information in this topic pertains only to applications written in C++. See Overview of DirectMusic Classes.

[C++]

The following objects and interfaces are used in the playback of musical data. With a total of over 75 methods, the interfaces in this group play a major role in any DirectMusic application.

Performance

The DirectMusicPerformance object is the overall manager of music playback. Through the IDirectMusicPerformance interface, it adds and removes ports, downloads instruments, attaches graphs (collections of tools), manages event notification for multiple segments, and plays segments.

Segment

A DirectMusicSegment object represents a chunk of data, most often a piece of music, contained in one or more tracks. Typically, a segment is either loaded from a file or created at run time by a DirectMusicComposer object. To play the segment, the application passes the IDirectMusicSegment interface pointer to the IDirectMusicPerformance::PlaySegment method.

Methods of the IDirectMusicSegment interface are used to manage timing and looping, event notification, tracks, tool graphs, and various other parameters of the segment.

An instance of a segment that is playing is represented by another interface, IDirectMusicSegmentState. Methods of this interface return information about the state of playback, and a pointer to this interface is used by the performance to stop or remove the segment instance.

Track

A chunk of timed data of a particular kind is represented by a DirectMusicTrack object, more simply referred to as a track. Methods of the IDirectMusicTrack interface can be used to set and retrieve data, play the data, and set notifications. Most applications do not use this interface directly because tracks are normally handled through the methods of the DirectMusicSegment object that contains them.

Note

A DirectMusicTrack is not the same thing as an instrument track. A DirectMusicTrack represents any kind of timed data, such as MIDI messages, a chord progression, or band changes.

Composition Objects and Interfaces

[Visual Basic]

The information in this topic pertains only to applications written in C++. See Overview of DirectMusic Classes.

[C++]

The objects and interfaces in this category are used in the real-time composition of music. Except for the composer itself, they represent data loaded from a file created in an application such as DirectMusic Producer. For a closer look at the role of each object, see Music Composition.

Composer

Methods of the IDirectMusicComposer interface allow an application to compose musical segments and transitions, using chord maps, styles, and templates created by a human author.

Style

Styles contain basic information about a piece of music, including note patterns. Styles often form part of authored segments, in which they do most of their work behind the scenes. They can also be used to compose entirely new segments at run time. Styles are represented by the IDirectMusicStyle interface.

Chord map

A DirectMusicChordMap object represents a collection of chords and pathways used by DirectMusicComposer in determining the chord progression in a piece of music.

The IDirectMusicChordMap interface is obtained for a DirectMusicChordMap object loaded from a file. A pointer to this interface is passed to the methods of IDirectMusicComposer so that a segment or transition can be composed at run time, using the authored chord map. You can also change the chord pattern of an existing segment by applying a new chord map.

Template

Templates are a special type of DirectMusicSegment object. They are never played directly, but are used by the DirectMusicComposer in the real-time construction of segments based on styles and chord maps.

Synthesizer Objects and Interfaces

[Visual Basic]

The information in this topic pertains only to applications written in C++. See Overview of DirectMusic Classes.

[C++]

The synthesizer is responsible for converting MIDI messages into waveform data and streaming this to the wave output device. Although DirectMusic comes with its own software synthesizer, it allows the implementation of custom synthesizers. It also allows output to be directed to different devices. Information on these topics is contained in the DirectX Driver Development Kit (DDK).

Synthesizer

A synthesizer implemented by an application is represented by the IDirectMusicSynth interface. Most applications do not use this interface, and it is not documented in the DirectX SDK.

Synth Sink

The wave stream to which the synthesizer is sending data—for example, DirectSound or Microsoft® Win32® waveform audio—is represented by an IDirectMusicSynthSink interface. Most applications do not use this interface, and it is not documented in the DirectX SDK.

Overview of DirectMusic Classes

[C++]

The information in this section pertains only to applications written in Visual Basic. For C++ applications, see Overview of DirectMusic Objects and Interfaces.

[Visual Basic]

The DirectMusic classes can be grouped according to their broad functionality, as follows:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Loader Class

�SYMBOL 183 \f "Symbol" \s 11 \h �	Performance Classes

�SYMBOL 183 \f "Symbol" \s 11 \h �	Composition Classes

�SYMBOL 183 \f "Symbol" \s 11 \h �	Instrument Classes

Loader Class

[C++]

The information in this topic pertains only to applications written in Visual Basic. For C++ applications, see Overview of DirectMusic Objects and Interfaces.

[Visual Basic]

The first step in playing music is to load data from a file or resource. An object of the DirectMusicLoader class is used for loading bands, collections, segments, and styles. All file input and output and parsing of the data is handled by DirectMusic.

Each of the DirectMusicLoader methods (other than SetSearchDirectory) returns an object representing the data. Other objects referred to by the primary object being loaded are also made available. For example, if you load a style by using DirectMusicLoader.LoadStyle and that style contains a reference to a band, the band object can be retrieved at any time by calling a method of the style object.

Performance Classes

[C++]

The information in this topic pertains only to applications written in Visual Basic. For C++ applications, see Overview of DirectMusic Objects and Interfaces.

[Visual Basic]

The DirectMusicPerformance class is at the heart of any DirectMusic application. Most applications have a single object of this class, which is responsible for managing timing and ports, changing global musical parameters such as the master tempo, and playing musical segments.

Each individual piece of music, such as a MIDI file or a segment authored in an application such as DirectMusic Producer, is represented by an object of the DirectMusicSegment class. Methods of this class can be used to set or retrieve musical parameters for the segment and to manage the DLS instruments associated with it. A special kind of DirectMusicSegment, the template, is used in run-time composition of playable segments.

When a DirectMusicSegment object is passed to DirectMusicPerformance.PlaySegment, the method returns an object of the DirectMusicSegmentState class that represents the playing instance of the segment. Methods of this object can be used to obtain information such as the time at which it started playing. The DirectMusicSegmentState is also passed to DirectMusicPerformance to determine whether the segment is currently playing or to stop playback.

Composition Classes

[C++]

The information in this topic pertains only to applications written in Visual Basic. For C++ applications, see Overview of DirectMusic Objects and Interfaces.

[Visual Basic]

Much of the music played in DirectMusic applications is fully authored either as a MIDI file or as a segment. However, DirectMusic also allows applications to compose music at run time, based on elements such as styles and templates.

The DirectMusicComposer class has methods that create DirectMusicSegment objects representing either templates, playable segments based on a chord map or template, or transitions based on other segments. The composer object can also be used to change the chord map of an existing segment.

The DirectMusicChordMap class represents a chord map loaded from a file or resource, which provides DirectMusicComposer with the information that it needs to compose chord progressions.

An object of the DirectMusicStyle class is also based on data from a file or resource, either as a separate entity or as part of an authored segment. It represents a set of musical patterns used in composition and can be passed to methods of DirectMusicComposer. Its own methods can be used to retrieve other elements that might have been determined in the style, such as motifs and bands.

Instrument Classes

[C++]

The information in this topic pertains only to applications written in Visual Basic. For C++ applications, see Overview of DirectMusic Objects and Interfaces.

[Visual Basic]

The DirectMusicBand class represents a set of instruments (with their volume, pan, and transposition) mapped to the parts in a piece of music. Band changes determined in a style take place automatically when a segment based on that style is played, but you can also obtain a DirectMusicBand object from a style or from a separate file or resource and create a DirectMusicSegment from it. This segment can then be played to effect program changes.

The DirectMusicCollection class represents a DLS collection. Most applications do not need to work directly with collections because the instrument data is downloaded to the port when a segment is played or when a band is downloaded.

The key differences between a collection and a band are as follows:

�SYMBOL 183 \f "Symbol" \s 11 \h �	A collection is a group of instruments available for use in the playback of any segment. A band is a group of instruments that actually plays a particular segment.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Instruments in a collection contain DLS data defining their timbre. Instruments in a band contain no such data, but are linked to instruments in one or more collections.

�SYMBOL 183 \f "Symbol" \s 11 \h �	An instrument from a collection is not inherently associated with any particular performance channel (PChannel) of a segment. A band assigns the patch number of an instrument to each PChannel in a segment and assigns a voice priority to the channel.

�SYMBOL 183 \f "Symbol" \s 11 \h �	A collection does not contain any information about how the instruments are to be played. A band contains settings for the volume, pan, and transposition of each instrument.

Overview of DirectMusic Data Flow

Typically, a DirectMusic application obtains musical data from one or more of the following sources:

�SYMBOL 183 \f "Symbol" \s 11 \h �	MIDI files.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Segment files authored in an application such as DirectMusic Producer.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Component files authored in an application such as DirectMusic Producer and turned into a complete composition by the DirectMusicComposer object.

Note

Any of these data sources can be stored in the application as a resource.

Data from these sources is encapsulated in DirectMusicSegment objects. Each segment object represents data from a single source. At any given moment in a performance, one or more segments can be playing: a primary segment and, possibly, one or more secondary segments. Source files can be mixed—for example, a secondary segment based on a MIDI file can be played along with a primary segment based on an authored segment file.

A segment comprises several tracks, each containing timed data of a particular kind—for example, notes or tempo changes.

Most tracks generate messages when the segment is played by the performance, and the performance dispatches the messages to any application-defined tools, which can modify messages and pass them on, delete messages, and send new messages. Tools are grouped in segment graphs that process only messages from their own segments, and a performance graph that accepts messages from all segments.

[Visual Basic]

Application-defined tools are not supported by DirectX for Visual Basic.

Finally, the messages are delivered to the output tool, which converts the data to MIDI format before passing it to a port. Channel-specific MIDI messages are directed to the appropriate channel group on the port. The port synthesizes a sound wave that is streamed to a wave output device (normally a DirectSound buffer).

The following illustration shows how musical data gets from files to the wave output device. For the sake of simplicity, only a single segment is shown. This segment gets its data from only one of the three possible sources shown: a MIDI file, an authored segment file, or component files combined by the DirectMusicComposer object.

�

For a closer look at the flow of messages through the performance, see DirectMusic Messages.

For information on how to implement the process illustrated in the illustration, see the DirectMusic Essentials section, in particular the topics DirectMusic Loader and Playing Music.

For more about segment and component files, see Music Composition.[C++.Visual Basic]

DirectMusic Messages

Musical data passes through the DirectMusic performance engine in the form of messages. Most DirectMusic applications do not work directly with messages, but a basic knowledge of their structure can help you understand how DirectMusic works.

DirectMusic works with two different kinds of messages:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Performance messages. All sequenced data passes through the performance engine in this form. These messages contain detailed information about timing and routing of the data.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Standard MIDI messages. These can be read from a MIDI file or device and either passed directly (thrued) to another device or converted to performance message format before being passed to the performance. Final output to the synthesizer is also in the form of MIDI messages.

The following topics give more information about messages and how they are routed:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Channels

�SYMBOL 183 \f "Symbol" \s 11 \h �	Message Creation and Delivery

�SYMBOL 183 \f "Symbol" \s 11 \h �	Performance Message Types

�SYMBOL 183 \f "Symbol" \s 11 \h �	MIDI Messages

Channels

A channel is a destination for a message that is specific to one part in the performance. For example, a channel might receive a note-on message that causes the instrument on that channel to make a sound, or a program-change message that assigns a different instrument to that part. (See MIDI Channel Messages.)

Under the MIDI 1.0 standard, there are 16 MIDI channels, meaning that no more than 16 instruments can be playing at one time. To support this standard but at the same time make more channels available to applications, DirectMusic creates channel groups. Up to 65,536 channel groups can exist at one time, each containing 16 channels, for a total of over one million channels. A particular port can be assigned any number of channel groups, up to its capability to support them. Legacy MIDI hardware ports have only a single channel group.

System-exclusive messages address all 16 channels within a channel group, but not other channel groups.

Every instrument in a DirectMusic performance has a unique performance channel, or PChannel. The PChannel represents a particular MIDI channel in a particular group on a particular port. When a band is selected by a performance, each instrument in that band is mapped to a PChannel.

[C++]

The number of notes that can be played simultaneously is limited by the number of voices available on the port. (This number can be determined from the dwMaxVoices member of the DMUS_PORTCAPS structure.)

[Visual Basic]

The number of notes that can be played simultaneously is limited by the number of voices available on the port. (This number can be determined from the lMaxVoices member of the DMUS_PORTCAPS type.)

A voice is a set of resources dedicated to the synthesis of a single note being played on a channel. If there are more notes playing than there are available voices, one or more notes must be suppressed by the synthesizer. The choice is determined by the priority of the voice currently playing the note, which is based in turn on the priority of the channel. By default, channels are ranked according to their index value, except that channel 10, the MIDI percussion channel, is ranked highest.

[C++]

Applications and synthesizers can set their own channel priorities. For more information, see the Remarks for IDirectMusicPort::GetChannelPriority. See also DMUS_CHANNEL_PRIORITY_PMSG.

Message Creation and Delivery

When a segment is played, most of its tracks generate messages containing information about events that are to take place during playback. (For more information, see Tracks.)

A few tracks send more than one kind of message. For example, a style track sends note messages and time signature messages. In such cases, an application can disable certain kinds of messages in the track. For more information, see Setting and Retrieving Track Parameters.

Applications can also place messages in the queue directly. You might do this, for example, to change the tempo.

[C++]

For sample code, see IDirectMusicPerformance::SendPMsg.

[Visual Basic]

For sample code, see the DLSEffects sample.

The performance engine determines when each message is to be processed in real time (reference time). In the case of channel messages, the performance also determines to what PChannel the message is directed. This information, along with other data—including the message type, its source track, and pointers to the first graph and tool that are to receive the message—are stored in the message.

Certain messages, such as tempo and time-signature changes, are immediately processed and freed by the performance. Other messages, such as notes and patch changes, are placed in a queue, in which they are processed in order of time stamp.

Notes

There is no guarantee that messages with the same time stamp will be processed in any particular order.

Tempo messages tell the performance how to convert music time to reference time. Time-signature messages are purely informational, because the time signature is built into the segment and cannot be changed.

[C++]

Messages are first sent to any tools in the segment's graph, and then to tools in the performance's graph. (The application is responsible for creating either or both of these graphs and defining the tools. There is no default graph.)

The first tool in a graph processes the message, and then, if it wants to pass it on, has the graph stamp the message with a pointer to the next tool. For more information, see Tutorial 2: Using Tools.

At this point, the graph also flags the message with a delivery type that determines when the message is delivered to the next tool. This flag is based on what delivery type the tool is expecting, as follows:

�SYMBOL 183 \f "Symbol" \s 11 \h �	If the message is flagged as DMUS_PMSGF_TOOL_IMMEDIATE, it is delivered to the next tool immediately.

�SYMBOL 183 \f "Symbol" \s 11 \h �	If it is flagged as DMUS_PMSGF_TOOL_QUEUE, the message is delivered just before the time at which it is supposed to play, taking latency into account (see Latency and Bumper Time).

�SYMBOL 183 \f "Symbol" \s 11 \h �	If it is flagged as DMUS_PMSGF_TOOL_ATTIME, it is delivered at exactly the time at which it is to be processed. Notification messages are given this flag because there is little or no latency involved in processing a notification.

The current tool can change the delivery type after the graph has finished stamping and flagging the message.

Ultimately, unless a message has been discarded, it arrives at the DirectMusic output tool, which converts all the data that it receives into standard MIDI messages and delivers these to the synthesizer through the port buffer.

Performance Message Types

[C++]

Messages are stored in various structures derived from DMUS_PMSG. Because C does not support inheritance, the members of DMUS_PMSG are included in the declaration for each message type as the DMUS_PMSG_PART macro. These members contain data common to all messages, including the type of the message, time stamps, the performance channel to which the message is directed, and what graph and tool are next in line to process the message. The other members contain data that is unique to the message type.

The following message structures are defined:

DMUS_PMSG�Simple message with no additional parameters.��DMUS_CHANNEL_PRIORITY_PMSG�Channel-priority change. See Channels.��DMUS_CURVE_PMSG�Curve.��DMUS_MIDI_PMSG�Any MIDI message that does not have a unique message type—for example, a control change.��DMUS_NOTE_PMSG�Music note. (Includes duration, so MIDI note-on and note-off messages are combined in this type.)��DMUS_NOTIFICATION_PMSG�Notification. See Notification and Event Handling.��DMUS_PATCH_PMSG�MIDI patch change.��DMUS_SYSEX_PMSG �MIDI system-exclusive message.��DMUS_TEMPO_PMSG�Tempo change.��DMUS_TIMESIG_PMSG�Time-signature change.��DMUS_TRANSPOSE_PMSG�Transposition.��

[Visual Basic]

DirectX for Visual Basic does not give applications direct access to message structures. Instead, it provides the following methods for sending particular kinds of messages:

DirectMusicPerformance.SendCurvePMSG�MIDI curve.��DirectMusicPerformance.SendNotePMSG�Musical note.��DirectMusicPerformance.SendPatchPMSG�Patch change.��DirectMusicPerformance.SendMIDIPMSG�Miscellaneous MIDI events.��DirectMusicPerformance.SendTempoPMSG�Tempo change.��DirectMusicPerformance.SendTimeSigPMSG�Time-signature change.��DirectMusicPerformance.SendTransposePMSG�Transposition change.��

MIDI Messages

This section gives an overview of standard MIDI messages and how such messages, typically streamed from a MIDI file, are handled by DirectMusic. Most applications do not deal directly with MIDI messages because the loader and the performance manage all the details of playback.

MIDI input is converted into performance message format before being routed through tools by the performance. The output tool converts the data back into the standard MIDI message format before passing it to the synthesizer.

Note

There is no guarantee that MIDI messages will be processed in the same order in which they occur in the file. DirectMusic messages are delivered in order of time stamp, and two MIDI messages with identical time stamps might not be delivered in the expected order. Be sure, in authoring MIDI content, not to give events simultaneous time stamps if they must take place sequentially. For example, do not place a program change at the same time as a note that depends on the program change.

MIDI messages consist of a status byte, usually followed by 1 or 2 data bytes. System-exclusive MIDI messages are of variable length. The status byte indicates the type of message and, in some cases, the channel that is to receive the message. When several events of the same kind are in sequence in the file, the status byte can be omitted. This is called the running status. Data bytes are recognizable because the high bit is always clear, whereas in status bytes, it is always set.

The time at which MIDI events are streamed from a file is controlled by a number before each message, indicating how many ticks separate this event from the last. The actual duration of a tick depends on the time format in the file header.

MIDI messages are divided into two main categories:

�SYMBOL 183 \f "Symbol" \s 11 \h �	MIDI Channel Messages

�SYMBOL 183 \f "Symbol" \s 11 \h �	MIDI System Messages

MIDI Channel Messages

A channel message is addressed to a particular MIDI channel, which corresponds to a single part in the music.

A channel message can be either a mode message or a voice message.

A mode message determines how a channel deals with subsequent voice messages. For example, a mode message might instruct the channel to remain silent, ignoring all note-on messages until further notice.

Most channel messages are voice messages: they instruct the channel to begin or stop playing a note or to modify the note in some way, or they change the instrument by assigning a different MIDI patch number to the channel.

Voice messages are of the following types:

Voice message�Purpose����Note-on�Play a note.��Note-off�Stop playing the note.��Control change�Modify the tone with data from a pedal, lever, or other device; also used for miscellaneous controls such as volume and bank select.��Program (patch) change�Select an instrument for the channel by assigning a patch number.��Aftertouch�Modify an individual note, or all notes on the channel, according to the aftertouch of a key.��Pitch bend change�Modify the pitch of all notes played on the channel.��

These descriptions apply to standard MIDI messages, not MIDI data that has been converted to performance message format. For example, a pair of MIDI messages to start and stop a note are combined by DirectMusic into a single message giving the duration of the note. DirectMusic messages also contain much additional information about the timing and routing of the message.

MIDI notes

The data bytes of a note-on message represent the pitch and velocity. In most cases, a pitch value of 0 represents C below subcontra C (called C0 in MIDI notation), 12 represents subcontra C (or C1), 60 is middle C (or C5), and so on. For drum kits, the data byte represents a particular drum sound instead. For example, as long as the General MIDI (GM) percussion key map is being adhered to, a value of 60 represents a high bongo sound. Channel 10 is reserved for drum kits, so the synthesizer knows that note-on messages on that channel are to be treated differently than on other channels.

For information on how DirectMusic converts to and from MIDI notes, see Music Values and MIDI Notes.

Program changes

Program changes and patch numbers are very important in MIDI playback and in DirectMusic. A program change assigns a particular instrument (also called a program or timbre) to a channel so that the notes sent to that channel are played with the appropriate sound. Instruments are identified by patch numbers. If the GM instrument set is loaded, a program change specifying patch number 1 always causes the channel to play its notes as an acoustic grand piano. (Of course, the actual sound produced at the speakers depends on how the instrument is synthesized.)

Bank selection

Because a single data byte is used to select the patch number in a program change and only 7 bits in each data byte of a MIDI message are significant, a program change can select from a maximum of 128 instruments. To provide a greater choice, the MIDI specification allows for the use of up to 16,384 instrument banks, each containing up to 128 instruments.

To select an instrument from a different bank, the MIDI sequencer must first send a control change message called bank select. The 2 data bytes of this message are referred to as the most significant byte (MSB) and least significant byte (LSB), and they are combined to identify a bank. Once the bank has been selected, each subsequent program change selects an instrument from that bank.

DirectMusic patch numbers

[Visual Basic]

This topic pertains only to applications written in C++. DirectX for Visual Basic does not allow applications to change patch numbers except by using the DirectMusicPerformance.SendPatchPMSG method.

[C++]

In DirectMusic, the instrument patch number is not the 7-bit MIDI patch number, but a 32-bit value that packs the MIDI patch number together with the MSB and LSB of the bank select and a 1-bit flag for a drum kit. This extended patch number is returned by the IDirectMusicCollection::EnumInstrument, IDirectMusicCollection::GetInstrument, and IDirectMusicInstrument::GetPatch methods. It can be changed for an instrument by using the IDirectMusicInstrument::SetPatch method.

The organization of DirectMusic patch values is as follows:

Bits�Purpose����0-7�MIDI patch number (bit 7 is always 0)��8-15�LSB bank select (bit 15 is always 0)��16-23�MSB bank select (bit 23 is always 0)��24-30�Unused��31�Flag for drum kit��

MIDI System Messages

System messages are not exclusive to any channel. They are of three kinds, as shown in the following table.

Message type�Purpose����System common�Miscellaneous commands and data.��System exclusive�Equipment-specific commands and data.��System real-time�Synchronization of clock-based MIDI equipment.��

Unlike other MIDI messages, system-exclusive messages can contain any number of data bytes. After transmitting the data, the sequencer sends a system-common message called an EOX, which signals the end of the system-exclusive message.

[C++]

In DirectMusic, the DMUS_SYSEX_PMSG structure contains the length of the data and a pointer to an array of data bytes.

[Visual Basic]

DirectX for Visual Basic does not give applications direct access to system-exclusive messages.

Downloadable Sounds

In the past, most computer music has been produced in one of two fundamentally different ways, each with its advantages and disadvantages:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Waveforms are reproduced from digital samples, typically stored in a .wav file or, in the case of Red Book audio, on a standard CD track. Digital samples can reproduce any sound, and the output is very similar on all sound cards. However, they require large amounts of storage and resources for streaming.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Instrument sounds are synthesized, usually in hardware, in response to messages, typically from a MIDI file. MIDI files are compact and require few streaming resources, but the output is limited to the number of instruments available in the General MIDI set and in the synthesizer, and can sound very different on different systems.

One way to combine the advantages of digital sampling with the compactness and flexibility of MIDI is wave-table synthesis—the synthesis of instrument sounds from digital samples. These samples are obtained from recordings of real instruments, and then stored on the hardware. The samples are looped and adjusted in such a way as to produce sounds of any length at various pitches and volumes.

Wave-table synthesis produces more realistic timbres than algorithmic FM synthesis, but is still limited to a fixed set of instruments. Moreover, a particular instrument can sound different on different pieces of hardware, depending on the manufacturer's implementation of that instrument.

To overcome these limitations, the downloadable sounds (DLS) standard has been published by the MIDI Manufacturers Association. DLS is a way of allowing wave-table synthesis to be based on samples provided at run time, rather than hard-wired into the system. The data describing an instrument is downloaded to the synthesizer, and then the instrument can be played like any other MIDI instrument. Because DLS data can be distributed as part of an application, developers can be sure that their soundtracks are delivered uniformly on all systems. Moreover, they are not limited in their choice of instruments.

A DLS instrument is created from one or more digital samples, typically representing single pitches, which are then modified by the synthesizer to create other pitches. Multiple samples are used to make the instrument sound realistic over a wide range of pitches. When a DLS instrument is downloaded, each sample is assigned to a certain range of pitches, called a region. Usually, there are no more than 16 regions.

In addition, samples can be given an articulation, which defines things like attack (how quickly a note reaches full volume), decay (how quickly it falls away from full volume), and other characteristics that make the sound more like that produced by a real instrument.

Downloadable sounds are stored in instrument collections, from which they are downloaded to the synthesizer.

DLS instruments are assigned patch numbers and respond to MIDI messages as do other MIDI instruments. However, a DLS instrument does not have to belong to the General MIDI set. In fact, it does not have to represent a musical instrument at all. Any sound, even a fragment of speech or a fully composed measure of music, can be turned into a DLS instrument.

For more information on DLS collections and how instruments are created, see the documentation for DirectMusic Producer. For a guide to incorporating DLS in your applications, see Using Downloadable Sounds.

Microsoft Software Synthesizer

The Microsoft Software Synthesizer is supplied with DirectMusic and is the default port when hardware DLS is not available or is not supported by the operating system. The synthesizer creates a waveform based on a stream of MIDI messages, using instrument timbres synthesized from DLS samples. By default, the samples are from the Roland GS collection, which is also part of the DirectMusic installation. The synthesizer sends its output to the DirectSound mixer.

Note

The Roland GM/GS Sound Set cannot be modified. See the Copyright Warning for the legal restrictions.

The Microsoft Software Synthesizer includes reverberation capabilities, which are on by default. The Waves TrueVerb reverberation technology is licensed to Microsoft as the SimpleVerb implementation.

DirectMusic Essentials

This section gives practical information on how to implement DirectMusic in applications. For a more general overview, see DirectMusic Architecture.

The following topics are discussed:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Building DirectMusic Projects

�SYMBOL 183 \f "Symbol" \s 11 \h �	Debugging DirectMusic Projects

�SYMBOL 183 \f "Symbol" \s 11 \h �	Integrating DirectMusic and DirectSound

�SYMBOL 183 \f "Symbol" \s 11 \h �	Using Ports

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusic Loader

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusic File Format

�SYMBOL 183 \f "Symbol" \s 11 \h �	Using Downloadable Sounds

�SYMBOL 183 \f "Symbol" \s 11 \h �	Playing Music

�SYMBOL 183 \f "Symbol" \s 11 \h �	Music Parameters

�SYMBOL 183 \f "Symbol" \s 11 \h �	Capturing Music

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusic Tools

�SYMBOL 183 \f "Symbol" \s 11 \h �	Music Composition

Building DirectMusic Projects

[Visual Basic]

This topic pertains only to application development in C++.

[C++]

Unlike other components of DirectX, the DirectMusic API is completely COM-based and does not contain any library functions, such as helper functions to create COM objects. Therefore, there is no Dmusic.lib file to link to during the build.

Most projects must include the Dmusicc.h and Dmusici.h header files, which contain declarations for the core and performance layers, respectively, and Dmerror.h, which contains return values. Dmusicf.h contains file formats and is needed only for applications such as music authoring tools that work directly with files and do not rely solely on the loaders built into DirectMusic.

Dmksctrl.h contains declarations for the IKsControl interface used for property sets. You do not need this file if you have the Ksproxy.h and Ks.h files.

DirectMusic uses the multithreading capabilities of the Windows 32-bit operating system. Multithreading allows DirectMusic to generate, process, and synthesize music in the background while your application is accomplishing other tasks. Develop your project with multithreading in mind. At least be sure to link with the multithreaded libraries.

Also be sure that your application has access to the GUIDs used by DirectMusic. For more information, see Compiling DirectX Samples and Other DirectX Applications.

Debugging DirectMusic Projects

[Visual Basic]

This topic pertains only to application development in C++.

[C++]

The DirectMusic dynamic-link libraries (DLLs) installed with the debug version of the DirectX software development kit generate information in the debug output window as the application is running. By default, all available information is shown.

You can control the volume of information that goes to your debug output window by changing values in Win.ini. The output for each DirectMusic DLL can be set separately, as in the following example:

[Debug]

DMBAND=1

DMCOMPOS=1

DMIME=1

DMLOADER=0

DMUSIC=1

DMSTYLE=3

DMSYNTH=5

Each value can be in the range from 0 through 5, where 0 produces the least detailed debugging information and 5 the most. If there is no entry in Win.ini, the debug output is at level 0. You can focus on problems in a particular component by setting higher values for the other components. You can also change the debug level by using the DirectX property sheet in Control Panel. However, this method sets the same value for all DirectMusic components.

See also Debugging DirectX Applications.

Integrating DirectMusic and DirectSound

The Microsoft Software Synthesizer and other synthesizers normally stream their output wave data to a DirectSound buffer. DirectMusic is capable of handling all the details of linking to DirectSound without any action on your part. When it creates or links to a DirectSound object, DirectMusic ensures that the primary buffer format matches that of the highest format among all DirectMusic ports.

[C++]

In an application that uses only music files for its soundtrack and does not require DirectSound for playing wave files or resources, the DirectSound object is typically created when the DirectMusic performance is initialized. This is shown in the following example, in which pPerf is a pointer to the IDirectMusicPerformance interface:

pPerf->Init(NULL, NULL, hwnd);

In this example, the first NULL specifies that the DirectMusic object is to be created and managed internally, the second NULL specifies the same for the DirectSound object, and hwnd is the handle of the controlling window for DirectSound.

Note

It is a good idea to supply the top-level application window handle when requesting that DirectMusic create the DirectSound object. See the Remarks for IDirectMusicPerformance::Init and IDirectSound::SetCooperativeLevel.

[Visual Basic]

In an application that uses only music files for its soundtrack and does not require DirectSound for playing wave files or resources, the DirectSound object is typically created when the DirectMusic performance is initialized. This is shown in the following example, where Perf is a DirectMusicPerformance object:

Perf.Init(Nothing, hwnd);

In this example, Nothing specifies that the DirectSound object is to be created and managed internally, and hwnd is the handle of the controlling window for DirectSound.

Note

It is a good idea to supply the top-level application window handle when requesting that DirectMusic create the DirectSound object. See the Remarks for DirectMusicPerformance.Init and DirectSound.SetCooperativeLevel.

More information is contained in the following topics:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Setting the DirectSound Object

�SYMBOL 183 \f "Symbol" \s 11 \h �	Setting the DirectSound Buffer Object

Setting the DirectSound Object

[C++]

Allowing DirectMusic to create and manage the DirectSound object works for applications that are not using DirectSound independently. However, if your application is using DirectSound to play wave data from a source other than the DirectMusic synthesizer, you must ensure that the same IDirectSound interface is used by DirectMusic. Create the DirectSound object first; then pass the interface pointer to DirectMusic. This can be done in the call to IDirectMusicPerformance::Init, as in the following example, in which pPerf is the IDirectMusicPerformance and pDS is a pointer to IDirectSound:

pPerf->Init(NULL, pDS, NULL);

Note

When an IDirectSound pointer is passed to IDirectMusicPerformance::Init, the third parameter, the window handle, is ignored. The application is responsible for setting the controlling window by calling IDirectSound::SetCooperativeLevel.

Set the DSSCL_PRIORITY cooperative level for any DirectSound object to be used with DirectMusic. If you set the DSSCL_NORMAL cooperative level, DirectMusic cannot upgrade the primary buffer format.

If you create the DirectMusic object by using CoCreateInstance, rather than letting the performance do it for you, you must also explicitly link it to an existing IDirectSound interface. This is done by using the IDirectMusic::SetDirectSound method.

You can also use the IDirectMusicPort::SetDirectSound method to assign a different DirectSound object to a port. Do this when different ports are on different audio devices, each represented by its own IDirectSound interface. The DirectSound object for a port cannot be changed once the port has been activated.

When a port that requires DirectSound is activated, it takes the first available IDirectSound interface pointer from the following list:

	1.	The IDirectSound interface passed to IDirectMusicPort::SetDirectSound.

	2.	The IDirectSound interface passed to IDirectMusic::SetDirectSound.

	3.	The IDirectSound interface created by DirectMusic if NULL was passed to IDirectMusic::SetDirectSound.

When DirectSound is in emulation mode, it has exclusive use of the audio device. An application should release DirectSound whenever it loses the focus to allow other applications to use the device. Typically, this is done in response to a WM_ACTIVATE message.

If DirectMusic created the DirectSound object, it automatically releases the object when all ports are deactivated (and creates a new one when the first port using DirectMusic is reactivated). However, if you created the DirectSound object yourself, you are responsible for releasing it. This is done by using the IDirectMusic::SetDirectSound or the IDirectMusicPort::SetDirectSound method, passing NULL as the pDirectSound parameter.

[Visual Basic]

Allowing DirectMusic to create and manage the DirectSound object works for applications that are not using DirectSound independently. However, if your application is using DirectSound to play wave data from a source other than the DirectMusic synthesizer, you must ensure that the same DirectSound object is used by DirectMusic. Create the DirectSound object first; then pass it to DirectMusic. This is done in the call to DirectMusicPerformance.Init, as in the following example, in which Perf is the DirectMusicPerformance object and DS is the DirectSound object:

Perf.Init(DS, 0);

Note

When a DirectSound object is passed to DirectMusicPerformance.Init, the second parameter, the window handle, is ignored. The application is responsible for setting the controlling window by calling DirectSound.SetCooperativeLevel.

Set the DSSCL_PRIORITY cooperative level for any DirectSound object to be used with DirectMusic. If you set the DSSCL_NORMAL cooperative level, DirectMusic cannot upgrade the primary buffer format.

Setting the DirectSound Buffer Object

[Visual Basic]

This topic pertains only to applications written in C++. DirectX for Visual Basic does not support custom DirectSound buffers for DirectMusic output.

[C++]

When DirectMusic is linked to DirectSound, it creates and manages a secondary DirectSound buffer for the wave output from each port, in a format matching that of the port. You can override the default behavior and ensure that the data is streamed to a different buffer by using the IDirectMusicPort::SetDirectSound method. You might do this, for example, to have 3-D effects on the sound buffer. (See the 3DMusic Sample.) You might even create multiple instances of the synthesizer port, each with its own DirectSound 3-D buffer, to place different instruments at different points in space.

The buffer that you pass to IDirectMusicPort::SetDirectSound must be a secondary streaming buffer with a matching format. Get information about the wave format and recommended buffer size by calling the IDirectMusicPort::GetFormat method.

DirectMusic does not attempt to upgrade the primary buffer when you pass your own IDirectSoundBuffer to IDirectMusicPort::SetDirectSound.

Using Ports

A port is a device that sends or receives musical data. It can correspond to a hardware device, a software synthesizer, or a software filter.

[C++]

Each port in a DirectMusic application is represented by an IDirectMusicPort interface. Methods of this interface are used to retrieve information about the device, manage the memory on the device, download and unload DLS instruments, read incoming data, and cue playback buffers.

Every performance must have at least one port. If you want to use a port other than the default port to set up special parameters for the default port, first set up a DMUS_PORTPARAMS structure. You do not have to fill in all members, but you must let DirectMusic know which members have valid information by putting the appropriate flags in the dwValidParams member. Then, pass the structure to the IDirectMusic::CreatePort method.

The following C++ code example demonstrates how an object might be created for the default port, setting five channel groups on the port, assuming that pDirectMusic is a valid IDirectMusic pointer.

IDirectMusicPort* pPort;

DMUS_PORTPARAMS dmos;

ZeroMemory(&dmos, sizeof(DMUS_PORTPARAMS));

dmos.dwSize = sizeof(DMUS_PORTPARAMS);

dmos.dwValidParams = DMUS_PORTPARAMS_CHANNELGROUPS;

dmos.dwChannelGroups = 5;

HRESULT hr = pDirectMusic->CreatePort(GUID_NULL, &dmos,

 &pPort, NULL)

Once you have a port, activate it by calling IDirectMusic::Activate or IDirectMusicPort::Activate and attach it to the performance by using the IDirectMusicPerformance::AddPort method.

When you add a port to a performance, assign a block of PChannels to it by calling the IDirectMusicPerformance::AssignPChannelBlock method. The only time this is not necessary is when you add the default port by passing NULL to IDirectMusicPerformance::AddPort. In that case, PChannels 0 through 15 are assigned to the MIDI channels in the first group on the port.

You can map PChannels differently, add more PChannels, or assign PChannels to a different port by using the IDirectMusicPerformance::AssignPChannelBlock and IDirectMusicPerformance::AssignPChannel methods.

[Visual Basic]

DirectX for Visual Basic supports only a single port for each performance, and all PChannels are mapped to this port. Choose the port after initializing the performance by using DirectMusicPerformance.SetPort. To use the default port, pass –1 as the index parameter.

Available ports are automatically enumerated when you initialize the performance. You can look for a particular port or capabilities by using the DirectMusicPerformance.GetPortCount, DirectMusicPerformance.GetPortCaps, and DirectMusicPerformance.GetPortName methods. The following code example looks for the first software synthesizer and sets this as the port for the performance, with support for up to 16 channel groups:

' perf is a DirectMusicPerformance object.

Dim X As Integer

Dim portcaps As DMUS_PORTCAPS

perf.Init(Nothing, Me.hWnd)

For X = 1 to perf.GetPortCount

 Call perf.GetPortCaps(X, portcaps)

 If portcaps.lFlags And DMUS_PC_SOFTWARESYNTH Then

 perf.SetPort(X, 16)

 Exit For

 End If

Next X

' If no port was set, set the default port, or take other action.

More information about ports is contained in the following topics:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Default Port

�SYMBOL 183 \f "Symbol" \s 11 \h �	Legacy Ports

�SYMBOL 183 \f "Symbol" \s 11 \h �	Port Property Sets

Default Port

Under Windows 95 and versions of Windows 98 prior to Windows 98 Second Edition, and always when hardware that supports DLS is not available, the Microsoft Software Synthesizer is the default port. Under later versions of Windows 98 and under Windows 2000, a hardware synthesizer might be the default port.

[C++]

If you want your application to use the default port, you do not have to call the IDirectMusic::CreatePort method before adding the port to the performance. Instead, you can pass NULL to IDirectMusicPerformance::AddPort.

Obtain the default port by a call to IDirectMusic::GetDefaultPort, and then check its capabilities by using the IDirectMusicPort::GetCaps method. If the port does not meet the needs of your application, use the IDirectMusic::EnumPort method to find the Microsoft Software Synthesizer or another port.

[Visual Basic]

A performance uses the default port if –1 is passed as the index parameter to DirectMusicPerformance.SetPort. If you do this, however, you have no way of checking the port's capabilities. If your application needs a port with particular capabilities, examine the ports in the collection created by DirectMusic when the performance is intialized. For more information, see Using Ports.

Legacy Ports

Under Windows 95 and Windows 98, DirectMusic supports legacy ports—that is, it sequences output data to a MIDI device that uses FM or hardware wave-table synthesis.

Legacy ports have the following restrictions in DirectMusic:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Not supported on Windows 2000.

�SYMBOL 183 \f "Symbol" \s 11 \h �	No support for downloadable sounds.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Master volume cannot be changed. (This can be done for other ports by setting a global parameter. See Setting and Retrieving Global Parameters.)

�SYMBOL 183 \f "Symbol" \s 11 \h �	There is only one channel group. (See Channels.)

Most applications do not need to consider the presence of legacy ports because the Microsoft Software Synthesizer produces consistent results on all output devices capable of playing waveform audio.

[C++]

You can recognize a legacy port by the DMUS_PORT_WINMM_DRIVER flag in the dwType member of the DMUS_PORTCAPS structure returned by the IDirectMusic::EnumPort or the IDirectMusicPort::GetCaps method.

Legacy ports also differ from others in that the application determines whether channels on the legacy port are shared between logical ports by setting the fShare member of the DMUS_PORTPARAMS structure. This member is relevant only for ports that have the DMUS_PC_SHAREABLE flag in the dwFlags member of DMUS_PORTCAPS, as is always the case for legacy ports.

[Visual Basic]

You can recognize a legacy port by the DMUS_PORT_WINMM_DRIVER flag in the lType member of the DMUS_PORTCAPS type returned by DirectMusicPerformance.GetPortCaps.

Port Property Sets

[Visual Basic]

This topic pertains only to applications written in C++. DirectX for Visual Basic does not support port property sets.

[C++]

Through property sets, DirectMusic provides unlimited support for new features in hardware and drivers. A property set is associated with a particular port.

Hardware vendors define new capabilities as properties and publish the specification for these properties, including GUIDs. You can use the IKsControl::KsProperty method to find out whether a property is available, and then to set and retrieve values for that property. Obtain the IKsControl interface for a port by calling the IDirectMusicPort::QueryInterface method, passing IID_IKsControl as the interface identifier.

A property set is represented by a GUID, and each item within the set is represented by a zero-based index. The meaning of the indexed items for a GUID never changes. For a list of the property sets supported by DirectMusic, see KSPROPERTY.

All property sets predefined by DirectMusic have only one item, usually at index 0. However, the full definition of kernel-streaming (KS) properties is supported, and vendors are free to create property sets with any number of items and instances, and data of any size.

Routing of the property item request to the port varies, depending on the port implementation. No properties are supported by ports that represent DirectMusic emulation over the Win32 handle-based multimedia calls (the midiOut and midiIn functions).

The following code example uses the IKsControl::KsProperty method to determine if the port supports General MIDI in hardware:

BOOL IsGMSupported(IDirectMusicPort *pPort)

{

 HRESULT hr;

 IKsControl *pControl;

 KSPROPERTY ksp;

 DWORD dwFlags;

 ULONG cb;

 BOOL fIsSupported;

 // Query for an IKsControl interface.

 hr = pPort->QueryInterface(IID_IKsControl, (void**)&pControl);

 if (FAILED(hr))

 {

 // Port does not support properties; assume no GM support.

 return FALSE;

 }

 // Ask about GM.

 ksp.Set = GUID_DMUS_PROP_GM_Hardware;

 ksp.Id = 0;

 ksp.Flags = KSPROPERTY_TYPE_BASICSUPPORT;

 hr = pControl->KsProperty(&ksp, sizeof(ksp),

 &dwFlags, sizeof(dwFlags), &cb);

 fIsSupported = FALSE;

 if (SUCCEEDED(hr) || (cb >= sizeof(dwFlags))

 {

 // Set is supported.

 fIsSupported = (BOOL)(dwFlags & KSPROPERTY_TYPE_GET);

 }

 pControl->Release();

 return fIsSupported;

}

The following code example shows how a property can be changed. In this case, the reverberation properties of the software synthesizer are set to those contained in a DMUS_WAVES_REVERB_PARAMS structure.

/* Assume that m_* variables have been initialized to valid values.

 m_pPort is a pointer to IDirectMusicPort. */

DMUS_WAVES_REVERB_PARAMS Params;

Params.fInGain = m_fReverbIn;

Params.fHighFreqRTRatio = m_fReverbHigh;

Params.fReverbMix = m_fReverbMix;

Params.fReverbTime = m_fReverbTime;

IKsControl *pControl;

if (m_pPort)

{

 // Query for IKsControl interface.

 HRESULT hr = m_pPort->QueryInterface(IID_IKsControl,

 (void**)&pControl);

 if (SUCCEEDED(hr))

 {

 KSPROPERTY ksp;

 ULONG cb;

 ZeroMemory(&ksp, sizeof(ksp));

 ksp.Set = GUID_DMUS_PROP_WavesReverb;

 ksp.Id = 0;

 ksp.Flags = KSPROPERTY_TYPE_SET;

 pControl->KsProperty(&ksp,

 sizeof(ksp),

 (LPVOID)&Params,

 sizeof(Params),

 &cb);

 pControl->Release();

 }

}

The following code example turns on the reverb effect for the port represented by m_pPort:

DWORD dwEffects = 0;

IKsControl *pControl;

HRESULT hr = m_pPort->QueryInterface(IID_IKsControl,

 (void**)&pControl);

if (SUCCEEDED(hr))

{

 KSPROPERTY ksp;

 ULONG cb;

 ZeroMemory(&ksp, sizeof(ksp));

 dwEffects = DMUS_EFFECT_REVERB;

 ksp.Set = GUID_DMUS_PROP_Effects;

 ksp.Id = 0;

 ksp.Flags = KSPROPERTY_TYPE_SET;

 pControl->KsProperty(&ksp,

 sizeof(ksp),

 (LPVOID)&dwEffects,

 sizeof(dwEffects),

 &cb);

 pControl->Release();

}

The final example shows how you might turn off reverb, leaving any other effects intact:

DWORD dwEffects = 0;

IKsControl *pControl;

HRESULT hr = m_pPort->QueryInterface(IID_IKsControl,

 (void**)&pControl);

if (SUCCEEDED(hr))

{

 KSPROPERTY ksp;

 ULONG cb;

 ZeroMemory(&ksp, sizeof(ksp));

 ksp.Set = GUID_DMUS_PROP_Effects;

 ksp.Id = 0;

 ksp.Flags = KSPROPERTY_TYPE_GET;

 pControl->KsProperty(&ksp,

 sizeof(ksp),

 (LPVOID)&dwEffects,

 sizeof(dwEffects),

 &cb);

 ZeroMemory(&ksp, sizeof(ksp));

 dwEffects = dwEffects & ~DMUS_EFFECT_REVERB;

 ksp.Set = GUID_DMUS_PROP_Effects;

 ksp.Id = 0;

 ksp.Flags = KSPROPERTY_TYPE_SET;

 pControl->KsProperty(&ksp,

 sizeof(ksp),

 (LPVOID)&dwEffects,

 sizeof(dwEffects),

 &cb);

 pControl->Release();

}

DirectMusic Loader

[C++]

Many DirectMusic objects have to be loaded from a file or resource before they can be incorporated into a music performance. The IDirectMusicLoader interface is used to manage the loading of such objects, as well as to find and enumerate objects and cache them so that they are not loaded more than once.

An application should have only one instance of the loader in existence at a time. You should create a single global loader object and not free it until there is no more loading to be done. This strategy ensures that objects are found and cached efficiently.

The DirectMusic implementation of IStream streams the data from the source. The parsing of the data is handled by the various objects themselves through their implementations of IPersistStream. When you are dealing only with standard DirectMusic data, you do not need to use these interfaces directly.

Objects that are referred to by other objects are loaded transparently. For example, suppose a style being loaded from a DirectMusic Producer file contains a reference to a band whose data is in another file. When the style's IPersistStream finds the reference, it obtains the IDirectMusicGetLoader interface from the IStream that passed it the data stream. Using this interface, it obtains a pointer to the DirectMusicLoader. Then it calls IDirectMusicLoader::GetObject to load the band.

[Visual Basic]

Many DirectMusic objects have to be loaded from a file or resource before they can be incorporated into a music performance. The DirectMusicLoader class is used to manage the loading of such objects.

An application should have only one DirectMusicLoader object in existence at a time. You should create a single global loader object and not free it until there is no more loading to be done. This strategy ensures that objects are found and loaded efficiently.

However, if your application has occasion to load a segment more than once, you should be aware that because of the caching system used internally by DirectMusic, you might get back the same segment object, with the same settings such as start and loop points and any connection to a DLS collection. To ensure that this does not happen, you should release the DirectMusicLoader object by setting it to Nothing, and then create a new one, before reloading the segment.

Objects that are referred to by other objects are loaded transparently. For example, suppose a style being loaded from a DirectMusic Producer file contains a reference to a band whose data is in another file. DirectMusic loads the band automatically, and the application retrieves it by using the DirectMusicStyle.GetBand method.

More information on using the loader is contained in the following topics:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Setting the Loader's Search Directory

�SYMBOL 183 \f "Symbol" \s 11 \h �	Scanning a Directory for Objects

�SYMBOL 183 \f "Symbol" \s 11 \h �	Enumerating Objects

�SYMBOL 183 \f "Symbol" \s 11 \h �	Loading an Object from a File

�SYMBOL 183 \f "Symbol" \s 11 \h �	Loading an Object from a Resource

�SYMBOL 183 \f "Symbol" \s 11 \h �	Getting Object Descriptors

�SYMBOL 183 \f "Symbol" \s 11 \h �	Caching Objects

�SYMBOL 183 \f "Symbol" \s 11 \h �	Setting Objects

�SYMBOL 183 \f "Symbol" \s 11 \h �	Custom Loading

Setting the Loader's Search Directory

[C++]

By default, the loader looks for objects in the current directory unless a full path is specified in the wszFileName member of the DMUS_OBJECTDESC structure describing the object being sought. Using the IDirectMusicLoader::SetSearchDirectory method, you can set a different default path for the IDirectMusicLoader::GetObject and IDirectMusicLoader::EnumObject methods. This default path can apply to all objects, or only to objects of a certain class.

The following code example sets the search path for style files:

HRESULT mySetLoaderPath (

 IDirectMusicLoader *pILoader) // Previously created

{

 return pILoader->SetSearchDirectory(

 CLSID_DirectMusicStyle,

 L"c:\\mymusic\\funky",

 FALSE);

}

Having called this function, the application can now load a style by file name, without including the full path, as in the following code example:

HRESULT myLoadStyleFromPath (

 IDirectMusicStyle **ppIStyle, // Receives a pointer to a style

 IDirectMusicLoader *pILoader) // Loader already created

{

 HRESULT hr;

 DMUS_OBJECTDESC Desc;

 ZeroMemory(&Desc, sizeof(DMUS_OBJECTDESC);

 Desc.dwSize = sizeof(DMUS_OBJECTDESC);

 wcscpy(Desc.wszFileName, L"polka.sty"); // Short file name

 Desc.guidClass = CLSID_DirectMusicStyle; // Object class

 Desc.dwValidData = DMUS_OBJ_CLASS | DMUS_OBJ_FILENAME;

 hr = pILoader->GetObject(&Desc,

 IID_IDirectMusicStyle, (void **) ppIStyle);

 return hr;

}

[Visual Basic]

By default, the loader looks for file objects in the current directory unless a full path has been passed to the load method. Using the DirectMusicLoader.SetSearchDirectory method, you can set a different default path for the DirectMusicLoader.LoadBand, DirectMusicLoader.LoadCollection, DirectMusicLoader.LoadSegment, and DirectMusicLoader.LoadStyle methods.

Scanning a Directory for Objects

[Visual Basic]

This topic pertains only to applications written in C++.

[C++]

The IDirectMusicLoader::ScanDirectory method scans the current search directory for objects of a given class. You can further narrow the search by providing a subclass and a file extension other than "*".

The method compiles a list of all matching files and uses the IDirectMusicObject::ParseDescriptor method to extract the GUID and the name of the object. These identifiers are retained in an internal database so that the application can subsequently load objects by GUID or name, rather than by file name. (See Loading an Object from a File.)

Note

It is always a good idea to call IDirectMusicLoader::ScanDirectory before loading any objects. Even though you might be loading objects explicitly by file name, those objects could contain references to other objects not identified by file name, and the loader would not be able to find these referenced objects if ScanDirectory was not called on every directory in which the objects might be.

If you include a pointer to a string in the pwszScanFileName parameter of the ScanDirectory method, the results of the scan are cached in a file by that name to speed up subsequent scans. When a cache file is available, the method updates object information only for files whose time stamps or sizes have changed.

Note

In the current version of DirectMusic, ScanDirectory does not use the cache file. Nevertheless, you can implement a cache file now, and it will speed up performance under future versions.

For an example, see Enumerating Objects.

Enumerating Objects

[Visual Basic]

This topic pertains only to applications written in C++.

[C++]

Use the IDirectMusicLoader::EnumObject method to iterate through all objects of a given class, or of all classes, that have previously been listed in the internal database through a call to IDirectMusicLoader::ScanDirectory or calls to IDirectMusicLoader::GetObject. A description of each object found is returned in a DMUS_OBJECTDESC structure.

Note

To be sure of finding all objects, call ScanDirectory first. EnumObject works by checking the internal database of objects, not by parsing disk files.

The following example enumerates all listed style objects in the current search directory and displays information about each one by using the TRACE debugging macro. The loop continues until there are no more objects of that class to enumerate.

void myListStyles(

 IDirectMusicLoader *pILoader)

{

 HRESULT hr = pILoader->SetSearchDirectory(

 CLSID_DirectMusicStyle,

 L"c:\\mymusic\\wassup",

 TRUE);

 if (SUCCEEDED(hr))

 {

 hr = pILoader->ScanDirectory(

 CLSID_DirectMusicStyle,

 L"sty",

 L"stylecache");

 if (hr == S_OK) // Only if files were found...

 {

 DWORD dwIndex;

 DMUS_OBJECTDESC Desc;

 Desc.dwSize = sizeof(DMUS_OBJECTDESC);

 for (dwIndex = 0; ;dwIndex++)

 {

 if (S_OK ==(pILoader->EnumObject(

 CLSID_DirectMusicStyle,

 dwIndex, &Desc)))

 {

 TRACE("Name: %S, Category: %S, Path: %S\n",

 Desc.wszName,

 Desc.wszCategory,

 Desc.wszFileName);

 }

 else break;

 }

 }

 }

}

This code example does not use the SUCCEEDED macro to test the result of the method call because EnumObject returns a success code, S_FALSE, for an invalid index number.

Loading an Object from a File

[C++]

To load an object, first obtain the IDirectMusicLoader interface, as in the following code example:

IDirectMusicLoader* m_pLoader;

CoInitialize(NULL);

HRESULT hr = CoCreateInstance(

 CLSID_DMLoader,

 NULL,

 CLSCTX_INPROC,

 IID_IDirectMusicLoader,

 (void**)&m_pLoader);

Then, describe the object, and call the IDirectMusicLoader::GetObject method to load it and obtain the desired interface.

The following code example loads a style from disk and returns a pointer to it in the variable addressed by the parameter.

void myLoadStyle(

 IDirectMusicStyle **ppIStyle)

{

 IDirectMusicLoader *pILoader; // Loader interface

/* Normally you would create the loader once and use it for the

 duration of the application. This reduces overhead and takes

 advantage of the loader's ability to cache objects. However,

 this example creates it dynamically and throws it

 away once the style is loaded. */

 CoCreateInstance(

 CLSID_DirectMusicLoader,NULL,

 CLSCTX_INPROC,

 IID_IDirectMusicLoader,

 (void **) &pILoader);

 if (pILoader)

 {

 DMUS_OBJECTDESC Desc;

 // Start by initializing Desc with the file name and

 // class GUID for the style object.

 wcscpy(Desc.wszFileName,L"c:\\mymusic\\funky\\polka.sty");

 Desc.guidClass = CLSID_DirectMusicStyle;

 Desc.dwSize = sizeof (DMUS_OBJECTDESC);

 Desc.dwValidData = DMUS_OBJ_CLASS |

 DMUS_OBJ_FILENAME |

 DMUS_OBJ_FULLPATH;

 pILoader->GetObject(&Desc, IID_IDirectMusicStyle,

 (void **) ppIStyle);

 pILoader->Release();

 }

}

This code example identifies the file by a full path name and indicates this by setting the DMUS_OBJ_FULLPATH flag. If you have previously set the search directory, you can use the short name of the file without full path information. For an example, see Setting the Loader's Search Directory.

To identify the particular file object being sought, fill in at least one of the wszName, guidObject, and wszFileName members of the DMUS_OBJECTDESC structure, and set the corresponding flag or flags in the dwValidData member. If you identify the file by wszName or guidObject, but not by wszFileName, you must first call the IDirectMusicLoader::ScanDirectory method to make the GUIDs and names in the current directory available. For more information, see Scanning a Directory for Objects.

[Visual Basic]

To load an object, first create a DirectMusicLoader object. Then, call one of the following methods:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusicLoader.LoadBand

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusicLoader.LoadCollection

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusicLoader.LoadSegment

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusicLoader.LoadStyle

Pass in either a simple file name or a full path for the file that contains the desired object. Each of these methods returns an instance of the appropriate class.

The following code example, in which objDX is a DirectX7 object, loads a segment from a file in the current search directory:

Dim objDMLoader As DirectMusicLoader

Dim objSeg As DirectMusicSegment

Set objDMLoader = objDX.DirectMusicLoaderCreate

Set objSeg = objDMLoader.LoadSegment("Myseg.sgt")

See also Loading an Object from a Resource.

Loading an Object from a Resource

[C++]

Loading an object from a resource, or from some other location in memory, is done like loading an object from a file. (See Loading an Object from a File.) In this case, however, the wszName, guidObject, and wszFileName members of the DMUS_OBJECTDESC structure are irrelevant. Instead, you must obtain a pointer to the block of memory occupied by the object, and its size, and put these in the pbMemData and llMemLength members respectively, of the DMUS_OBJECTDESC structure. You must also set the DMUS_OBJ_MEMORY flag in the dwFlags member.

The memory cannot be released once IDirectMusicLoader::GetObject has been called because the loader keeps the pointer to the memory internally to facilitate caching data. If you want to clear it out, call IDirectMusicLoader::SetObject with the same DMUS_OBJECTDESC descriptor, but with NULL in pbMemData. This is not an issue when loading from a resource because resource memory is not freed.

The following code example loads a MIDI file from a resource into a segment:

HRESULT LoadMidi(HMODULE hMod, WORD ResourceID)

{

 HRESULT hr;

 DMUS_OBJECTDESC ObjDesc;

 IDirectMusicSegment* pSegment = NULL;

 HRSRC hFound = FindResource(hMod,

 MAKEINTRESOURCE(ResourceID), RT_RCDATA);

 HGLOBAL hRes = LoadResource(hMod, hFound);

 ObjDesc.dwSize = sizeof(DMUS_OBJECTDESC);

 ObjDesc.guidClass = CLSID_DirectMusicSegment;

 ObjDesc.dwValidData = DMUS_OBJ_CLASS | DMUS_OBJ_MEMORY;

 ObjDesc.pbMemData = (BYTE *) LockResource(hRes);

 ObjDesc.llMemLength = SizeofResource(hMod, hFound);

 hr = m_pDXPerformance->m_pLoader->GetObject(

 &ObjDesc, IID_IDirectMusicSegment2,

 (void**) &m_pSegment);

 return hr;

}

Objects referred to by other objects must be loaded first. For example, if you load a segment that contains a reference to a style, the style must already be loaded for the segment to play correctly. You can also call DirectMusicLoader::SetObject on the style so that the segment can find it.

[Visual Basic]

Loading an object from a resource, or from some other location in memory, is done like loading an object from a file. (See Loading an Object from a File.) The DirectMusicLoader.LoadBandFromResource, DirectMusicLoader.LoadChordMapFromResource, DirectMusicLoader.LoadCollectionFromResource, DirectMusicLoader.LoadSegmentFromResource, and DirectMusicLoader.LoadStyleFromResource methods each take a module name and resource identifier as parameters and return an instance of the appropriate class.

The following resource types are recognized by the loader:

"DMBAND"�LoadBandFromResource��"DMCHORD"�LoadChordmapFromResource��"DMCOLL"�LoadCollectionFromResource��"DMSEG"�LoadSegmentFromResource��"DMSTYLE"�LoadStyleFromResource��

Objects referred to by other objects must be loaded first. For example, if you load a segment that contains a reference to a style, the style must be loaded first for the segment to play correctly.

The following code example, in which loader is the DirectMusicLoader object and perf is the DirectMusicPerformance, loads and plays a MIDI file stored as a "DMSEG" resource in the executable:

Dim seg As DirectMusicSegment

Set seg = loader.LoadSegmentFromResource("listen.exe", "CANYON.MID")

Call seg.Download(perf)

Call perf.PlaySegment(SEG, 0, 0)

Getting Object Descriptors

[Visual Basic]

This topic pertains only to applications written in C++.

[C++]

Once you have loaded an object. you can use its IDirectMusicObject interface to retrieve information about it in a DMUS_OBJECTDESC structure. You must first obtain the IDirectMusicObject interface for the object.

The following code example uses the IDirectMusicObject::GetDescriptor method to obtain the name of a style:

/* It is assumed that pStyle is a valid pointer to an

 IDirectMusicStyle interface. */

if (pStyle)

{

 IDirectMusicObject *pIObject;

 DMUS_OBJECTDESC Desc;

 if (SUCCEEDED(pStyle->QueryInterface(IID_IDirectMusicObject,

 (void **) &pIObject)

 {

 if (SUCCEEDED(pIObject->GetDescriptor(&Desc))

 {

 if (Desc.dwValidData & DMUS_OBJ_NAME)

 {

 TRACE("Style name is %S\n",Desc.wszName);

 }

 }

 pIObject->Release();

 }

}

Caching Objects

[Visual Basic]

This topic pertains only to applications written in C++.

[C++]

When an object is cached, the same interface pointer is always returned by the IDirectMusicLoader::GetObject method.

Caching is used extensively in the file-loading process to resolve links to objects. If an object is not found in the cache, it has to be reloaded, even if it already exists. For example, two segments could refer to the same style. When the first segment loads, it calls the loader to get the style. The style in turn creates a style object, loads it from disk, stores a pointer to the style in the cache, and returns it to the segment. If caching is enabled, when the second segment loads, it asks for the style, and the loader immediately returns it. Then, both segments point to the same style. If caching is disabled, the second segment's request for the style causes a duplicate style to be loaded from the file. This is very inefficient.

Another example: IDirectMusicBand counts on the loader to keep the General MIDI DLS collection cached. Every time it comes across a GM instrument, it gets the collection from the loader by requesting it with GUID_DefaultGMCollection. If caching for CLSID_DirectMusicCollection is disabled, every patch change in a MIDI file causes a separate copy of the entire GM collection to be created.

By default, caching is enabled for all object classes. You can disable caching for an object class, or for all objects, by using the IDirectMusicLoader::EnableCache method. This method can also be used to re-enable caching for any or all object classes.

If you want to clear the cache without disabling future caching, use the IDirectMusicLoader::ClearCache method.

To cache a single object, pass it to the IDirectMusicLoader::CacheObject method. You can remove it from the cache, ensuring that it will be loaded again on the next call to GetObject, by using the IDirectMusicLoader::ReleaseObject method.

Call ReleaseObject on a cached object, particularly a segment, before destroying the object by calling its own Release method. If you do not, a copy of the object remains in the cache, along with certain state information. In the case of a segment, any instance that you later create will be loaded from the cache, and its start point and loop points will be the same as they were when the previous instance was destroyed.

With judicious use of CacheObject, ReleaseObject, and EnableCache, you can have the objects that you do not need released, while the others remain in the cache.

Setting Objects

[Visual Basic]

This topic pertains only to applications written in C++.

[C++]

Sometimes it is desirable to tell the loader where to get an object, without actually loading that object, so that the loader can retrieve it if the object is later referred to by other objects as they are being loaded. You might also want to give an object a new attribute so that the loader can find it by that attribute.

The SetObject method takes as a parameter a DMUS_OBJECTDESC structure that contains two key pieces of information:

�SYMBOL 183 \f "Symbol" \s 11 \h �	A pointer to the data. This can be either a file path or a pointer to a block of memory. (See Loading an Object from a File and Loading an Object from a Resource.)

�SYMBOL 183 \f "Symbol" \s 11 \h �	An identifier for the object when it is referred to later. This could be a GUID or a name. Later, the call to GetObject will find the stored object by using the same name or GUID. You cannot change a GUID or name that already exists in the object.

The following code example assigns a name to an unnamed object (such as a MIDI file) in a resource:

HRESULT SetObjectFromResource(const GUID* guid, int ID,

 char* type, WCHAR* name)

{

 HRSRC hResource = NULL;

 HGLOBAL hData = NULL;

 hResource = FindResource(g_hInstance, MAKEINTRESOURCE(ID), type);

 if (hResource != NULL)

 {

 hData = LoadResource(g_hInstance, hResource);

 if (hData != NULL)

 {

 DMUS_OBJECTDESC desc;

 if(m_pLoader && (hResource != NULL) && (hData != NULL))

 {

 ZeroMemory(&desc,sizeof(desc));

 desc.pbMemData = (BYTE*) LockResource(*hData);

 desc.llMemLength = SizeofResource(g_hInstance, (*hResource));

 desc.guidClass = (*guid);

 desc.dwSize = sizeof(desc);

 desc.dwValidData = DMUS_OBJ_CLASS | DMUS_OBJ_MEMORY;

 if (name)

 {

 wcscpy(desc.wszName, name);

 desc.dwValidData |= DMUS_OBJ_NAME;

 }

 return m_pLoader->SetObject(&desc);

 }

 }

 }

 return E_FAIL;

}

The following code could be used to assign a name to a MIDI file stored as a resource of type MIDI:

SetObjectFromResource(CLSID_DirectMusicSegment, 101,

 "MIDI", "canyon");

The object can now be loaded at any time by name.

Custom Loading

[Visual Basic]

This topic pertains only to applications written in C++. DirectX for Visual Basic supports only loading of standard DirectMusic objects.

[C++]

Specialized applications might create their own object types that encapsulate data from a file or resource. It can be convenient to have the DirectMusic loader handle the loading of such objects. This is especially true if the custom object is referred to by other objects or contains references to other objects.

To implement a loading mechanism that takes advantage of the DirectMusic loader, take the following steps:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Register the object class so that it can be found by IDirectMusicLoader::GetObject.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Implement the IDirectMusicObject interface on the object so that the loader can get the information that it needs to find and cache it.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Implement the IPersistStream interface on the object, with full functionality in the IPersistStream::Load method. This allows you to parse the data that you obtain through calls on the IStream interface passed by the DirectMusicLoader.

�SYMBOL 183 \f "Symbol" \s 11 \h �	In the implementation of Load, ensure that references to other objects are dealt with by querying the IStream for the IDirectMusicGetLoader interface, then calling IDirectMusicGetLoader::GetLoader to obtain a pointer to the DirectMusicLoader that created the stream. Once you have this pointer, call IDirectMusicLoader::GetObject to load the new object.

An application might need to manage file input itself—for example, if all objects are stored in a special compressed resource file. The application can create its own loader by creating an object that supports the IDirectMusicLoader interface, with the IDirectMusicLoader::GetObject method implemented. All other methods are optional. This implementation of the loader must also create its own stream object that has both the IStream and the IDirectMusicGetLoader interfaces.

DirectMusic File Format

[Visual Basic]

This section pertains only to applications written in C++. DirectX for Visual Basic does not support file parsing, which is always handled transparently by the DirectMusicLoader object.

[C++]

This section describes the format of music files created in an application such as DirectMusic Producer and read by DirectMusic when IDirectMusicLoader::GetObject is called. Most applications do not parse these files directly. This format information is included for developers of music-authoring applications or DirectMusic plug-ins who want to be able to save data in a compatible format or load data into their own objects.

DirectMusic data is stored in the resource interchange file format (RIFF). The following topics contain information about RIFF files and how DirectMusic data is stored:

�SYMBOL 183 \f "Symbol" \s 11 \h �	About RIFF

�SYMBOL 183 \f "Symbol" \s 11 \h �	RIFF Notation

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusic File Chunks

For a reference to data structures used in DirectMusic files, see File Structures.

About RIFF

The basic building block of a RIFF file is a chunk. A chunk is a logical unit of data. Each chunk contains the following fields:

�SYMBOL 183 \f "Symbol" \s 11 \h �	A four-character code (FOURCC) specifying the chunk identifier. Conventionally, this is uppercase for registered chunk types, and lowercase otherwise.

�SYMBOL 183 \f "Symbol" \s 11 \h �	A DWORD value specifying the size of the data member in the chunk.

�SYMBOL 183 \f "Symbol" \s 11 \h �	The data.

A chunk contained in another chunk is a subchunk. The only chunks allowed to contain subchunks are those with a chunk identifier of RIFF or LIST.

The first chunk in a file must be identified as RIFF. All other chunks in the file are subchunks of the RIFF chunk.

RIFF chunks include an additional field in the first 4 bytes of the data field. This additional field provides the form type of the chunk. The form type is a four-character code identifying the format of the data stored in the file. For example, DirectMusic styles have the form type DMST.

LIST chunks also include an additional field in the first 4 bytes of the data field. This additional field contains the list type of the field. The list type is a four-character code identifying the contents of the list. For example, DirectMusic styles have a LIST chunk with a list type of "part" that contains data pertaining to a particular part (instrument track) in the performance.

A LIST chunk is a grouping of subchunks. Some of these subchunks might appear multiple times, but a LIST is not an array. The terminology can be a little confusing. You might expect the chunk labeled <part-list>, for example, to be a list of parts. In fact, it is a list of the elements of a "part" chunk, which describes a single part.

Note

Every four-character code used in DirectMusic files has a corresponding macro in Dmusicf.h. For example, the FOURCC for DMST is returned by the DMUS_FOURCC_STYLE_FORM macro .

For more information on RIFF files in general, see Resource Interchange File Format Services in the Platform SDK documentation.

RIFF Notation

The descriptions of DirectMusic files in the following sections use a subset of the conventional notation for RIFF files. The principal parts of this notation are shown in the following table:

Notation�Description��<element>�File element labeled "element", or of type element.��[<element>]�Optional file element.��<element>...�One or more copies of the specified element.��[<element>]...�Zero or more copies of the specified element.��name, 'name', NAME, or 'NAME'�FOURCC identifier of a form type, list type, or chunk.��// Comment�Comment.��

Labels are used only in the notation, not in the files themselves. The label <cheh-ck> refers to a chunk with a unique FOURCC identifier and format. Wherever a chunk of this kind occurs in the notation, the same label is used.

The data or subelements associated with a label are described as follows:

<cheh-ck> -> cheh(<DMUS_IO_CHORDENTRY>)

This notation shows that the chunk labeled <cheh-ck> consists of the FOURCC identifier "cheh" followed by a DMUS_IO_CHORDENTRY structure. Of course, a DWORD showing the size of the data must precede the data, as it does in any RIFF chunk. The presence of this data-size element is assumed and is not shown in the notation.

The next example shows a list element, consisting of the FOURCC LIST followed by the list identifier "cmap" and one or more elements labeled <choe-list>. The <choe-list> element would be expanded elsewhere.

<cmap-list> -> LIST('cmap'

 <choe-list>...)

DirectMusic File Chunks

The following sections describe the format of chunks used in DirectMusic RIFF files:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Common Chunks

�SYMBOL 183 \f "Symbol" \s 11 \h �	Band Form

�SYMBOL 183 \f "Symbol" \s 11 \h �	Chord-map Form

�SYMBOL 183 \f "Symbol" \s 11 \h �	Segment Form

�SYMBOL 183 \f "Symbol" \s 11 \h �	Style Form

�SYMBOL 183 \f "Symbol" \s 11 \h �	Tool Form

�SYMBOL 183 \f "Symbol" \s 11 \h �	Tool Graph Form

�SYMBOL 183 \f "Symbol" \s 11 \h �	Track Form

Common Chunks

The following chunks occur within various list chunks and forms.

GUID Chunk

<guid-ck> -> guid(<GUID>)

This is the GUID identifier of the element.

Version Chunk

<vers-ck> -> vers(<DMUS_IO_VERSION>)

This chunk contains version information for the element.

UNFO Chunk

<UNFO-list> -> LIST('UNFO'

 <unfo-text-ck>...

)

The UNFO chunk is like a standard RIFF INFO list, except that it uses Unicode characters. INFO and UNFO lists consist of various chunks that contain null-terminated strings.

Reference List Chunk

The reference list chunk contains information about a reference to an object in another file. For example, a band object might contain a reference to a DLS collection in a separate file.

The notation for a reference list is as follows:

<DMRF-list> ->LIST('DMRF'

 <refh-ck> // Reference header

 [<guid-ck>] // Object GUID

 [<date-ck>] // File date

 [<name-ck>] // Name

 [<file-ck>] // File name

 [<catg-ck>] // Category name

 [<vers-ck>] // Version information

)

The data begins with a header that includes information about the object being referred to:

<refh-ck> -> refh(<DMUS_IO_REFERENCE>)

All other chunks are optional. The GUID and version chunks were described previously. The notation for the others is as follows:

<date-ck> -> date(<FILETIME>)

<name-ck> -> name(<WCHAR>...) // Null-terminated string

<file-ck> -> file(<WCHAR>...) // Null-terminated string

<catg-ck> -> catg(<WCHAR>...) // Null-terminated string

Band Form

The following notation shows the format of the top-level chunk, or form, of a band file. Band forms can also be contained in other chunks.

RIFF('DMBD'

 [<guid-ck>] // GUID for band

 [<vers-ck>] // Optional version information

 [<UNFO-list>] // Name, author, copyright information, comments

 <lbil-list> // List of instruments

)

For the first three chunks, which are optional, see Common Chunks.

The data is contained in a list of lists:

<lbil-list> -> LIST('lbil'

 <lbin-list>...

)

Each instrument is described in a list that has the following format:

<lbin-list> -> LIST('lbin'

 <bins-ck>

 [<DMRF-list>]

)

Within the instrument list, the following chunk contains a header describing the instrument:

<bins-ck> -> bins(<DMUS_IO_INSTRUMENT>)

The instrument list can also contain <DMRF-list>, which is a reference to a DLS file. See Common Chunks.

Chord-map Form

The following notation shows the organization of the top-level chunk, or form, of a chord-map file:

RIFF('DMPR'

 <perh-ck> // Chord-map header chunk

 [<guid-ck>] // GUID chunk

 [<vers-ck>] // Version chunk

 [<UNFO-list>] // UNFO list

 <chdt-ck> // Chord data chunk

 <chpl-list> // Chord palette

 <cmap-list> // Chord graph

 <spsq-list> // Signpost list

)

Each of the items—with the exception of the GUID chunk, version chunk, and UNFO list—is required. See Common Chunks

The required chunks and their subchunks are as follows:

<perh-ck> -> perh(<DMUS_IO_CHORDMAP>)

This is the basic header information for a chord map.

<chdt-ck> -> chdt(

 <WORD> // Size of DMUS_IO_CHORDMAP_SUBCHORD

 <DMUS_IO_CHORDMAP_SUBCHORD>...

)

The <chdt-ck> chunk contains a WORD, indicating the number of bytes per subchord followed by an array of unique subchords. The subchord identifiers referred to in other parts of this file all correspond directly to an index into this array.

<chpl-list> -> LIST('chpl'

 <chrd-list>...

)

This list contains the chord palette. Currently there must be exactly 24 items in this list.

<chrd-list> -> LIST('chrd'

 <UNAM-ck> // Chord name

 <sbcn-ck> // Subchord indexes

)

This list contains the basic chord information. This information is the chord's name and a list of identifiers for its subchords.

<UNAM-ck> -> UNAM (<WCHAR>...)

The UNAM chunk stores the name of the chord.

<sbcn-ck> -> sbcn(<WORD>...)

The "sbcn" chunk contains one or more subchord identifiers. These correspond directly to an index into the array found in <chdt-ck>. Currently a maximum of four chords is supported.

<cmap-list> -> LIST('cmap'

 <choe-list>...

)

The "cmap" list contains the entire chord connection graph for the chord map. The bulk of the data for the chord map resides in this chunk.

<choe-list> -> LIST('choe'

 <cheh-ck> // Chord entry data

 <chrd-list> // Chord data; see above.

 <ncsq-ck> // Next chord list

)

The "choe" list contains data for a single entry in the chord graph, along with pointers to all the chords that can occur next in the chord graph.

<cheh-ck> -> cheh(<DMUS_IO_CHORDENTRY>)

This is the chord entry header. The identifier in the structure is the identifier for the chord connection graph, not a subchord identifier.

<ncsq-ck> -> ncsq (

 <WORD> // Size of DMUS_IO_NEXTCHORD

 <DMUS_IO_NEXTCHORD>...

)

The "ncsq" chunk contains data that connects one chord in the connection graph to another. Each chord in the connection graph is represented by a 16-bit identifier.

<spsq-list> -> LIST('spsq’

 <spst-list>...

)

The "spsq" list contains data for each of the signposts.

<spst-list> -> LIST('spst'

 <spsh-ck>

 <chrd-list> // Chord data; see above.

 [<cade-list>]

)

The "spst" list contains data for a single signpost, consisting of a header, chord information, and optional cadence chords.

<cade-list> -> LIST('cade'

 <chrd-list>...

)

The "cade" list contains the chord information for cadence chords. Currently, there is support for up to two cadence chords in this list. Any additional chords or other information is ignored.

<spsh-ck> -> spsh(

 <DMUS_IO_CHORDMAP_SIGNPOST>

)

Finally, the "spsh" chunk contains the signpost data.

Segment Form

The following notation shows the organization of the top-level chunk of a segment file:

RIFF('DMSG'

 <segh-ck> // Segment header chunk

 [<guid-ck>] // GUID for the segment

 [<vers-ck>] // Optional version information

 [<UNFO-list>] // Name, author, copyright information, comments

 <trkl-list> // List of tracks

 [<DMTG-form>] // Optional tool graph

)

The individual chunks and their subchunks are as follows:

<segh-ck> -> segh(<DMUS_IO_SEGMENT_HEADER>)

This chunk contains the basic header information for a segment. For the next three chunks, see Common Chunks.

Next, comes the track list. Each track is encapsulated in a Track Form.

<trkl-list> -> LIST('trkl'

 <DMTK-form>...

)

Finally, the segment form can contain a Tool Graph Form.

Style Form

The following notation shows the organization of the top-level chunk of a style file:

RIFF('DMST'

 <styh-ck> // Style header chunk

 <guid-ck> // Unique identifier

 [<UNFO-list>] // Name, author, copyright information, comments

 [<vers-ck>] // Version chunk

 <part-list>... // List of parts in the style, used by patterns

 <pttn-list>... // List of patterns in the style

 <DMBD-form>... // List of bands in the style

 [<motf-list>] // List of motifs in the style

 [<prrf-list>] // List of chord-map references in the style

)

The individual chunks and their subchunks are as follows:

<styh-ck> -> styh(<DMUS_IO_STYLE>)

This chunk contains the basic header information for a style. For the next three chunks, see Common Chunks.

Next, comes a chunk for each musical part in the style:

<part-list> -> LIST('part'

 <prth-ck> // Part header chunk

 [<UNFO-list>]

 [<note-ck>] // List of notes in the part

 [<crve-ck>] // List of curves in the part

)

The part list includes a header, an optional UNFO chunk, and a list of notes and curves, as shown in the following example. (For the UNFO list, see Common Chunks.)

<prth-ck> -> prth(<DMUS_IO_STYLEPART>)

<note-ck> -> note(

 < DWORD > // Size of DMUS_IO_STYLENOTE

 < DMUS_IO_STYLENOTE >...

)

<crve-ck> -> crve(

 < DWORD > // Size of DMUS_IO_STYLECURVE

 < DMUS_IO_STYLECURVE >...

)

After the part-list chunk comes the pattern-list chunk:

<pttn-list> -> LIST('pttn'

 <ptnh-ck> // Pattern-header chunk

 <rhtm-ck> // List of rhythms for chord matching

 [<UNFO-list>]

 [<mtfs-ck>] // Motif settings chunk

 <pref-list>... // List of part reference IDs

)

The pattern list consists of the following subchunks. (For the optional UNFO list, see Common Chunks.)

<ptnh-ck> -> ptnh(

 < DMUS_IO_PATTERN >

)

<rhtm-ck> -> rhtm(

 < DWORD >...

)

This chunk consists of an array of DWORDs, one for each measure, giving the rhythm pattern. For information on the arrangement of the bits, see the dwRhythmPattern member of DMUS_RHYTHM_PARAM.

<mtfs-ck> -> mtfs(

 < DMUS_IO_MOTIFSETTINGS >

)

<pref-list> -> LIST('pref'

 <prfc-ck> // Part reference chunk

)

The "pref" chunk in turn consists of an array of part references:

<prfc-ck> -> prfc(

 < DMUS_IO_PARTREF >

)

The last chunk in the style form is the list of chord-map references:

<prrf-list> -> LIST('prrf'

 <DMRF-list>...

)

For more information on <DMRF-list>, see Common Chunks.

Tool Form

The tool form contains information about tools. Tools can be embedded in a Tool Graph Form or stored as separate files.

<DMTL-form> -> RIFF('DMTL'

 <tolh-ck>

 [<guid-ck>] // GUID for tool object instance

 [<vers-ck>] // Version information

 [<UNFO-list>] // Name, author, copyright information, comments

 [<data>] // Tool data

)

The tool header chunk is as follows:

<tolh-ck> -> tolh(<DMUS_IO_TOOL_HEADER>)

For the next three elements, which are optional, see Common Chunks.

The <data> element consists of a chunk of the type identified in the DMUS_IO_TOOL_HEADER. The format of this chunk depends on the definition of the tool. It can be a list or a chunk.

Tool Graph Form

A tool-graph chunk can occur either as a top-level form or as a subchunk of a segment form.

RIFF('DMTG'

 [<guid-ck>] // GUID for tool graph

 [<vers-ck>] // Optional version information

 [<UNFO-list>] // Name, author, copyright information, comments

 <toll-list> // List of tools

)

For the first three elements, which are optional, see Common Chunks.

The main and only required part of the tool-graph chunk is the tool list:

<toll-list> -> LIST('toll'

 <DMTL-form>...

)

For more information on the <DMTL-form> chunk, see Tool Form.

Track Form

The track form contains information about a single track. It can be embedded in a Segment Form or stored in its own file.

<DMTK-form> -> RIFF('DMTK'

 <trkh-ck>

 [<guid-ck>] // GUID for track object instance

 [<vers-ck>] // Version information

 [<UNFO-list>] // Name, author, copyright information, comments

 [<data>] // Track data

)

The subchunks of the form are as follows:

<trkh-ck> -> trkh(

 <DMUS_IO_TRACK_HEADER>

)

This chunk contains the basic header information for a track.

For the next three elements, which are optional, see Common Chunks.

The last element in the track form is the data for the track. The chunk type used for the data is identified in the DMUS_IO_TRACK_HEADER structure. The following standard track chunks are defined:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Band Track Form

�SYMBOL 183 \f "Symbol" \s 11 \h �	Chord Track List

�SYMBOL 183 \f "Symbol" \s 11 \h �	Chord-map Track List

�SYMBOL 183 \f "Symbol" \s 11 \h �	Command Track Chunk

�SYMBOL 183 \f "Symbol" \s 11 \h �	Mute Track Chunk

�SYMBOL 183 \f "Symbol" \s 11 \h �	Sequence Track List

�SYMBOL 183 \f "Symbol" \s 11 \h �	Signpost Track Chunk

�SYMBOL 183 \f "Symbol" \s 11 \h �	Style Track List

�SYMBOL 183 \f "Symbol" \s 11 \h �	Sysex Track Chunk

�SYMBOL 183 \f "Symbol" \s 11 \h �	Tempo Track Chunk

�SYMBOL 183 \f "Symbol" \s 11 \h �	Time Signature Track Chunk

Band Track Form

The band track form can be a top-level form but is also found as the data part of a Track Form. It is organized as follows:

RIFF('DMBT'

 [<bdth-ck>] // Band track header

 [<guid-ck>] // GUID for band track

 [<vers-ck>] // Optional version information

 [<UNFO-list>] // Name, author, copyright information, comments

 <lbdl-list> // List of band lists

)

The subchunks of the form are as follows:

<bnth-ck> -> bdth(<DMUS_IO_BAND_TRACK_HEADER>)

This optional chunk contains header information for a band track. The only data in the structure is a flag for automatic downloading.

For the next three elements, which are optional, see Common Chunks.

The last chunk contains one or more bands:

<lbdl-list> -> LIST('lbdl'

 <lbnd-list>...

)

Each band is encapsulated in a list of the following type:

<lbnd-list> -> LIST('lbnd'

 <bdih-ck>

 <DMBD-form>

)

The band list begins with a header:

<bdih-ck> -> (<DMUS_IO_BAND_ITEM_HEADER>)

The header is followed by a Band Form containing information about the instruments in the band.

Chord Track List

The chord track list contains chord data for a Track Form. It is organized as follows:

<cord-list> -> LIST('cord'

 <crdh-ck> // Header

 <crdb-ck> // Chord body chunk

)

The subchunks are as follows:

<crdh-ck> -> crdh (<DWORD>)

The header is a DWORD containing the chord root in the upper 8 bits and the scale in the lower 24 bits. For an explanation of what these bits represent, see DMUS_IO_SUBCHORD.

The body of data for the chord track list consists of information about a chord change and the component subchords:

<crdb-ck> -> crdb(

 <DWORD> // Size of DMUS_IO_CHORD

 <DMUS_IO_CHORD>

 <DWORD> // Number of subchords

 <DWORD> // Size of DMUS_IO_SUBCHORD

 <DMUS_IO_SUBCHORD>...

)

Chord-map Track List

The chord-map track list contains data for a Track Form. It is organized as follows:

<pftr-list> -> LIST('pftr'

 <pfrf-list>...

)

The data consists of one or more lists containing time stamps and references to chord maps:

<pfrf-list> -> LIST('pfrf'

 <stmp-ck>

 <DMRF-list>

)

The notation for the time stamp chunk is as follows:

<stmp-ck> -> stmp(<DWORD>)

For information on <DMRF-list>, see Common Chunks.

Command Track Chunk

The command track chunk contains data for a Track Form. It is organized as follows:

<cmnd-ck> -> cmnd(

 <DWORD> //Size of DMUS_IO_COMMAND

 <DMUS_IO_COMMAND>...

)

Mute Track Chunk

The mute track chunk contains data for a Track Form. It is organized as follows:

<mute-ck> -> mute(

 <DWORD> //Size of DMUS_IO_MUTE

 <DMUS_IO_MUTE>...

)

Sequence Track List

The sequence track list contains data for a Track Form. It is organized as follows:

<seqt-list> -> LIST('seqt'

 <evtl-ck>

 <curl-ckt>

)

The list contains two chunks, one for sequence items and one for curve items:

<evtl-ck> -> evtl(

 <DWORD> // Size of DMUS_IO_SEQ_ITEM

 <DMUS_IO_SEQ_ITEM>...

)

<curl-ck> -> curl(

 <DWORD> // Size of DMUS_IO_CURVE_ITEM

 <DMUS_IO_CURVE_ITEM>...

)

Signpost Track Chunk

The signpost track chunk contains data for a Track Form. It is organized as follows:

<sgnp-list> -> sgnp(

 <DWORD> // Size of DMUS_IO_SIGNPOST

 <DMUS_IO_SIGNPOST>...

)

Style Track List

The style track list contains data for a Track Form. It is organized as follows:

<sttr-list> -> LIST('sttr'(

 <strf-list>...

)

The data consists of one or more lists containing time stamps and references to styles:

<strf-list> -> LIST('strf'(

 <stmp-ck>

 <DMRF-list>

)

For information on <DMRF-list>, see Common Chunks.

Sysex Track Chunk

The sysex track chunk contains data for a Track Form. It is an array of sysex items, as shown in the following notation:

<syex-ck> -> syex(

 <DMUS_IO_SYSEX_ITEM>

 <BYTE>... // Data

)...

Tempo Track Chunk

The tempo track chunk contains data for a Track Form. It is organized as follows:

<tetr-ck> -> tetr(

 <DWORD> // Size of DMUS_IO_TEMPO_ITEM

 <DMUS_IO_TEMPO_ITEM>...

)

Time Signature Track Chunk

The time signature track chunk contains data for a Track Form. It is organized as follows:

<tims-ck> -> tims(

 <DWORD> // Size of DMUS_IO_TIMESIGNATURE_ITEM

 <DMUS_IO_TIMESIGNATURE_ITEM>...

)

Using Downloadable Sounds

This section covers the use of downloadable sounds (DLS) in DirectMusic. For an architectural overview of DLS, see Downloadable Sounds.

Most applications do not have to deal directly with instruments or downloadable sounds. The opening of collections and downloading of instrument data is handled by the band object. When you download a band, all the instrument data associated with that band is downloaded as well. For more information, see Using Bands.

[C++]

For specialized DirectMusic applications that do their own DLS management, two steps must be taken: loading the instrument collection and downloading instrument data to a port.

These steps are covered in the following sections:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Loading a Collection

�SYMBOL 183 \f "Symbol" \s 11 \h �	Working with Instruments

�SYMBOL 183 \f "Symbol" \s 11 \h �	Playing a MIDI File with Custom Instruments

Applications that allow the editing of instruments and collections must work with DLS data at an even lower level. This topic is covered in the following section:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Low-Level DLS

[Visual Basic]

More information about working with collections is presented in the following topics:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Loading a Collection

�SYMBOL 183 \f "Symbol" \s 11 \h �	Playing a MIDI File with Custom Instruments

Loading a Collection

[C++]

The simplest way to load a collection from a file is to use the IDirectMusicLoader interface. (For more information, see Loading an Object from a File.) Once you have obtained a pointer to the IDirectMusicCollection interface, you have access to all the instruments in the collection. At this point, though, none of them have actually been downloaded to a port. In fact, no instrument data is loaded into memory until it is needed.

The collection is a COM object that supports the IDirectMusicCollection, IDirectMusicObject, and IPersistStream interfaces. IPersistStream is a standard COM interface providing methods for saving and loading objects that use a simple serial stream for their storage needs.

IDirectMusicCollection does not load the entire collection when IPersistStream::Load is called. Typically, objects supporting IPersistStream load all the persistent data in the stream and do not use the IStream pointer outside the Load method. However, supporting IPersistStream::Load in this manner in IDirectMusicCollection would mean that the entire DLS collection would have to be loaded into memory even if only a single instrument in the collection was to be used. Instead, IDirectMusicCollection saves the IStream pointer, and later uses it to load only the data for instruments that are downloaded to a DirectMusic port. IDirectMusicCollection assumes that the data stream provided through the IPersistStream interface is in the DLS file format.

The following code example does manually what the IDirectMusicLoader::GetObject method does automatically: it creates a collection object and loads a stream into it:

HRESULT myLoadCollectionFromStream(

 IStream *pIStream, // Stream created from a file

 IDirectMusicCollection **ppICollection)

{

 HRESULT hr;

 hr = CoCreateInstance(CLSID_DirectMusicCollection,

 NULL,

 CLSCTX_INPROC,

 IID_IDirectMusicCollection,

 (void **)ppICollection);

 if (SUCCEEDED(hr))

 {

 IPersistStream* pIPersistStream;

 hr = *ppICollection->QueryInterface(

 IID_IPersistStream, (void**)&pIPersistStream);

 if (SUCCEEDED(hr))

 {

 hr = pIPersistStream->Load(pIStream);

 pIPersistStream->Release();

 }

 }

 return hr;

}

The following code example uses the DirectMusicLoader to load the collection by file name:

HRESULT myLoadCollectionByName(

 IDirectMusicLoader *pILoader,

 char *pszFileName,

 IDirectMusicCollection **ppICollection)

{

 HRESULT hr;

 DMUS_OBJECTDESC Desc; // Descriptor

 // Start by initializing Desc with the file name and GUID

 // for the collection object.

 // The file name starts as a char string, so convert

 // to Unicode.

 mbstowcs(Desc.wszFileName,pszFileName,DMUS_MAX_FILENAME);

 Desc.dwSize = sizeof(DMUS_OBJECTDESC);

 Desc.guidClass = CLSID_DirectMusicCollection;

 Desc.dwValidData = DMUS_OBJ_CLASS

 | DMUS_OBJ_FILENAME

 | DMUS_OBJ_FULLPATH;

 hr = pILoader->GetObject(&Desc,

 IID_IDirectMusicCollection,

 (void **) ppICollection);

 return hr;

}

To load the standard GM/GS set, pass GUID_DefaultGMCollection to the loader in the guidObject member of the DMUS_OBJECTDESC structure. If you intend to use the loader to access this object more than once, make sure that caching is enabled (as it is by default) so that you do not create another copy of the GM collection each time that you request it.

Note

The GM/GS Sound Set cannot be altered. For more information, see the Copyright Warning.

The following code example illustrates how to load a collection identified by its GUID:

HRESULT myGetGMCollection(

 IDirectMusicLoader *pILoader,

 IDirectMusicCollection **ppICollection)

{

 HRESULT hr;

 DMUS_OBJECTDESC desc;

 desc.dwSize = sizeof(DMUS_OBJECTDESC);

 desc.guidClass = CLSID_DirectMusicCollection;

 desc.guidObject = GUID_DefaultGMCollection;

 desc.dwValidData = (DMUS_OBJ_CLASS | DMUS_OBJ_OBJECT);

 hr = pILoader->GetObject(&desc, IID_IDirectMusicCollection,

 (void **) ppICollection);

 return hr;

}

[Visual Basic]

To load an instrument collection, call the DirectMusicLoader.LoadCollection or the DirectMusicLoader.LoadCollectionFromResource method. Each of these methods returns a DirectMusicCollection object. This object has no methods, and its sole function is as a parameter to DirectMusicSegment.ConnectToCollection. Call that method to associate the collection with a segment, and then download the instruments by calling DirectMusicSegment.Download.

These steps are necessary only when you want to use a collection other than the default one. Normally, when you call DirectMusicSegment.Download, the instruments downloaded to the port are from the default collection authored into the segment or from the General MIDI set, if the segment does not contain a custom collection or is a MIDI file. When you download a band, all DLS data needed by the instruments in that band is downloaded. See Using Bands.

Working with Instruments

[Visual Basic]

This topic pertains only to applications written in C++. DirectX for Visual Basic does not allow applications to work with individual instruments from a collection.

[C++]

Once a DirectMusicCollection is created and loaded from a collection file, you can retrieve the patch number and name of all the available instruments by using the IDirectMusicCollection::EnumInstrument method.

The following code example enumerates all instruments in a collection and displays their names and patch numbers.

void myListInstruments(

 IDirectMusicCollection *pCollection)

{

 HRESULT hr = S_OK;

 DWORD dwPatch;

 WCHAR wszName[MAX_PATH];

 DWORD dwIndex;

 for (dwIndex = 0; hr == S_OK; dwIndex++)

 {

 hr = pCollection->EnumInstrument(

 dwIndex, &dwPatch, wszName, MAX_PATH);

 if (hr == S_OK)

 {

 printf("Patch %lx is %S\n",dwPatch,wszName);

 }

 }

}

You can obtain a pointer to a specific instrument by passing its patch number to the IDirectMusicCollection::GetInstrument method.

After obtaining an instrument, you can change its patch number by using the IDirectMusicInstrument::SetPatch method.

Loading a collection and retrieving the instruments is only the first step in making the instruments available. You must next download them to the port.

To download an instrument to a port, pass an IDirectMusicInstrument interface pointer to the IDirectMusicPort::DownloadInstrument method. This method makes the DLS data available on the port; it does not actually associate the instrument with any particular performance.

You can also download an instrument by using the IDirectMusicPerformance::DownloadInstrument method. In addition to downloading the DLS data, this method assigns the instrument to a particular performance channel.

To save memory, only waves and articulation required for given ranges of notes are downloaded. For example, for a bassoon you might specify that only data for the note range from low C through middle B is to be downloaded. Only the data for the regions falling within that range would be downloaded.

The following code example, given a collection, a patch number, a port, and a range of notes, retrieves the instrument from the collection and downloads it. It sets up an array of one DMUS_NOTERANGE structure and passes this to the IDirectMusicPort::DownloadInstrument method. Typically, only a single range of notes is specified, but you can specify multiple ranges. If you pass NULL instead of a pointer to an array, the data for all regions is downloaded.

HRESULT myDownload(

 IDirectMusicCollection *pCollection, // DLS collection

 IDirectMusicPort *pPort, // Destination port

 IDirectMusicDownloadedInstrument **ppDLInstrument,

 DWORD dwPatch, // Requested instrument

 DWORD dwLowNote, // Low note of range

 DWORD dwHighNote) // High note of range

{

 HRESULT hr;

 IDirectMusicInstrument* pInstrument;

 hr = pCollection->GetInstrument(dwPatch, &pInstrument);

 if (SUCCEEDED(hr))

 {

 DMUS_NOTERANGE NoteRange[1]; // Optional note range

 NoteRange[0].dwLowNote = dwLowNote;

 NoteRange[0].dwHighNote = dwHighNote;

 hr = pPort->DownloadInstrument(pInstrument,

 ppDLInstrument,

 NoteRange, // Array of ranges

 1); // Number of elements in the array

 pInstrument->Release();

 }

 return hr;

}

The DownloadInstrument method returns a pointer to the IDirectMusicDownloadedInstrument interface. This pointer has just one purpose: to identify the instrument in a subsequent call to the IDirectMusicPort::UnloadInstrument method, which unloads the instance of the instrument on a particular port. (The DirectMusicCollection is not bound to any specific port. You can download different instruments to different ports or download a single instrument to multiple ports.)

The following code example downloads an instrument, and then unloads it, which illustrates how the IDirectMusicDownloadedInstrument pointer can be used:

HRESULT myFickleDownload(

 IDirectMusicInstrument* pInstrument,

 IDirectMusicPort *pPort,

 DWORD dwPatch)

{

 HRESULT hr;

 IDirectMusicDownloadedInstrument * pDLInstrument;

 hr = pPort->DownloadInstrument(

 pInstrument, &pDLInstrument,

 NULL, 0);

 if (SUCCEEDED(hr))

 {

 pPort->UnloadInstrument(pDLInstrument);

 pDLInstrument->Release();

 }

 return hr;

}

The IDirectMusicBand::Download method automates the downloading of all instruments in a band. You supply a pointer to a performance, and the method downloads each instrument to the appropriate port attached to that performance.

Playing a MIDI File with Custom Instruments

By default, when you play a MIDI file, the instruments used are those in the Roland GM/GS Sound Set, contained in the Gm.dls file. However, you can play a MIDI file, using instruments from any collection.

[C++]

To do so, first load the collection, as described in Loading a Collection, obtaining a pointer to the IDirectMusicCollection interface. Then call IDirectMusicSegment::SetParam on the MIDI segment to establish a connection between the segment and the collection.

The following code example shows how the connection is made:

/* Assume that pSegment was created from a MIDI file

 and that pLoadedCollection is a valid IDirectMusicCollection

 pointer. */

HRESULT hr = pSegment->SetParam(GUID_ConnectToDLSCollection,

 0xFFFFFFFF, 0, 0,

 (void*)pLoadedCollection);

As with any other collection, instruments to be used in playing a MIDI file must be downloaded before the segment is played, unless automatic downloading has been enabled. (For more information on automatic downloading, see Setting and Retrieving Global Parameters and Downloading and Unloading Bands.) If instruments are not being downloaded automatically, you must download them by calling IDirectMusicSegment::SetParam, as in the following code example:

/* pSegment is an IDirectMusicSegment pointer, and pPerformance

 is a valid pointer to IDirectMusicPerformance. */

pSegment->SetParam(GUID_Download, 0xFFFFFFFF, 0, 0, (void *) pPerformance);

For more information on downloading by using SetParam, see Setting and Retrieving Track Parameters.

[Visual Basic]

To do so, load the collection, associate it with the segment, based on the MIDI file, and download the collection as you would with any other segment. For more information, see Loading a Collection.

Note

When a custom collection is attached to a MIDI segment, the connection to the GM collection is not broken. For example, suppose you load a collection containing a single instrument that has a patch number of 12 and connect this to the segment. MIDI channels with any patch number other than 12 continue to be played by the appropriate instruments in the GM collection.

Low-Level DLS

[Visual Basic]

This topic pertains only to applications written in C++. DirectX for Visual Basic does not support low-level manipulation of DLS data.

[C++]

If you are writing a DirectMusic application that edits DLS collections, you must be able to download instrument data to the synthesizer without encapsulating it in a DirectMusicInstrument object.

Working with DLS data requires knowledge of the DLS specification and file structure. For detailed information on these topics, contact the MIDI Manufacturers Association.

To download raw instrument data, you must first get a pointer to the IDirectMusicPortDownload interface, as shown in the following code example, in which it is assumed that pIPort is a valid pointer to an IDirectMusicPort interface:

IDirectMusicPortDownload **ppIDownloadPort;

HRESULT hr = pIPort->QueryInterface(IID_IDirectMusicPortDownload,

 (void **) ppIDownloadPort);

If the HRESULT is not S_OK, the port does not support DLS downloading.

Next, identify the buffers that must be prepared and downloaded. To send an instrument to the synthesizer, create one instrument buffer that represents the entire instrument definition with all the regions and articulations, and a series of wave buffers, one for each wave that the instrument refers to for its regions.

Each buffer must be tagged with a unique identifier. Identifiers are used to resolve linkages between buffers, in particular the links between regions and waves. Tally the number of buffers that you need to download, and call IDirectMusicPortDownload::GetDLId to allocate a range of identifiers. For example, if you are downloading an instrument with three waves, you must download four buffers in all. Therefore, request a set of four identifiers.

For each buffer, calculate the size needed; then call IDirectMusicPortDownload::AllocateBuffer to allocate it. This method returns an IDirectMusicDownload interface representing the buffer. Call IDirectMusicDownload::GetBuffer to access the memory.

Note

There are two methods called GetBuffer:

IDirectMusicPortDownload::GetBuffer returns an IDirectMusicDownload interface pointer for a buffer object whose download identifier is known.

IDirectMusicDownload::GetBuffer returns a pointer to the memory in the buffer.

Now write the data into each buffer. Each buffer starts with a DMUS_DOWNLOADINFO structure, which defines the size and functionality of the download. This structure must be prepared as follows:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Set the dwDLType member to either DMUS_DOWNLOADINFO_INSTRUMENT for an instrument or DMUS_DOWNLOADINFO_WAVE for a wave.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Set the dwDLId member to one of the unique identifiers that you obtained by using IDirectMusicPortDownload::GetDLId.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Set the dwNumOffsetTableEntries member to the number of entries in the DMUS_OFFSETTABLE structure.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Set the cbSize member to the size of the download chunk, including DMUS_DOWNLOADINFO and DMUS_OFFSETTABLE.

The DMUS_DOWNLOADINFO structure is always followed by a DMUS_OFFSETTABLE structure. This offset table is used to manage all links within the data. Whenever a structure in the data refers to another structure, it addresses it with an integer index, instead of a pointer. For every structure within the data that can be referred to, there is a unique index. The DMUS_OFFSETTABLE translates this integer index into a byte offset into the data.

The instrument or wave data follows the DMUS_OFFSETTABLE. If the download is an instrument, the data starts with the DMUS_INSTRUMENT structure. Otherwise, it starts with the DMUS_WAVE structure.

The instrument data that follows the DMUS_INSTRUMENT structure is organized in the following structures:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_ARTICPARAMS

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_ARTICULATION

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_COPYRIGHT

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_EXTENSIONCHUNK

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_INSTRUMENT

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_NOTERANGE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_REGION

The wave data pointed to by the DMUS_WAVE structure is organized in a DMUS_WAVEDATA structure.

When the buffers are all ready, download them by using IDirectMusicPortDownload::Download. Download the wave buffers first so that they are in place and can be referred to when the instrument is downloaded.

Once the buffers have been downloaded, the synthesizer is ready to play the instrument. The memory in the buffer is no longer accessible.

Later, when done playing the instrument, unload the buffers, and release them. First, unload the instrument buffer, then all the wave buffers. To unload, call IDirectMusicPortDownload::Unload and pass it the IDirectMusicDownload objects. Then, release each buffer with a call to IDirectMusicDownload::Release.

To update an instrument that has already been downloaded, you cannot write over the previously downloaded buffer. Instead, replace the instrument, but not the waves. To do this, call IDirectMusicPortDownload::AllocateBuffer to allocate a new IDirectMusicDownload interface with a buffer of the correct size. Be sure to generate a new identifier for the buffer with a call to IDirectMusicPortDownload::GetDLId. Write the new articulation information into the buffer; then download it. Then unload the previously downloaded buffer with a call to IDirectMusicPortDownload::Unload.

To update a wave buffer, take one extra step. Create both a new wave buffer and an updated instrument buffer that refers to it. Download the new wave, then the new instrument. Then unload the old instrument, followed by the old wave.

Playing Music

This section introduces the basic elements of a DirectMusic performance and the key methods that you need to get music data from source to output.

The following topics are discussed:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Creating the Performance

�SYMBOL 183 \f "Symbol" \s 11 \h �	Segments

�SYMBOL 183 \f "Symbol" \s 11 \h �	Tracks

�SYMBOL 183 \f "Symbol" \s 11 \h �	Using Bands

�SYMBOL 183 \f "Symbol" \s 11 \h �	Timing

�SYMBOL 183 \f "Symbol" \s 11 \h �	Notification and Event Handling

Creating the Performance

[C++]

The manager of music playback is the performance object, which does most of the work of getting music from the source to the output buffer. It performs the following tasks:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Adding ports

�SYMBOL 183 \f "Symbol" \s 11 \h �	Assigning instruments to channels

�SYMBOL 183 \f "Symbol" \s 11 \h �	Downloading instrument data to the synthesizer

�SYMBOL 183 \f "Symbol" \s 11 \h �	Playing and stopping segments

�SYMBOL 183 \f "Symbol" \s 11 \h �	Dispatching messages

�SYMBOL 183 \f "Symbol" \s 11 \h �	Managing tools and timing

Most applications have a single DirectMusicPerformance object, but it is possible to have more than one performance with different parameters, such as master tempo or volume.

The following code example creates a performance and obtains a pointer to the IDirectMusicPerformance interface:

IDirectMusicPerformance* pPerf;

if (FAILED(CoCreateInstance(

 CLSID_DirectMusicPerformance,

 NULL,

 CLSCTX_INPROC,

 IID_IDirectMusicPerformance,

 (void**)&pPerf

)))

{

 pPerf = NULL;

}

Once the performance is created, it must be initialized. An important part of initialization is the creation of a DirectMusic object. You can create a DirectMusic object by passing CLSID_DirectMusic to CoCreateInstance, and then passing the IDirectMusic interface pointer to IDirectMusicPerformance::Init. However, in most cases, it is more convenient to have Init create the DirectMusic object. You can also choose whether or not to retrieve a pointer to the IDirectMusic interface, depending on how much control you need over ports and the master clock. If you intend to use only the default synthesizer and the default master clock, you probably do not need access to the methods of IDirectMusic; in this case, you would pass NULL to Init.

The following code example initializes the performance, retrieves a pointer to IDirectMusic, and creates an IDirectSound interface initialized with the application window handle:

IDirectMusic* pDirectMusic;

if (SUCCEEDED(pPerf->Init(&pDirectMusic,

 NULL, // Create a DirectSound object.

 hWnd // Application window handle

)))

{

 // Performance initialized

}

[Visual Basic]

The manager of music playback is the performance object, which does most of the work of getting music from the source to the output buffer. It performs the following tasks:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Enumerating ports and setting the active port

�SYMBOL 183 \f "Symbol" \s 11 \h �	Playing and stopping segments

�SYMBOL 183 \f "Symbol" \s 11 \h �	Dispatching messages

�SYMBOL 183 \f "Symbol" \s 11 \h �	Managing the timing

Most applications have a single DirectMusicPerformance object, but it is possible to have more than one performance with different parameters, such as master tempo or volume, or even playing on different ports.

The follow code example, in which objDX is a DirectX7 object, creates a performance with its own DirectSound object, initializes it, and sets it to use the default port with one channel group:

Dim objDMPerformance as DirectMusicPerformance

Set objDMPerformance = objDX.DirectMusicPerformanceCreate

Call objDMPerformance.Init(Nothing, 0)

Call objDMPerformance.SetPort(-1, 1)

For more information on setting up the performance, see Integrating DirectMusic and DirectSound and Using Ports.

Segments

[C++]

The basic chunk of data in DirectMusic is called a segment. A segment is represented by an IDirectMusicSegment interface. You can create a segment in any of the following ways:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Load a file or resource object that supports the IDirectMusicSegment interface. For more information, see DirectMusic Loader.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Get a motif from a style by using the IDirectMusicStyle::GetMotif method.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Use methods of the IDirectMusicComposer interface to create a composition or transition at run time. See Overview of Programming for Composition and Using Transitions.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Make a copy of an existing segment by using the IDirectMusicSegment::Clone method.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Construct a segment from existing tracks. Create a segment object by calling CoCreateInstance, and then add tracks by calling IDirectMusicSegment::InsertTrack.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Use the IDirectMusicBand::CreateSegment method. This creates a special type of secondary segment that is used only for making band changes. See Making Band Changes Programmatically.

Each segment consists of one or more tracks, each represented by an IDirectMusicTrack interface. Tracks contain most of the data for the segment, whether that data consists of note events, band changes, tempo changes, or other timed events. Applications generally do not need to use this interface because the tracks are managed through the segment object. For more information, see Tracks.

[Visual Basic]

The basic chunk of data in DirectMusic is called a segment. A segment is represented by a DirectMusicSegment object. You can create a segment in any of the following ways:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Load a file or resource object that supports the DirectMusicSegment class by using the DirectMusicLoader.LoadSegment or the DirectMusicLoader.LoadSegmentFromResource method. For more information, see DirectMusic Loader.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Get a motif from a style by using the DirectMusicStyle.GetMotif method.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Use methods of the DirectMusicComposer class to create a composition or transition at run time. See Overview of Programming for Composition and Using Transitions.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Make a copy of an existing segment by using the DirectMusicSegment.Clone method.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Use the DirectMusicBand.CreateSegment method. This creates a special type of secondary segment that is used only for making band changes. See Making Band Changes Programmatically.

Segments can serve different purposes. The following are the kinds of segments that you are most likely to use:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Primary segment. A piece of music such as a MIDI file, a segment authored in DirectMusic Producer, or a segment formed at run time by the composer object.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Motif segment. A short piece of music to be played over the primary segment. Motifs are part of a style object, but you can also create short secondary segments from other sources and play them over the primary segment like motifs.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Band segment. A set of instruments and instrument settings for the various channels in the performance. The application can play a band segment to execute changes in the band performing the music.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Template segment. A guide to chord progressions, groove levels, and embellishments, used in conjunction with a style and chord map to compose music at run time. Unlike other segments, a template segment is never played directly by an application; instead, it is passed to the composer object to be used in creating a musical segment.

[C++]

The playback of segments is controlled by the IDirectMusicPerformance interface and begins with a call to IDirectMusicPerformance::PlaySegment. An instance of a playing segment is represented by an IDirectMusicSegmentState interface, which can be used to retrieve information about the current state of the segment.

[Visual Basic]

The playback of segments is controlled by the DirectMusicPerformance object and begins with a call to DirectMusicPerformance.PlaySegment. An instance of a playing segment is represented by a DirectMusicSegmentState object, which can be used to retrieve information about the current state of the segment.

Only one primary segment can play inside a performance. When you cue a primary segment for playback, you can specify that it is to be played after the currently playing segment is finished, or you can use it to replace the current primary segment.

Secondary segments, on the other hand, play over the current primary segment, and any number of secondary segments can be playing simultaneously.

Secondary segments do not normally alter the performance of the primary segment. For example, a secondary segment can be based on a different style without affecting the style of the primary segment.

[C++]

However, a secondary segment can be designated as a control segment, in which case it takes over the task of responding to IDirectMusicPerformance::SetParam and IDirectMusicPerformance::GetParam calls, which normally go to tracks in the primary segment. Thus a control segment might control the current chord or groove level. For more information, see Tracks.

For more information on playing secondary segments as control segments, see DMUS_SEGF_FLAGS.

[Visual Basic]

However, a secondary segment can be designated a control segment, in which case it takes over the task of responding to certain calls such as DirectMusicPerformance.GetCommand and would also control some aspects of the music, such as the current chord or groove level.

For more information on playing secondary segments as control segments, see CONST_DMUS_SEGF_FLAGS.

For more information on segment playback, see Segment Timing.

Tracks

Tracks are the components of a segment that contain its sequenced data, including information about notes, underlying chords, tempo, patch and band changes, and everything else that the performance needs to know to play a piece of music.

[Visual Basic]

DirectX for Visual Basic does not provide applications with access to individual tracks. All playback is handled at the segment level.

[C++]

Each track is represented by an IDirectMusicTrack interface. The methods of this interface are called by the performance, and most applications do not need to use them directly.

When an application calls IDirectMusicPerformance::PlaySegment, DirectMusic calls the IDirectMusicTrack::Play method on the segment's tracks. Most tracks respond by immediately generating time-stamped messages containing data that is valid for the part of the segment that is being played. These messages are placed in a queue. (See Message Creation and Delivery for more information about what happens after that.)

A few tracks do not actively generate messages in response to IDirectMusicTrack::Play, but instead do their work by responding to requests for information that come from the performance or other tracks in the form of a GetParam call. (See Setting and Retrieving Track Parameters.)

The following list shows the standard track types implemented by DirectMusic, with a brief description of each one. For a list of the methods supported by the standard tracks, see the reference for IDirectMusicTrack.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Band. Downloads DLS data to the performance. Sends messages of type DMUS_PATCH_PMSG, DMUS_TRANSPOSE_PMSG, DMUS_CHANNEL_PRIORITY_PMSG, and DMUS_MIDI_PMSG (for volume and pan). Used in segments based on MIDI files and styles.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Chord. Used to convert music values (as stored in patterns) to MIDI values. Sends messages of type DMUS_NOTIFICATION_PMSG (for GUID_NOTIFICATION_CHORD notifications).

�SYMBOL 183 \f "Symbol" \s 11 \h �	Chord map. Used in template segments to compose chord tracks.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Command. Used in template segments to compose chord tracks, and in style segments to determine which patterns is played. Sends messages of type DMUS_NOTIFICATION_PMSG (for GUID_NOTIFICATION_COMMAND notifications).

�SYMBOL 183 \f "Symbol" \s 11 \h �	Motif. Used to play motifs to accompany other segments. Sends messages of type DMUS_CURVE_PMSG, DMUS_NOTE_PMSG, and DMUS_NOTIFICATION_PMSG (for GUID_NOTIFICATION_MEASUREANDBEAT notifications).

�SYMBOL 183 \f "Symbol" \s 11 \h �	Mute. Used with either style-based or MIDI-based segments. Allows PChannels to be remapped to other PChannels or to be muted.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Sequence. Sends sequence messages of type DMUS_NOTE_PMSG and DMUS_MIDI_PMSG. Used in segments based on MIDI files. Also sends messages of type DMUS_CURVE_PMSG for segments saved in the .sgt format.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Signpost. Used in template segments to compose chord tracks.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Style. Fundamental track for segments based on styles. Sends messages of type DMUS_TIMESIG_PMSG, DMUS_CURVE_PMSG, DMUS_NOTE_PMSG, and DMUS_NOTIFICATION_PMSG (for GUID_NOTIFICATION_MEASUREANDBEAT notifications).

�SYMBOL 183 \f "Symbol" \s 11 \h �	SysEx. Sends system-exclusive messages of type DMUS_SYSEX_PMSG. Used in segments based on MIDI files.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Tempo. Sets the tempo of the performance by sending messages of type DMUS_TEMPO_PMSG.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Time Signature. Sends messages of type DMUS_TIMESIG_PMSG as well as GUID_NOTIFICATION_MEASUREANDBEAT notifications. Used in segments based on MIDI files.

Using Bands

A band is a choice of instruments assigned to particular parts in a style. At performance time, each instrument track is mapped to a PChannel, which stores the following information:

�SYMBOL 183 \f "Symbol" \s 11 \h �	MIDI volume.

�SYMBOL 183 \f "Symbol" \s 11 \h �	MIDI pan.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Transposition. If this value is nonzero, music notes on the channel are automatically transposed for the instrument.

�SYMBOL 183 \f "Symbol" \s 11 \h �	The instrument's MIDI patch number, including MSB and LSB bank selects.

�SYMBOL 183 \f "Symbol" \s 11 \h �	A reference to the DLS collection from which to load the instrument. By default, the DLS collection is the standard General MIDI collection.

Segments and styles always contain at least one band, called the default band. Styles can contain additional bands. When you load a segment or style, the default band and any other bands are automatically loaded, as well. However, you must still download the DLS data for the instruments in any band that you intend to use.

[C++]

You can retrieve a pointer to the default band by using the IDirectMusicStyle::GetDefaultBand method.

Other bands might be authored into the style and can be found and retrieved by using the IDirectMusicStyle::EnumBand and IDirectMusicStyle::GetBand methods. Bands can also be obtained from other style files or from band files. Once you have obtained an IDirectMusicBand interface, you have access to that band and can substitute it for the default band.

[Visual Basic]

You can retrieve an object representing the default band by using the DirectMusicStyle.GetDefaultBand method. Other bands might be authored into the style and can be retrieved by using the DirectMusicStyle.GetBand method. Bands can also be obtained from other style files or from band files. Once you have obtained a DirectMusicBand object, you have access to that band and can substitute it for the default band.

Loading a band from its own file is like loading any other object in DirectMusic. For more information, see DirectMusic Loader.

More information about bands is contained in the following topics:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Downloading and Unloading Bands

�SYMBOL 183 \f "Symbol" \s 11 \h �	Making Band Changes Programmatically

�SYMBOL 183 \f "Symbol" \s 11 \h �	Ensuring Timely Band Changes

Downloading and Unloading Bands

Before a band can be used, the instruments that it refers to must be downloaded to the performance. This step maps the instruments to PChannels and downloads the DLS data to the port.

By default, the application is responsible for downloading any band that it uses. However, you can turn on automatic downloading of bands. When automatic downloading is on, the instruments in the band are downloaded when the segment containing the band is cued. The instruments are automatically unloaded when the segment is stopped, unless another segment using the same instruments is cued to play immediately or is currently playing.

Note

Automatic downloading should be used only when the timing of segment starts is not critical. Repeated loading and unloading of instruments takes time and can cause serious degradation of performance in complex musical environments.

Be aware also that automatic unloading, which is part of the automatic downloading mechanism, can lead to undesired results. For example, suppose you play a short secondary segment that changes the instrument on a channel. The instrument is automatically downloaded when the secondary segment starts, replacing the existing instrument. When the secondary segment ends, the instrument is automatically unloaded. Therefore, there is no instrument on that channel, and the channel plays silence.

Downloading a band makes the band available to the performance but does not perform any program changes. Program changes take place in response to messages generated by the segment's band track, which is typically authored into a segment file. For information on how to make program changes at run time, see Making Band Changes Programmatically.

Information about how to implement downloading and unloading of bands is contained in the following topics:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Automatically Downloading Bands

�SYMBOL 183 \f "Symbol" \s 11 \h �	Manually Downloading Bands

�SYMBOL 183 \f "Symbol" \s 11 \h �	Unloading Bands

Automatically Downloading Bands

[C++]

You can turn on automatic downloading of bands in one of the following ways:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Call the IDirectMusicPerformance::SetParam method for the GUID_PerfAutoDownload parameter. See Setting and Retrieving Global Parameters and the following example.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Call the IDirectMusicSegment::SetParam or the IDirectMusicTrack::SetParam method for the GUID_Enable_Auto_Download parameter. See Setting and Retrieving Track Parameters.

In the following code example, the global parameter for the performance pPerf is set to enable automatic downloading of bands:

BOOL fAuto = TRUE;

pPerf->SetGlobalParam(GUID_PerfAutoDownload, &fAuto, sizeof(BOOL));

[Visual Basic]

You can turn on automatic downloading of bands for the entire performance by using the DirectMusicPerformance.SetMasterAutoDownload method, or for an individual segment by using the DirectMusicSegment.SetAutoDownloadEnable method.

Manually Downloading Bands

[C++]

You can manually download a band in one of the following ways:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Obtain an IDirectMusicBand interface from a loaded object, and call the IDirectMusicBand::Download method. (See the following example.) This is the best way to download the band if you want to unload it after any segments using the band have been released.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Call the IDirectMusicSegment::SetParam method with the GUID_Download parameter to download the band in the segment's first band track. You can also use IDirectMusicPerformance::SetParam to set this parameter on the primary segment, or IDirectMusicTrack::SetParam to set it directly on a band track. See Setting and Retrieving Track Parameters.

There is no danger in downloading the same instrument multiple times. If an instrument appears in one band multiple times or if it appears in multiple bands that are all opened and downloaded at the same time, only one copy of the instrument is sent down to the synthesizer.

The following function loads a band from disk and downloads it:

HRESULT myDownloadBand(

 IDirectMusicLoader *pILoader, // Loader interface

 IDirectMusicBand **ppBand, // To retrieve pointer

 IDirectMusicPerformance *pPerf, // Performance to use band

 WCHAR *pwszFile) // File to load

{

 HRESULT hr;

 DMUS_OBJECTDESC Desc; // Descriptor

 // Start by initializing Desc with the file name and GUID

 // for the band object.

 wcscpy(Desc.wszFileName,pwszFile);

 Desc.dwSize = sizeof(Desc);

 Desc.guidClass = CLSID_DirectMusicBand;

 Desc.dwValidData = DMUS_OBJ_CLASS |

 DMUS_OBJ_FILENAME | DMUS_OBJ_FULLPATH;

 hr = pILoader->GetObject(&Desc, IID_IDirectMusicBand,

 (void **) ppBand);

 if (SUCCEEDED(hr))

 {

 // Download the band via the performance.

 hr = (*ppBand)->Download(pPerf);

 }

 return hr;

}

[Visual Basic]

You can manually download a band by obtaining a DirectMusicBand object from a file, a resource, or a DirectMusicStyle object, and then using its DirectMusicBand.Download method.

Unloading Bands

[C++]

Bands take up memory, so they should be unloaded when they are no longer in use. If you have enabled automatic downloading of bands, the bands associated with a segment are unloaded automatically when the segment ends. Otherwise, you can manually unload a band in one of the following ways:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Call the IDirectMusicBand::Unload method.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Call the IDirectMusicSegment::SetParam method for the GUID_Unload parameter to unload the band in the segment's band track. You can also use IDirectMusicPerformance::SetParam to set this parameter on the primary segment, or IDirectMusicTrack::SetParam to set it directly on the band track. See Setting and Retrieving Track Parameters. For an example, see Tutorial 1, Step 6: Shut Down DirectMusic.

The IDirectMusicPerformance::CloseDown method also unloads any remaining downloaded instruments.

[Visual Basic]

Bands take up memory, so they should be unloaded when they are no longer in use. If you have enabled automatic downloading of bands, the bands associated with a segment are unloaded automatically when the segment ends. Otherwise, you can manually unload a band by using the DirectMusicBand.Unload method.

The DirectMusicPerformance.CloseDown method also unloads any remaining downloaded instruments.

Making Band Changes Programmatically

Usually, the band track in a loaded segment performs program changes. However, you can also do so manually.

[C++]

First, create a secondary segment with a call to the IDirectMusicBand::CreateSegment method, and then play that segment by calling IDirectMusicPerformance::PlaySegment. Typically, you would use DMUS_SEGF_MEASURE or DMUS_SEGF_GRID (see DMUS_SEGF_FLAGS) in the dwFlags parameter to ensure that the band change takes effect on an appropriate boundary.

The following code example creates a segment from a band and plays it:

/ * It is presumed that automatic downloading is turned on or that the application has called pBand->Download. */

HRESULT myPlayBand(

 IDirectMusicBand *pBand, // Pointer to a band object

 IDirectMusicPerformance *pPerf, // Performance to use the band

 REFERENCE_TIME rfTime, // Time to play at

 DWORD dwFlags) // Performance flags

{

 IDirectMusicSegment *pSegment;

 HRESULT hr = pBand->CreateSegment(&pSegment);

 if (SUCCEEDED(hr))

 {

 hr = pPerf->PlaySegment(pSegment,

 dwFlags | DMUS_SEGF_SECONDARY,

 rfTime,

 NULL);

 pSegment->Release();

 }

 return hr;

}

[Visual Basic]

First, create a segment by using DirectMusicBand.CreateSegment, and then play that segment by calling DirectMusicPerformance.PlaySegment. Typically, you would use DMUS_SEGF_MEASURE or DMUS_SEGF_GRID (see CONST_DMUS_SEGF_FLAGS) in the lFlags parameter to ensure that the band change takes effect on an appropriate boundary.

A performance can be playing instruments from more than one band at a time. For example, suppose your application is playing a primary segment using one band, and then plays a motif from a style that has a different band. As long as the instruments in the first band are mapped to different PChannels than the instruments in the second, no conflict arises. However, motif segments do not normally have their own band tracks, so you might get silence from the motif's PChannels unless you first create a band segment and play it. (It is possible to add a band track to a motif segment, but creating a separate band segment is easier.)

Ensuring Timely Band Changes

A consideration in playing band segments is the randomness in the timing of notes played by a style track. For instance, a note that is on measure 1, beat 1 might actually play somewhat earlier or later than the actual beat boundary. The band segment is not aware of this; therefore, some of the notes might play with the incorrect instrument.

[C++]

To prevent this problem, an application should cue the band segment early. Suppose, for example, that you have a style segment pStyleSeg and a band segment pBandSeg. You want to play both the style segment and the band segment on the next measure boundary of the performance (pPerf). You know that the style contains notes that could go out up to 30 ticks earlier (in music time) than the start time of the segment. The following code example ensures that the band segment is played 31 ticks before the style segment, so all instruments are in place before any note is played:

/* First, get the time of the next measure, and convert it to

 music time. */

REFERENCE_TIME rtResolved;

MUSIC_TIME mtResolved;

pPerf->GetResolvedTime(0, &rtResolved, DMUS_TIME_RESOLVE_MEASURE);

pPerf->ReferenceToMusicTime(rtResolved, &mtResolved);

/* Now, play the band segment 31 ticks before the measure boundary. */

mtResolved -= 31;

pPerf->PlaySegment(pBandSeg, 0, mtResolved, NULL);

/* Play the style segment on the measure boundary. */

pPerf->PlaySegment(pStyleSeg, DMUS_TIME_RESOLVE_MEASURE, 0, NULL);

[Visual Basic]

To prevent this problem, an application should cue the band segment early. Suppose, for example, that you have a style segment styleSeg and a band segment bandSeg. You want to play both the style segment and the band segment on the next measure boundary of the performance (perf). You know that the style contains notes that could go out up to 30 ticks earlier (in music time) than the start time of the segment. The following code example ensures that the band segment is played 31 ticks before the style segment, so all instruments are in place before any note is played:

'First, get the time of the next measure,

' and convert it to music time.

Dim ctResolved As Long

Dim mtResolved As Long

ctResolved = perf.GetResolvedTime(ctResolved, DMUS_SEGF_MEASURE)

mtResolved = perf.ClockToMusicTime(ctResolved)

' Now, play the band segment 31 ticks before the measure boundary.

mtResolved = mtResolved - 31

Call perf.PlaySegment(bandSeg, 0, mtResolved)

' Play the style segment on the measure boundary.

Call perf.PlaySegment(styleSeg, DMUS_SEGF_MEASURE, 0)

Note

If there is no randomness in the notes played by a segment (for example, one based on a MIDI file), you do not need to worry about the timeliness of a band segment played at the same time. By default, all band segments start 1 tick early.

Timing

This section is an overview of various timing issues in DirectMusic. The following topics are discussed:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Master Clock

�SYMBOL 183 \f "Symbol" \s 11 \h �	Clock Time vs. Music Time

�SYMBOL 183 \f "Symbol" \s 11 \h �	Changing the Tempo

�SYMBOL 183 \f "Symbol" \s 11 \h �	Prepare Time

�SYMBOL 183 \f "Symbol" \s 11 \h �	Latency and Bumper Time

�SYMBOL 183 \f "Symbol" \s 11 \h �	Segment Timing

Master Clock

[Visual Basic]

This topic pertains only to applications written in C++. DirectX for Visual Basic does not enable applications to select a different master clock.

[C++]

To guarantee accurate timing with an acceptably low latency, DirectMusic incorporates a master clock in kernel mode. This clock is based on a hardware timer. DirectMusic automatically selects the system clock as the master clock, but an application can select a different one, such as the wave-out crystal on a sound card.

The master clock is a high-resolution timer that is shared by all processes, devices, and applications that are using DirectMusic. The clock is used to synchronize all music playback in the system. It is a standard IReferenceClock interface. The IReferenceClock::GetTime method returns the current time as a 64-bit integer (defined as the REFERENCE_TIME type) in increments of 100 nanoseconds.

To obtain an interface to the master clock, call the IDirectMusic::GetMasterClock method.

You can choose a different master clock for your application, but only if there are no other DirectMusic applications running. First, you get descriptions of all devices that can serve as the master clock by using the IDirectMusic::EnumMasterClock method. Once you have obtained the GUID of the device that you want to use as the master clock, you pass this to the IDirectMusic::SetMasterClock method.

Clock Time vs. Music Time

[C++]

In DirectX for C++, the time returned by the master clock is a 64-bit value defined as type REFERENCE_TIME. Reference time is measured in units of approximately 100 nanoseconds, so the clock ticks about 10 million times each second. The value returned by the IReferenceClock::GetTime method is relative to an arbitrary start time.

Music time is a 32-bit value defined as type MUSIC_TIME. It is not an absolute measure of time, but is relative to the tempo. The clock is started when the performance is initialized and ticks DMUS_PPQ times for each quarter-note. (DMUS_PPQ is currently defined as 768.)

When a performance is initialized, it starts keeping an internal clock. You can retrieve the current performance time in both reference time and music time by using the IDirectMusicPerformance::GetTime method.

The IDirectMusicPerformance::AdjustTime method can be used to make small changes to the performance time. Most applications do not need to do this, but it can be useful when synchronizing to another source.

To convert between the two kinds of time in a performance, you can use the IDirectMusicPerformance::MusicToReferenceTime and IDirectMusicPerformance::ReferenceToMusicTime methods.

When a segment is cued to play by a call to IDirectMusicPerformance::PlaySegment and the start time is given in reference time, DirectMusic must convert the start time to music time. If no primary segment is currently playing, the conversion is made immediately, based on the current tempo. Otherwise, if another segment is playing, the start time of the cued segment is not converted to music time until the start time has been reached.

If the tempo is changed before the segment starts playing, the start time can be affected, or the segment might not start on the desired boundary. In the first case, in which the conversion to music time is done immediately, the start time (in reference time) is advanced if the tempo speeds up and delayed if the tempo slows down. In the second case, in which conversion is made at start time, a change in tempo can mean that the segment does not start at correct resolution boundaries. For example, if the segment is supposed to start on a measure boundary (as indicated in the dwFlags parameter of PlaySegment), the start time (in reference time) is calculated when the segment is cued. However, if the tempo then changes, a measure boundary might not fall at that time.

When a primary segment is passed to PlaySegment with the DMUS_SEGF_QUEUE flag (see DMUS_SEGF_FLAGS), the i64StartTime parameter is ignored, and the segment is cued to play after any primary segments whose start times have already been converted. If a previously cued segment is still stamped in reference time, that segment plays at its designated time, perhaps interrupting another segment.

An example should make this clearer. Say you have three segments, each 10 seconds in length. You cue segment A to play 5 seconds from now. Because no primary segment is currently playing, the start time is immediately converted to music time. At 6 seconds, you cue segment B to play at 20 seconds. In this case, because music is already playing and the tempo might change, the conversion to music time is not made immediately. Then you cue segment C with the DMUS_SEGF_QUEUE flag so that it starts immediately after segment A finishes, at 15 seconds. At 20 seconds segment B starts playing and interrupts segment C.

[Visual Basic]

In DirectX for Visual Basic, the time returned by the master clock is a Long, representing units of approximately one millisecond. The value returned by DirectMusicPerformance.GetClockTime is relative to an arbitrary start point.

Music time is also a Long. It is not an absolute measure of time, but is relative to the tempo. The clock is started when the performance is initialized and ticks 768 times for each quarter-note. You can retrieve the current music time by using DirectMusicPerformance.GetMusicTime.

To convert between the two kinds of time in a performance, you can use the DirectMusicPerformance.MusicToClockTime and DirectMusicPerformance.ClockToMusicTime methods.

When a segment is cued to play by a call to DirectMusicPerformance.PlaySegment and the start time is given in clock time, DirectMusic must convert the start time to music time. If no primary segment is currently playing, the conversion is made immediately, based on the current tempo. Otherwise, if another segment is playing, the start time of the cued segment is not converted to music time until the start time has been reached.

If the tempo is changed before the segment starts playing, the start time can be affected, or the segment might not start on the desired boundary. In the first case, in which the conversion to music time is made immediately, the start time (in reference time) is advanced if the tempo speeds up and delayed if the tempo slows down. In the second case, in which conversion is made at start time, a change in tempo can mean that the segment does not start at correct resolution boundaries. For example, if the segment is supposed to start on a measure boundary (as indicated in the lFlags parameter of PlaySegment), the start time (in clock time) is calculated when the segment is cued, However, if the tempo then changes, a measure boundary might not fall at that time.

When a primary segment is passed to PlaySegment with the DMUS_SEGF_QUEUE flag (see CONST_DMUS_SEGF_FLAGS), the startTime parameter is ignored, and the segment is cued to play after any primary segments whose start times have already been converted. If a previously cued segment is still stamped in reference time, that segment plays at its designated time, perhaps interrupting another segment.

An example should make this clearer. Say you have three segments, each 10 seconds in length. You cue segment A to play 5 seconds from now. Because no primary segment is currently playing, the start time is immediately converted to music time. At 6 seconds, you cue segment B to play at 20 seconds. In this case, because music is already playing and the tempo might change, the conversion to music time is not made immediately. Then you cue segment C with the DMUS_SEGF_QUEUE flag so that it starts immediately after segment A finishes, at 15 seconds. At 20 seconds segment B starts playing and interrupts segment C.

Changing the Tempo

The tempo of a performance dictates the conversion between the two types of time used in DirectMusic, which in turn controls the resolution of events to musical boundaries. (See Clock Time vs. Music Time.) The tempo track of the primary segment usually controls the tempo, but an application can also set the tempo dynamically.

[C++]

There are two ways to do so: by sending a message and by setting a track parameter.

The following code example sends a message to change the tempo:

/* Assume that pIDMSegment is a valid IDirectMusicSegment and

 IDMPerformance is a valid IDirectMusicPerformance. */

// Disable tempo track in segment so that it does not reset the tempo.

pIDMSegment->SetParam(GUID_DisableTempo, 0xFFFF,0,0, NULL);

DMUS_TEMPO_PMSG* pTempo;

if(SUCCEEDED(pIDMPerformance->AllocPMsg(

 sizeof(DMUS_TEMPO_PMSG), (DMUS_PMSG**)&pTempo)))

{

 // Queue the tempo event.

 ZeroMemory(pTempo, sizeof(DMUS_TEMPO_PMSG));

 pTempo->dwSize = sizeof(DMUS_TEMPO_PMSG);

 pTempo->dblTempo = 100;

 pTempo->dwFlags = DMUS_PMSGF_REFTIME;

 pTempo->dwType = DMUS_PMSGT_TEMPO;

 pIDMPerformance->SendPMsg((DMUS_PMSG*)pTempo);

}

The following code example shows how to change the tempo parameter. For more information, see Setting and Retrieving Track Parameters.

DMUS_TEMPO_PARAM Tempo;

Tempo.dblTempo = 100;

pIDMSegment->SetParam(GUID_TempoParam, 0xFFFF, 0, 0, &Tempo);

[Visual Basic]

There are two ways to do so: by setting the master tempo and by sending a tempo message.

The master tempo is a factor by which all tempos in the performance are multiplied. For example, if you set the master tempo by calling DirectMusicPerformance.SetMasterTempo with a parameter of 0.75, and then play a segment that has a tempo of 120 beats per minute, the segment plays with a tempo of 90.

Sending a tempo by using the DirectMusicPerformance.SendTempoPMSG method changes the tempo at the time for which the message is stamped. The new tempo is valid until another tempo message is sent, either directly by the application or by a segment that is being played. The tempo value can be modified by the master tempo.

The following call, where perf is a DirectMusicPerformance object, immediately sets the tempo to 100 beats per minute. If you pass 0 as the lTime parameter to signify that the message is to go out immediately, you must also set the DMUS_PMSGF_REFTIME flag.

Call perf.SendTempoPMSG(0, DMUS_PMSGF_REFTIME, 100)

Prepare Time

As a segment is played, the performance makes repeated calls to the segment's tracks, causing them to generate messages for the supplied time range, which is some fraction of a second. These messages are then placed in the queue behind those that were generated in previous calls. By default, about a second's worth of messages are in the queue at any given time.

For an illustration, see Latency and Bumper Time.

[C++]

The queue is like a gas tank that is constantly being topped off by calls to IDirectMusicTrack::Play. Each time the performance calls Play, it calculates the end time for that call by adding the prepare time to the current time. If the current time is 10,000 milliseconds (or the equivalent in REFERENCE_TIME units) and the prepare time is the default 1000 ms, the end time is 11,000—that is, all new messages that are to play up to time 11,000 must be prepared and placed in the queue.

The size of the queue can be changed by calling the IDirectMusicPerformance::SetPrepareTime method, and the current size can be retrieved by using IDirectMusicPerformance::GetPrepareTime.

Most applications do not need to change the default prepare time, and the process just described is not visible to the application. However, it is helpful to understand the concept of prepare time because of the DMUS_SEGF_AFTERPREPARETIME flag, which the application can pass to IDirectMusicPerformance::PlaySegment.

[Visual Basic]

The queue is like a gas tank that is constantly being topped off. Each time the performance calls on the segment to send messages, it calculates the end time for that call by adding the prepare time to the current time. If the current time is 10,000 milliseconds and the prepare time is the default 1000 ms, the end time is 11,000—that is, all new messages that are to play up to time 11,000 must be prepared and placed in the queue.

The size of the queue can be changed by calling the DirectMusicPerformance.SetPrepareTime method, and the current size can be retrieved by using DirectMusicPerformance.GetPrepareTime.

Most applications do not need to change the default prepare time, and the process just described is not visible to the application. However, it is helpful to understand the concept of prepare time because of the DMUS_SEGF_AFTERPREPARETIME flag, which the application can pass to DirectMusicPerformance.PlaySegment.

Normally, if you set a start time of "now" for the segment, the performance invalidates any messages currently in the queue. Any tracks that are still valid at this point (for example, tracks of secondary segments that continue to play despite the introduction of a new primary segment) then have to resend their messages, taking into account any changes made to the musical environment by the new segment. To avoid unnecessary processing and to ensure continuity (for example, to ensure that a long note or nonmusical DLS sound is not cut short), you can use the DMUS_SEGF_AFTERPREPARETIME flag to specify that the segment is not to start playing until all messages currently in the queue have been processed and passed to the port buffer. So, for example, if messages up to time 10,000 are in the queue and the current time is 9,000, a segment cued to play immediately starts playing just after the 10,000 ms mark.

For more information, see Segment Timing.

Latency and Bumper Time

[C++]

Latency is the delay between the time at which the port receives a musical message and the time at which it has synthesized enough of a wave to play. The IDirectMusicPerformance::GetLatencyTime method retrieves the current time plus the latency for the performance as a whole. This is the largest value returned by any of the ports' latency clocks.

The bumper is an extra amount of time allotted for code to run between the time that a musical event is put into the port buffer and the time that the port starts to process it. By default, the bumper length is 50 milliseconds. An application can change this value by using the IDirectMusicPerformance::SetBumperLength method, and retrieve the current value by calling IDirectMusicPerformance::GetBumperLength.

Latency time and bumper time can be combined. Suppose an event is supposed to play at 10,000 milliseconds. The latency of the port is known to be 100 ms, and the bumper length is at its default value of 50 ms. The performance therefore places the message into the port buffer at 9,850 ms.

Once a message has been placed in the port buffer, it no longer belongs to the performance and cannot be stopped from playing by using the IDirectMusicPerformance::Invalidate or the IDirectMusicPerformance::Stop method. The first message that can be invalidated has a time stamp equal to or greater than the current time plus the latency time and the bumper time. This value can be retrieved by using the IDirectMusicPerformance::GetQueueTime method.

[Visual Basic]

Latency is the delay between the time at which the port receives a musical message and the time at which it has synthesized enough of a wave to play. The DirectMusicPerformance.GetLatencyTime method retrieves the current time plus the latency for the performance as a whole. This is the largest value returned by any of the ports' latency clocks.

The bumper is an extra amount of time allotted for code to run between the time that a musical event is put into the port buffer and the time that the port starts to process it. By default, the bumper length is 50 milliseconds. An application can change this value by using the DirectMusicPerformance.SetBumperLength method, and retrieve the current value by calling DirectMusicPerformance.GetBumperLength.

Latency time and bumper time can be combined. Suppose an event is supposed to play at 10,000 milliseconds. The latency of the port is known to be 100 ms, and the bumper length is at its default value of 50 ms. The performance therefore places the message into the port buffer at 9,850 ms.

Once a message has been placed in the port buffer, it no longer belongs to the performance and cannot be stopped from playing by using the DirectMusicPerformance.Invalidate or the DirectMusicPerformance.Stop method. The first message that can be invalidated has a time stamp equal to or greater than the current time plus the latency and bumper time. This value can be retrieved by using the DirectMusicPerformance.GetQueueTime method.

The following illustration illustrates the relationship of the times and durations retrieved by various methods. The current time is at the left, and the last time for which messages have been prepared is at the right. Prepare time is only an approximation of the total timespan of messages in the queue at any given moment.

[Visual Basic]

The methods in the illustration are from the C++ API, but most have the same names in DirectX for Visual Basic. For example, IDirectMusicPerformance::GetPrepareTime is equivalent to DirectMusicPerformance.GetPrepareTime. The GetTime method in the illustration is equivalent to DirectMusicPerformance.GetClockTime.

�

Segment Timing

[C++]

Segments play from the beginning unless a start point is set by a call to the IDirectMusicSegment::SetStartPoint method. If a repeat count is set by using IDirectMusicSegment::SetRepeats, the entire segment repeats that number of times, unless a loop has been defined by a call to IDirectMusicSegment::SetLoopPoints. In this case, only the part of the segment between the loop points repeats.

The performance time at which the segment starts playing is determined by two parameters of IDirectMusicPerformance::PlaySegment:

�SYMBOL 183 \f "Symbol" \s 11 \h �	The i64StartTime parameter sets the earliest time at which the segment can start playing. If i64StartTime is 0, this time is as soon as possible. The time at which the segment starts depends on the type of segment. If it is a primary segment or a control segment, the earliest start time is at queue (or flush) time. If it is a noncontrol secondary segment, the earliest start is at latency time. For more information on queue time and latency time, see Latency and Bumper Time.

�SYMBOL 183 \f "Symbol" \s 11 \h �	The dwFlags parameter determines how soon after the scheduled time the segment starts playing, depending on the rhythm of the currently playing segment. Usually, you will want to wait for an appropriate moment before introducing a new segment, a transition, or a motif. You control the delay by setting one of the following DMUS_SEGF_FLAGS:

[Visual Basic]

Segments play from the beginning unless a start point is set by a call to the DirectMusicSegment.SetStartPoint method. If a repeat count is set by using DirectMusicSegment.SetRepeats, the entire segment repeats that number of times, unless a loop has been defined by a call to DirectMusicSegment.SetLoopPoints. In this case, only the part of the segment between the loop points repeats.

The performance time at which the segment starts playing is determined by two parameters of DirectMusicPerformance.PlaySegment:

�SYMBOL 183 \f "Symbol" \s 11 \h �	The startTime parameter sets the earliest time at which the segment can start playing. If startTime is 0, this time is as soon as possible. The time at which the segment starts depends on the type of segment. If it is a primary segment or a control segment, the earliest start time is at queue (or flush) time. If it is a noncontrol secondary segment, the earliest start is at latency time. For more information on queue time and latency time, see Latency and Bumper Time.

�SYMBOL 183 \f "Symbol" \s 11 \h �	The lFlags parameter determines how soon after the scheduled time the segment starts playing, depending on the rhythm of the currently playing segment. Usually, you will want to wait for an appropriate moment before introducing a new segment, a transition, or a motif. You control the delay by setting one of the following CONST_DMUS_SEGF_FLAGS:

DMUS_SEGF_AFTERPREPARETIME

Play at the earliest start time plus the prepare time. This ensures that any messages from the currently playing segment that have already been queued to the port are not invalidated. This saves processing time and also ensures that any motifs continue to play smoothly over a transition from one primary segment to another.

DMUS_SEGF_GRID

Play on a grid boundary. A grid is a subdivision of a beat. The time signature (authored into the style) determines how many grids each beat is divided into.

DMUS_SEGF_BEAT

Play on a beat.

DMUS_SEGF_MEASURE

Play at the beginning of a measure.

DMUS_SEGF_DEFAULT

Use the cued segment's default boundary.

If none of these flags is set, the segment starts playing at exactly the earliest start time.

For information on how tempo changes can affect start times, see Clock Time vs. Music Time.

Notification and Event Handling

From time to time, your application might need to respond to a music event; for example, you might need to know when the end of a segment has been reached, or you might want to synchronize graphics with the beat of the music. Get the desired information by asking DirectMusic to notify you when a certain type of event has taken place.

[C++]

Specify what types of music events you want to be notified of by calling the IDirectMusicPerformance::AddNotificationType method once for each desired type of event. The following code example tells DirectMusic to set segment-related events. The actual type of event (such as a segment start or a segment end) will be derived later from the notification message.

/* It is assumed that pPerformance is a valid

 IDirectMusicPerformance pointer. */

GUID guid = GUID_NOTIFICATION_SEGMENT;

// C syntax:

pPerformance->AddNotificationType(&guid);

// C++ syntax:

pPerformance->AddNotificationType(guid);

You can also add notification types for a particular segment by using the IDirectMusicSegment::AddNotificationType method. You could do this, for example, to receive notification of when a particular segment stops playing. You cannot use this method to request GUID_NOTIFICATION_PERFORMANCE types because these must come from the performance object.

Notifications are sent in the form of DMUS_NOTIFICATION_PMSG message structures. You can poll for any pending notification messages within the Windows message loop by calling the IDirectMusicPerformance::GetNotificationPMsg method, or you can have DirectMusic signal an event object in a separate thread when a message is pending.

If you want to be alerted of pending DirectMusic notification messages by a Windows event object, you must first obtain an event handle by calling the Win32 CreateEvent function. Typically, you would create an autoreset event with a call such as the following:

HANDLE g_hNotify = CreateEvent(NULL, FALSE, FALSE, NULL);

After creating the event, assign the handle to the performance by passing it to the IDirectMusicPerformance::SetNotificationHandle method. You can use the second parameter of this method to change the default time that DirectMusic holds onto the event if it is not retrieved; a value of 0 in this parameter indicates that the default time of 2 seconds is to be used.

In the following example, g_pPerf is a valid pointer to the IDirectMusicPerformance interface:

g_pPerf->SetNotificationHandle(g_hNotify, 0);

The following code example runs repeatedly in its own thread, checking for signaled events and retrieving notification messages.

void WaitForEvent(LPVOID lpv)

{

 DWORD dwResult;

 DMUS_NOTIFICATION_PMSG* pPmsg;

 char szCount[4];

 while (TRUE)

 {

 dwResult = WaitForSingleObject(g_hNotify, 100);

 while (S_OK == g_pPerf->GetNotificationPMsg(&pPmsg))

 {

 // Check notification type, and do something in response.

 .

 .

 .

 g_pPerf->FreePMsg((DMUS_PMSG*)pPmsg);

 }

 }

}

This thread is run as follows:

_beginthread(WaitForEvent, 0, NULL);

When notifications are no longer needed, the following code example shuts down the thread, removes the notification handle from the performance, and destroys the event object.

_endthread();

g_pPerf->SetNotificationHandle(0, 0);

CloseHandle(g_hNotify);

It is not necessary to create an event to retrieve notification messages in your application's message loop. As long as you have requested notifications by calling the IDirectMusicPerformance::AddNotificationType method, the performance sends messages that can be retrieved by calling IDirectMusicPerformance::GetNotificationPMsg.

More than one message can be waiting when an event is signaled or when you call GetNotificationPMsg in the message loop. To be sure of catching all notifications, call GetNotificationPMsg repeatedly until it returns S_FALSE.

Multiple messages with the same time stamp are not queued in any particular order.

You must free any message that you retrieve, by calling the IDirectMusicPerformance::FreePMsg method.

[Visual Basic]

Specify what types of music events you want to be notified of by calling the DirectMusicPerformance.AddNotificationType method once for each desired type of event. The following code example, in which perf is a DirectMusicPerformance object, requests notifications for segment events. The type of event (such as a segment start or a segment end) will be derived later from the notification message.

Call perf.AddNotificationType(DMUS_NOTIFY_ON_SEGMENT)

Notifications are sent in the form of a DMUS_NOTIFICATION_PMSG message type. You can poll for any pending notification messages by calling the DirectMusicPerformance.GetNotificationPMsg method in Sub Main or another loop, or you can have DirectMusic signal an event when a message is pending.

To have DirectMusic signal events, use DirectX7.CreateEvent to obtain an event handle, and then pass this handle to DirectMusicPerformance.SetNotificationHandle. The module that you pass to CreateEvent must implement the DirectXEvent class and must also provide an implementation of the DirectXEvent.DXCallback method, which is called by DirectMusic whenever an event is signaled.

The following code example sets up notification for a form module called frmMain:

' DX is a DirectX7 object; perf is a DirectMusicPerformance object.

Dim hEvent As Long

hEvent = DX.CreateEvent(frmMain)

Call perf.SetNotificationHandle(hEvent)

The form module contains code similar to the following, which looks for a message indicating that the segment has finished playing:

Implements DirectXEvent

Private Sub DirectXEvent_DXCallback(ByVal eventid As Long)

 Dim GotMSG As Boolean

 Dim PMsg As DMUS_NOTIFICATION_PMSG

 Do

 GotMSG = gobjDMPerformance.GetNotificationPMSG(PMsg)

 If GotMSG Then

 If PMsg.lNotificationOption = DMUS_NOTIFICATION_SEGEND Then

 ' Segment has finished playing.

 End If

 End If

 Loop Until Not GotMSG

End Sub

It is not necessary to create an event to retrieve notification messages in your application's main loop. As long as you have requested notifications by calling the DirectMusicPerformance.AddNotificationType method, the performance sends messages that can be retrieved by calling DirectMusicPerformance.GetNotificationPMsg.

More than one message can be waiting when an event is signaled or when you call GetNotificationPMsg in the loop. To be sure of catching all notifications, call GetNotificationPMsg repeatedly until it returns False.

Multiple messages with the same time stamp are not queued in any particular order.

Music Parameters

[Visual Basic]

In DirectX for Visual Basic, music parameters are set and retrieved by using various methods of DirectMusicPerformance and DirectMusicSegment.

To have the music respond immediately to a changed parameter, an application can flush messages from the queue by using the DirectMusicPerformance.Invalidate method. This method causes all tracks to resend messages from the specified point forward.

[C++]

DirectMusic lets you control many aspects of track behavior by changing parameters during execution, using one of the following SetParam methods:

�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirectMusicPerformance::SetParam sets data on a specific track within the current control segment of this performance. The control segment is normally the primary segment, but a secondary segment can be designated as the control segment when it is played. See DMUS_SEGF_FLAGS.

�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirectMusicSegment::SetParam sets data on a specific track within this segment.

�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirectMusicTrack::SetParam sets data on this track.

In addition, the IDirectMusicPerformance::SetGlobalParam method allows you to set values that apply across the entire performance.

The equivalent GetParam and GetGlobalParam methods retrieve current values for a track or the performance.

To have the music respond immediately to a changed parameter, an application can flush messages from the queue by using the IDirectMusicPerformance::Invalidate method. This method causes all tracks to resend messages from the specified point forward.

More information about parameters is contained in the following topics:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Setting and Retrieving Track Parameters

�SYMBOL 183 \f "Symbol" \s 11 \h �	Setting and Retrieving Global Parameters

Setting and Retrieving Track Parameters

[Visual Basic]

Some methods of DirectMusicPerformance and DirectMusicSegment have the effect of setting or retrieving parameters on a particular track, usually in the control segment. However, applications using DirectX for Visual Basic do not need to be concerned about tracks as such, and these methods can be used without any knowledge of what is happening at a lower level.

[C++]

Set and retrieve track parameters by using the SetParam and GetParam methods of either the performance, the segment, or the track. When calling one of these methods on the performance or segment, you can identify the track by setting the dwGroupBits and dwIndex parameters. However, in most cases, you can let DirectMusic find the appropriate track for you. For more information, see Identifying the Track.

In some cases, you must specify the time within the track at which the change is to take effect or for which the parameter is to be retrieved. To see whether this value is used for a particular track parameter, see Track Parameter Types.

For a few parameters, a call to SetParam turns a feature on or off, and no data is needed. When setting other parameters, however, you must also supply a structure or variable containing the data. Only parameters with associated data can be retrieved, so when using GetParam, you must always supply a pointer to an appropriate variable or structure to receive the data.

To determine whether a particular parameter is supported by a track, use the IDirectMusicTrack::IsParamSupported method, and check for an S_OK result.

More information is given in the following topics:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Identifying the Track

�SYMBOL 183 \f "Symbol" \s 11 \h �	Track Parameter Types

�SYMBOL 183 \f "Symbol" \s 11 \h �	Disabling and Enabling Messages

Identifying the Track

[Visual Basic]

This topic pertains only to applications written in C++.

[C++]

When you set or retrieve a parameter by using IDirectMusicTrack::SetParam or IDirectMusicTrack::GetParam, the parameter is associated with the track on which the method is called. However, when you call IDirectMusicPerformance::SetParam, IDirectMusicPerformance::GetParam, IDirectMusicSegment::SetParam, or IDirectMusicSegment::GetParam, DirectMusic needs to find the appropriate track.

Normally, you can let DirectMusic determine which track contains the desired parameter. To do this, set dwGroupBits to 0xFFFFFFFF and dwIndex to 0. For example, the following call to IDirectMusicSegment::SetParam turns off the tempo track so that looping a segment does not reset the tempo:

pIDMSegment->SetParam(GUID_DisableTempo, 0xFFFFFFFF, 0, 0, NULL);

There are times, however, when you need to identify a track. Typically, this would be the case when a segment contains multiple tracks of the same type. To set or retrieve the parameter on the desired track, you must identify it by group and index value.

Every track belongs to one or more groups, each group being represented by a bit in the dwGroupBits parameter of one of the methods under discussion. (The track is assigned to a group or groups when it is inserted in the performance. See IDirectMusicSegment::InsertTrack. In the case of segments loaded from a file, track groups are assigned by the author of the segment.)

A track is identified by a zero-based index value within each of the groups that it belongs to. The index value is determined by the order in which the tracks were inserted.

Suppose a segment contains the following tracks:

Track�Group bits����A�0x1��B�0x2��C�0x1��D�0x3��

Group 1 contains tracks A, C, and D, and group 2 contains tracks B and D. If you call GetParam or SetParam with a value of 1 in dwGroupBits and a value of 0 in dwIndex, the parameter is retrieved from track A, which is the first track in group 1. If dwIndex is 1, the parameter is retrieved from track C, the second track in the group. Track D belongs to two groups, 1 and 2, so it can be identified as either dwGroupBits = 1 and dwIndex =2, or dwGroupBits = 2 and dwIndex = 1.

If you set more than 1 bit in dwGroupBits, the parameter is retrieved from the nth track containing any of those bits, where n is the value in dwIndex.

Track Parameter Types

[Visual Basic]

This topic pertains only to applications written in C++.

[C++]

The track parameter that is being set or retrieved by one of the SetParam or GetParam methods is identified by a GUID in the rguidType parameter of the method. Each parameter that requires data is associated with a particular data type, and pParam must point to a variable or structure of this type. In some cases, part of the data structure must be initialized even when calling GetParam.

The predefined parameters are listed in the following table, which links you to tables with more detailed information about each parameter. In the detailed tables, pParam and mtTime refer to the parameters of the various GetParam and SetParam methods. Although parameters are always associated with particular track types, you will usually call the method on the segment or the performance and let DirectMusic find the appropriate track. (See Identifying the Track.)

GUID_ChordParam�GUID_EnableTimeSig��GUID_Clear_All_Bands�GUID_IDirectMusicBand��GUID_CommandParam�GUID_IDirectMusicChordMap��GUID_CommandParam2�GUID_IDirectMusicStyle��GUID_ConnectToDLSCollection�GUID_MuteParam��GUID_Disable_Auto_Download�GUID_RhythmParam��GUID_DisableTempo�GUID_SeedVariations��GUID_DisableTimeSig�GUID_StandardMIDIFile��GUID_Download�GUID_TempoParam��GUID_Enable_Auto_Download�GUID_TimeSignature��GUID_EnableTempo�GUID_Unload��

GUID_ChordParam

[C++]

Track type�Chord.��Purpose�Set or retrieve a chord change.��Data type (*pParam)�DMUS_CHORD_PARAM.��mtTime�The time, in track time, at which to add the chord to the track, or the time at or directly after the chord to be retrieved from the track.��

[Visual Basic]

This topic pertains only to applications written in C++.

GUID_Clear_All_Bands

[C++]

Track type�Band.��Purpose�Clear all bands from the track.��Data type (*pParam)�None.��mtTime�Not used.��

[Visual Basic]

This topic pertains only to applications written in C++.

GUID_CommandParam

[C++]

Track type�Command.��Purpose�Set or retrieve a groove or embellishment command.��Data type (*pParam)�DMUS_COMMAND_PARAM2.��mtTime�The time, in track time, at which to add the command to the track, or the time at or directly after the command to be retrieved from the track.��

[Visual Basic]

This topic pertains only to applications written in C++.

GUID_CommandParam2

[C++]

Track type�Command.��Purpose�Set or retrieve a groove or embellishment command.��Data type (*pParam)�DMUS_COMMAND_PARAM2. The mtTime member of this structure gives the actual time of the command.��mtTime�The time, in track time, at which to add the command to the track, or the time at or directly after the command to be retrieved from the track.��

[Visual Basic]

This topic pertains only to applications written in C++.

GUID_ConnectToDLSCollection

[C++]

Track type�Band.��Purpose�Connect a band to a DLS collection. See Playing a MIDI File with Custom Instruments.��Data type (*pParam)�IDirectMusicCollection pointer.��mtTime�Not used.��

[Visual Basic]

This topic pertains only to applications written in C++.

GUID_Disable_Auto_Download

[C++]

Track type�Band.��Purpose�Disable automatic downloading of instruments. See Using Bands.��Data type (*pParam)�None.��mtTime�Not used.��

[Visual Basic]

This topic pertains only to applications written in C++.

GUID_DisableTempo

[C++]

Track type�Tempo.��Purpose�Disable tempo messages. See Disabling and Enabling Messages. ��Data type (*pParam)�None.��mtTime�Not used.��

[Visual Basic]

This topic pertains only to applications written in C++.

GUID_DisableTimeSig

[C++]

Track type�Time signature, style, and motif.��Purpose�Disable time-signature messages. See Disabling and Enabling Messages. ��Data type (*pParam)�None.��mtTime�Not used.��

[Visual Basic]

This topic pertains only to applications written in C++.

GUID_Download

[C++]

Track type�Band.��Purpose�Download instrument data for the track's bands. See Playing a MIDI File with Custom Instruments. See also GUID_Unload.��Data type (*pParam)�IDirectMusicPerformance pointer.��mtTime�Not used.��

Remarks

Setting this parameter by using IDirectMusicSegment::SetParam downloads only the instruments in the first band track. To download instruments in the other tracks, iterate through the band tracks by using IDirectMusicSegment::GetTrack, and call IDirectMusicTrack::SetParam on each track.

[Visual Basic]

This topic pertains only to applications written in C++.

GUID_Enable_Auto_Download

[C++]

Track type�Band.��Purpose�Enable automatic downloading of instruments. See Using Bands.��Data type (*pParam)�None.��mtTime�Not used.��

[Visual Basic]

This topic pertains only to applications written in C++.

GUID_EnableTempo

[C++]

Track type�Tempo.��Purpose�Enable tempo messages. See Disabling and Enabling Messages. ��Data type (*pParam)�None.��mtTime�Not used.��

[Visual Basic]

This topic pertains only to applications written in C++.

GUID_EnableTimeSig

[C++]

Track type�Time signature, style, and motif.��Purpose�Disable time-signature messages. See Disabling and Enabling Messages. ��Data type (*pParam)�None.��mtTime�Not used.��

[Visual Basic]

This topic pertains only to applications written in C++.

GUID_IDirectMusicBand

[C++]

Track type�Band.��Purpose�Set a band.��Data type (*pParam)�IDirectMusicBand.��mtTime�The time, in track time, at which to add the band to the track.��

[Visual Basic]

This topic pertains only to applications written in C++.

GUID_IDirectMusicChordMap

[C++]

Track type�Chord map.��Purpose�Set or retrieve the chord map.��Data type (*pParam)�IDirectMusicChordMap pointer (SetParam) or address of a variable to receive this pointer (GetParam).��mtTime�The time, in track time, at which to add the chord map to the track, or the time at or directly after the chord map to be retrieved from the track.��

[Visual Basic]

This topic pertains only to applications written in C++.

GUID_IDirectMusicStyle

[C++]

Track type�Style.��Purpose�Set or retrieve the style.��Data type (*pParam)�IDirectMusicStyle pointer (SetParam) or address of a variable to receive this pointer (GetParam).��mtTime�The time, in track time, at which to add the style to the track, or the time at or directly after the style to be retrieved from the track.��

[Visual Basic]

This topic pertains only to applications written in C++.

GUID_MuteParam

[C++]

Track type�Mute.��Purpose�Set or retrieve channel-mapping information. ��Data type (*pParam)�DMUS_MUTE_PARAM. The dwPChannel member must be initialized before this structure is passed to GetParam. ��mtTime�The time, in track time, at which to add the mute event to the track, or the time at or directly after the mute event to be retrieved from the track.��

[Visual Basic]

This topic pertains only to applications written in C++.

GUID_RhythmParam

[C++]

Track type�Chord.��Purpose�Retrieve the rhythm pattern for a sequence of chords stored in a measure in the track.��Data type (*pParam)�DMUS_RHYTHM_PARAM. The TimeSig member must be initialized before this structure is passed to GetParam.��mtTime�The time, in track time, at or directly after the beginning of the measure containing the rhythm pattern to be retrieved from the track.��

[Visual Basic]

This topic pertains only to applications written in C++.

GUID_SeedVariations

[C++]

Track type�Style and motif.��Purpose�A nonzero value seeds the random number generator for variation selection. A value of 0 reverts to the default behavior of getting the seed from the system clock.��Data type (*pParam)�Long.��mtTime�Not used.��

Remarks

Setting this parameter to nonzero is useful for testing since it ensures that the same sequence of random numbers is generated each time. The parameter should be set only once, before the track is played. The style and command track must be designed so that each time that the segment is played, the same patterns are chosen at the same places in the segment. Each loop plays different variations than the one before it, but each time the entire segment is replayed from the beginning, each loop sounds the same as the first time the segment was played.

[Visual Basic]

This topic pertains only to applications written in C++.

GUID_StandardMIDIFile

[C++]

Track type�Band.��Purpose�Ensure that a standard MIDI file (one not authored specifically for DirectMusic) plays correctly.��Data type (*pParam)�None.��mtTime�Not used.��

Note

This parameter must be set for any segment based on a standard MIDI file before any instruments are downloaded.

[Visual Basic]

This topic pertains only to applications written in C++.

GUID_TempoParam

[C++]

Track type�Tempo.��Purpose�Set or retrieve the tempo.��Data type (*pParam)�DMUS_TEMPO_PARAM. For SetParam, the mtTime member of the structure is ignored. For GetParam, the mtTime member receives the offset of the tempo change from the requested time and is always 0 or less.��mtTime�The time, in track time, at which to set the tempo, or the time at or directly after the tempo change to retrieve. ��

[Visual Basic]

This topic pertains only to applications written in C++.

GUID_TimeSignature

[C++]

Track type�Time signature and style.��Purpose�Retrieve the time signature.��Data type (*pParam)�DMUS_TIMESIGNATURE. The mtTime member receives the offset of the time signature change from the requested time and is always 0 or less.��mtTime�The time, in track time, at which to set the time signature, or the time at or directly after the time-signature change to retrieve.��

[Visual Basic]

This topic pertains only to applications written in C++.

GUID_Unload

[C++]

Track type�Band.��Purpose�Unload instrument data for the track's bands. See also GUID_Download.��Data type (*pParam)�IDirectMusicPerformance pointer.��mtTime�Not used.��

[Visual Basic]

This topic pertains only to applications written in C++.

Setting and Retrieving Global Parameters

[C++]

By using the IDirectMusicPerformance::SetGlobalParam and IDirectMusicPerformance::GetGlobalParam methods, you can set and retrieve parameters that affect the entire performance, rather than a single track.

The parameter to be set or retrieved is identified by a GUID in the rguidType parameter of the method. Each parameter is associated with a particular data type, whose size is given in the dwSize parameter. The predefined GUIDs and their data types are shown in the following table.

Parameter type GUID (rguidType)�and Data (*pParam)�Description����GUID_PerfAutoDownload�BOOL�This parameter controls whether instruments are automatically downloaded when a segment is played. By default, it is off. See Downloading and Unloading Bands.��GUID_PerfMasterGrooveLevel�char�The master groove level is a value that is always added to the groove level established by the command track. The resulting value is adjusted, if necessary, to fall within the range from 1 through 100.��GUID_PerfMasterTempo�float�The master tempo is a scaling factor that is applied to the tempo by the final output tool. By default, it is 1. A value of 0.5 would halve the tempo, and a value of 2.0 would double it. This value can be set in the range from DMUS_MASTERTEMPO_MIN through DMUS_MASTERTEMPO_MAX.��GUID_PerfMasterVolume�long�The master volume is an amplification or attenuation factor, in hundredths of a decibel, applied to the default volume of the entire performance. The range of permitted values is determined by the port. Legacy hardware MIDI ports do not support changing master volume.��

Applications can also use custom types of global parameters. To create a new type, establish a GUID and a data type for it.

When a parameter is set, the performance allocates memory for the data in a linked list of items identified by GUID. The data can be retrieved by a call to IDirectMusicPerformance::GetGlobalParam. Even predefined parameters have to be set before they can be retrieved. GetGlobalParam fails if SetGlobalParam has never been called on the parameter.

[Visual Basic]

The DirectMusicPerformance class has the following methods for setting and retrieving global parameters, which affect the entire performance:

GetMasterAutoDownload�SetMasterAutoDownload �This parameter controls whether instruments are automatically downloaded when a segment is played. By default, it is off. See Downloading and Unloading Bands.��GetMasterGrooveLevel �SetMasterGrooveLevel �The master groove level is a value that is always added to the groove level established by the command track. The resulting value is adjusted, if necessary, to fall within the range from 1 through 100.��GetMasterTempo�SetMasterTempo�The master tempo is a scaling factor that is applied to the tempo by the final output tool. By default, it is 1. A value of 0.5 would halve the tempo, and a value of 2.0 would double it. This value can be set in the range from 0.25 through 2.0.��GetMasterVolume �SetMasterVolume�The master volume is an amplification or attenuation factor, in hundredths of a decibel, applied to the default volume of the entire performance. The range of permitted values is determined by the port. Legacy hardware MIDI ports do not support changing master volume.��

Disabling and Enabling Messages

[C++]

By setting the GUID_DisableTempo and GUID_DisableTimeSig parameters on a track, you can disable the generation of DMUS_TEMPO_PMSG and DMUS_TIMESIG_PMSG messages, respectively. You might want to do this, for example, when you have set the tempo dynamically and do not want the primary segment to send tempo messages.

To re-enable messages, call one of the SetParam methods with GUID_EnableTempo and GUID_EnableTimeSig as the rguidType parameter. You can also set these parameters to force a segment to send tempo messages, even though it is not the control segment, or to cause a secondary segment to send time-signature messages. (For more information on control segments, see Segments and DMUS_SEGF_FLAGS.)

For more information on how to set a parameter, see Setting and Retrieving Track Parameters.

See also the Remarks for IDirectMusicTrack::IsParamSupported.

[Visual Basic]

By using the DirectMusicSegment.SetTempoEnable and DirectMusicSegment.SetTimeSigEnable methods, you can disable the generation of tempo and time-signature messages, respectively. You might want to do this, for example, when you have set the tempo dynamically and do not want the primary segment to send tempo messages.

You can also use SetTempoEnable to force a segment to send tempo messages, even though it is not the control segment, and SetTimeSigEnable to cause a secondary segment to send time signature messages. (For more information on control segments, see Segments and DMUS_SEGF_FLAGS.)

Capturing Music

[Visual Basic]

This topic pertains only to applications written in C++. DirectX for Visual Basic does not support music capture.

[C++]

Capturing MIDI messages from a device such as a keyboard is very easy in DirectMusic.

Typically, you would create a port for the capture device and use its IDirectMusicPort::SetReadNotificationHandle method to cause an event to be signaled whenever messages are available to be read. In response to the event, call the IDirectMusicPort::Read method repeatedly to place pending events into a buffer until S_FALSE is returned. Each time Read is called, as many events are put into the buffer as are available, or as fit into the buffer. If at least one event was put into the buffer, S_OK is returned.

To retrieve events from the buffer, call the IDirectMusicBuffer::GetNextEvent method. Each call retrieves a single event until no more are available, at which point S_FALSE is returned.

The following code example illustrates this process:

/* Assume that hEvent was created with CreateEvent and

 given to the capture port pPort by a call to

 SetReadNotificationHandle. Assume also that pBuffer was

 initialized by IDirectMusic::CreateMusicBuffer. */

REFERENCE_TIME rt;

DWORD dwGroup;

DWORD cb;

BYTE *pb;

DWORD dw = WaitForMultipleObjects(1, hEvent, FALSE, INFINITE);

for (;;)

{

 hr = pPort->Read(pBuffer);

 if (hr == S_FALSE)

 {

 break; // No more messages to read into the buffer

 }

 pBuffer->ResetReadPtr();

 for (;;)

 {

 hr = pBuffer->GetNextEvent(&rt, &dwGroup, &cb, &pb);

 if (hr == S_OK)

 {

 // pb points to the data structure for the message, and

 // you can do anything that you want with it.

 }

 else if (hr == S_FALSE)

 {

 break; // No more messages in the buffer

 }

 } // Done with the buffer

} // Done reading pending events

If you do not want to intercept messages, but simply want to send them from one port to another, you can use the IDirectMusicThru interface.

DirectMusic Tools

In DirectMusic, a tool is an object that intercepts messages and handles them in some way. The tool might alter the message, and then pass it on to the next tool, free the message, or send a new message based on information in the old one.

DirectMusic has an output tool that is normally the last to receive messages. It is this tool that converts performance messages to standard MIDI messages and streams them to the synthesizer. Other tools are implemented by the application or obtained from libraries.

[Visual Basic]

DirectX for Visual Basic does not support the use of application-defined or third-party tools.

[C++]

To implement a tool, you must first create an object that supports the IDirectMusicTool interface. The object's implementation of the IDirectMusicTool methods determines what messages are processed by the tool and what work is performed on these messages.

All tools other than the output tool are normally collected in graphs; even if your application is using only one other tool, you should create a DirectMusicGraph to contain it. Then add this graph to a segment or the performance. Graphs provide a convenient mechanism for directing messages from one tool to another.

When the performance engine is playing a segment, it allows each tool in the segment graph, and then each tool in the performance graph to process each message. After a tool processes a message, it should call the IDirectMusicGraph::StampPMsg method (obtaining the IDirectMusicGraph pointer from the pGraph member of the DMUS_PMSG structure) to stamp the message with a pointer to the next tool, if any, that is to receive it. Then, the tool puts the message back in the pipeline.

Tools process messages in a high-priority thread. Do not call time-consuming functions, such as those involving graphics or file input/output, from within a tool's IDirectMusicTool::ProcessPMsg method. If a tool needs to trigger an action, it should do so by signaling a different thread, perhaps the application's main thread.

When implementing the methods of IDirectMusicTool, be sure not to create circular references to parent objects. Circular references come about when one object creates another and the child keeps an additional reference to the parent. For example, suppose a tool creates a new reference to the graph passed into its IDirectMusicTool::Init method. If the tool fails to release this reference, there is a problem when the segment attempts to release the graph. Because the tool still has a reference to the graph, the graph is not fully released; and because the graph has a reference to the tool, the tool cannot be released either.

For more information on how to set up a tool, see Tutorial 2: Using Tools.

Music Composition

This section is an introduction to the composition engine of DirectMusic. You can use the engine to implement a dynamic musical program, using previously authored elements, such as styles, templates, and bands.

The following topics are discussed in this section:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Overview of Music Authoring

�SYMBOL 183 \f "Symbol" \s 11 \h �	Music Files for Composition

�SYMBOL 183 \f "Symbol" \s 11 \h �	Overview of Programming for Composition

�SYMBOL 183 \f "Symbol" \s 11 \h �	How Music Varies During Playback

�SYMBOL 183 \f "Symbol" \s 11 \h �	Music Values and MIDI Notes

�SYMBOL 183 \f "Symbol" \s 11 \h �	Using Compositional Elements

Overview of Music Authoring

The author of compositional music elements uses a tool such as DirectMusic Producer to create the basic elements of each musical theme required by the application. For more information on the following topics, see the documentation for DirectMusic Producer.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Authoring Styles

�SYMBOL 183 \f "Symbol" \s 11 \h �	Authoring Chord Maps

�SYMBOL 183 \f "Symbol" \s 11 \h �	Authoring Style-based Segments

�SYMBOL 183 \f "Symbol" \s 11 \h �	Authoring MIDI-based Segments

�SYMBOL 183 \f "Symbol" \s 11 \h �	Authoring Templates

�SYMBOL 183 \f "Symbol" \s 11 \h �	Authoring Bands

Note

In this section, the human composer is referred to as the author to avoid confusion with the composer object of DirectMusic.

Authoring Styles

A style is a basic definition of the music. It is a collection of patterns, along with a time signature (meter) and a tempo (beats per minute). A style can also contain one or more bands.

A pattern is a musical figure one or more measures long consisting of a basic sequence of notes for each instrument, or part. These notes are not fixed but are ultimately mapped to particular pitches, according to the current key, chord, and play mode. Patterns also include variations.

A motif is a special type of pattern designed to be played solo over the basic score. Typically, a motif would be used in an interactive application to mark an event: for example, the drumbeat that occurs in the DMDonuts sample whenever the ship hits the edge of the screen.

In DirectMusic Producer, patterns are created by the author on a grid analogous to a piano roll. Each part has its own row (corresponding to a PChannel), on which notes are represented by bars of varying length (duration), thickness (velocity), position on a vertical scale (pitch), and position on a horizontal scale (time).

The author can create many variations for each pattern. Typically, he or she would do this by copying the pattern, and then making small changes to one or more parts. At run time, variations are chosen by the style playback mechanism. However, the author can disable any variation for any chord—that is, specify that the variation must never be chosen when a certain chord is being played.

The author also assigns a groove range to the pattern, specifying the groove levels at which the pattern can be played.

The pattern can also be designated as an embellishment. Embellishments are of four types—intro, fill, break, and end—and a pattern can be assigned to one or more of these categories. When the music is played and a certain type of embellishment is called for, only patterns of that type are candidates for playback.

Authoring Chord Maps

Much modern music, especially music in the popular, rock, folk, and jazz idioms, is based on the concept of chord progression, meaning that all the notes played within a given span of time are associated with a certain chord, and the music moves harmoniously from one chord to another.

The notes within a pattern authored for DirectMusic are derived from or intended to harmonize with a single chord. At run time, however, the pattern is transposed according to the chord progression—that is, each time the underlying chord changes, DirectMusic modifies the pitch of the notes accordingly.

The chord map is a road map of chord progressions. Within the chord-map designer, the author chooses chords that can express the desired musical feeling or personality. He or she then arranges these chords in a flowchart along a time line. (The time line is conceptually circular, so it keeps looping back to the beginning as long as that segment of music is being played.)

Certain important chords are designated as signposts. These are chords that must be played at certain points. The music is always moving from one signpost to the next. Between the signposts, however, the chord progression can follow various routes from one chord to another, as mapped out by the author.

The route through the chord chart can be chosen at run time by the composition engine, providing variation in addition to that found in the patterns themselves. It can also be chosen by the authoring tool when the author is creating a segment.

A chord in the chord map can consist of several different chords, referred to as subchords. To achieve polytonality by playing different inversions of the same chord, the author can assign different parts to different subchords. Each subchord is valid for one or more levels, and these are matched up with levels assigned to parts in the style.

Note

DirectMusic allows up to DMUS_MAXSUBCHORD subchords in a chord, and this value is defined as 8. However, DirectMusic Producer currently allows authors to create a maximum of four subchords per chord.

Authoring Style-based Segments

A style-based segment is a largely prebuilt piece of music that the author constructs from the following elements:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Style. A style consists of general information about the music (such as time signature and tempo), as well as patterns.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Chord progression. This might be derived automatically by the authoring tool from a chord map (by choosing a path through the chord chart), or entered manually by the author.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Series of commands for selecting appropriate patterns at set times. A characteristic of the patterns in styles is that they can be designated as embellishments (intro, fill, break, and end) and can also be assigned a certain groove range by the author. The command track of the segment might instruct the style playback engine to select an intro pattern and play it for the first measure, then play only patterns with a groove level of 25 for the next four measures, then play a break, and so on.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Band. The author can assign instruments and PChannels to all the parts in the various patterns.

Authoring MIDI-based Segments

A MIDI-based segment is created in DirectMusic Producer by importing a MIDI file. The author can then add tempo, key, and band changes, as well as loop points. Unlike a style-based segment, a MIDI segment has no patterns and no command track. Instead, it has a sequence track that contains MIDI notes and other commands.

Authoring Templates

A template is a segment, but unlike a style-based segment, it is not bound to a particular style and does not have a fixed chord progression.

Instead of a chord progression, the template has a series of signpost group markers along a time line. Signposts are chords that mark the beginning and end of regions in which variations in the chord progression are possible. When the author creates a signpost, he or she assigns it to a group.

The following happens later, either within the authoring tool or at run time, when the DirectMusicComposer generates a segment by combining the template with a particular style and chord map. Each time the engine encounters a pair of signpost group markers along the time line in the template, it looks in the chord map for a pair of signpost chords that belong to that group. If it finds a pair and the interval between them fits into the time available, it follows the chord progression between those two signpost chords, as defined in the chord map. If it is unable to find a path that works or there is no end signpost marker, the engine plays any chord from the group of the beginning signpost group marker.

The author might use templates to apply similar chord progressions, groove levels, and embellishments to different styles while composing segments. However, templates can also be combined with styles and chord maps by the DirectMusicComposer object at run time.

Authoring Bands

A band is a set of instruments, with their performance parameters, associated with particular parts in a piece of music. This is not the same as a DLS collection, which represents a set of instruments that can be downloaded to the synthesizer and thus made available to any application.

In a tool such as DirectMusic Producer, the author creates a band by assigning instruments to PChannels. These instruments can be from any DLS collection, and instruments from different sources can be mixed within a band. For example, a band might have a jazz guitar from the General MIDI set in part 1, a sixties organ from the Roland GS set in part 2, and an ethnic percussive instrument from a custom DLS collection in part 3. Each of these instruments is also given volume, pan, and transposition settings.

PChannels map instruments to parts. If a pattern calls for a particular note on PChannel 1, that note is played by the instrument in the current band that is assigned to PChannel 1. The sound is modified by the band's settings for the volume, pan, and transposition of that instrument.

Bands can be saved as separate files or included in styles or segments.

Music Files for Composition

When programming for DirectMusic composition, you will use a variety of files produced in a tool such as DirectMusic Producer. You load these elements into the application as COM objects and obtain interfaces to them. (See DirectMusic Loader.)

The following table summarizes the types of files that you will encounter.

[C++]

The Class GUID is the value that you put in the guidClass member of the DMUS_OBJECTDESC structure when loading the object.

Element�Class GUID�Interface�File type����Band�CLSID_DirectMusicBand�IDirectMusicBand�.bnd��DLS collection�CLSID_DirectMusicCollection�IDirectMusicCollection�.dls��Chord map�CLSID_DirectMusicChordMap�IDirectMusicChordMap�.cdm��Segment�CLSID_DirectMusicSegment�IDirectMusicSegment�.sgt��Style�CLSID_DirectMusicStyle�IDirectMusicStyle�.sty��Template�CLSID_DirectMusicSegment�IDirectMusicSegment�.tpl��

[Visual Basic]

Element�DirectMusicLoader method�Class�File type����Band�LoadBand�DirectMusicBand�.bnd��DLS collection�LoadCollection�DirectMusicCollection�.dls��Chord map�LoadChordMap�DirectMusicChordMap�.cdm��Segment�LoadSegment�DirectMusicSegment�.sgt��Style�LoadStyle�DirectMusicStyle�.sty��Template�LoadSegment�DirectMusicSegment�.tpl��

Note

Bands can be authored as part of a style, in which case they are automatically loaded when the style is loaded. Similarly, styles and bands can be authored into a segment, in which case you do not need separate files for those elements.

Files can also contain references to other files. If a style contains a reference to a band, the band is automatically loaded when the style is, provided the loader can find the band file.

Overview of Programming for Composition

When you implement music composed at run time, you will use previously authored objects as building blocks. In consultation with the author or other content provider, you can choose to get the musical data in the form of small building blocks that offer you the greatest possible flexibility and variation at run time, or you can use larger prefabricated elements that define the form of the music more fully.

[C++]

Using the largest building blocks, you load highly structured segments (either style-based or MIDI-based) that contain everything that the performance needs to know about the music to play it. All you have to do is load the segment and query for the IDirectMusicSegment interface. You pass this interface pointer to the IDirectMusicPerformance::PlaySegment method. The style playback engine then selects pattern variations from the style and plays them according to a fixed chord progression—or, in the case of a MIDI-based segment, plays the MIDI sequence. Band changes are usually contained in the segment, as well.

[Visual Basic]

Using the largest building blocks, you load highly structured segments (either style-based or MIDI-based) that contain everything that the performance needs to know about the music to play it. All you have to do is load the segment by using the DirectMusicLoader.LoadSegment or the DirectMusicLoader.LoadSegmentFromResource method. You then pass the returned DirectMusicSegment object to the DirectMusicPerformance.PlaySegment method. The style playback engine then selects pattern variations from the style and plays them according to a fixed chord progression—or, in the case of a MIDI-based segment, plays the MIDI sequence. Band changes are usually contained in the segment, as well.

If you want to use smaller building blocks, obtain the following elements:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Chord maps, which are road maps of chord progressions.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Styles, which define a basic melody and rhythm with variations, motifs, and embellishments.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Template segments, which are structural plans that control various aspects of playback, including the length of the segment, whether it loops, where groove level changes and embellishment patterns are to be placed, and what types of chords in the chord map are to serve as signposts.

[C++]

You then construct a segment by combining any chord map, style, and template, using the IDirectMusicComposer::ComposeSegmentFromTemplate method.

To have even more flexibility in music composition at run time, create segments based on predefined shapes, rather than templates, using the IDirectMusicComposer::ComposeSegmentFromShape method. The shape is used in creating the command and signpost tracks, which control the choice of embellishment patterns, the chord progression, and the frequency of chord changes.

When playing segments, you can also control the band used to play the parts. Bands are typically authored right into styles and templates, but they might be supplied as separate files so that band changes can be made dynamically by the application. In this case, you must create a secondary segment containing only the band, using the IDirectMusicBand::CreateSegment method, and play this segment when it is time to assign instruments and instrument settings to the primary segment. For more information, see Using Bands.

[Visual Basic]

You then construct a segment by combining any chord map, style, and template, using the DirectMusicComposer.ComposeSegmentFromTemplate method.

To have even more flexibility in music composition at run time, create segments based on predefined shapes, rather than templates, using the DirectMusicComposer.ComposeSegmentFromShape method. The shape is used in creating the command and signpost tracks, which control the choice of embellishment patterns, the chord progression, and the frequency of chord changes.

When playing segments, you can also control the band used to play the parts. Bands are typically authored right into styles and templates, but they might be supplied as separate files so that band changes can be made dynamically by the application. In this case, you must create a secondary segment containing only the band, using the DirectMusicBand.CreateSegment method, and play this segment when it is time to assign instruments and instrument settings to the primary segment. For more information, see Using Bands.

How Music Varies During Playback

As DirectMusic plays a segment (other than a simple MIDI file or an authored segment based on a MIDI file), changes are made to the basic harmony and rhythm so that the performance does not sound static. Changes are partly scripted and partly random.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Choice of pattern. Typically a style contains multiple patterns, which are selected in response to commands from the command track. For example, if the command track calls for a break embellishment to be played, the style playback engine selects a break pattern that is compatible with the current groove level. (The author specifies which groove levels are appropriate for each pattern.) If there is more than one suitable pattern, a random choice is made.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Variations within a pattern. Any part within a pattern can have multiple variations. Variations can play in an order specified by the author; otherwise, the style playback engine makes a random choice of variations on each repetition of the pattern.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Groove level. The current groove level of the segment determines which of the patterns in the style can be selected for playback. The current level is set by the command track, which is normally authored into a segment or template. The current groove level of a segment can be changed programmatically, and a modifier can be applied to all segments by setting the master groove level for the performance.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Transposition. As the segment plays, the underlying chord changes according to the progression in the chord track. The notes in the current pattern are automatically transposed to harmonize with the new chord.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Variations in timing. The playback engine can introduce small random changes in the parameters of individual notes—when they begin and when they end.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Band. The choice of instruments and instrument settings (volume, pan, and transposition) can be changed as the segment is playing, either by the band track within an authored segment or dynamically by the application. The application can change the band by creating a secondary segment based on a band object, then playing that segment.

In many cases, applications exert control over the music by playing different segments, rather than by manipulating existing segments. For example, to have the music reflect a change in the intensity of a game, you can simply transition to a new segment authored for that intensity level. You can achieve a similar effect with a single style-based segment by having the author create patterns with different groove ranges, then changing the groove level in response to game events.

For more information on how to change the music at run time, see Music Parameters.

Music Values and MIDI Notes

Notes in a pattern within a DirectMusic style are not fixed notes. Rather, they are music values that become actual notes only when they are transposed to the current chord according to the current play mode and subchord level.

A music value is a representation of the note's intended role. For example, a music value can specify that a note is intended to be played as the second position in the chord, up one in the scale. When that music value is applied to a particular chord, it is converted to the appropriate MIDI note—the one in the second position in the chord, up one in the scale.

[C++]

For an explanation of the data format of music values, see DMUS_NOTE_PMSG.

[Visual Basic]

For an explanation of the data format of music values, see DMUS_NOTE_PMSG.

The play mode determines how to interpret the note against the chord. For example, if the mode is DMUS_PLAYMODE_NORMALCHORD, the note is interpreted against the intervals of the chord and scale, based on the root of the chord. If the mode is DMUS_PLAYMODE_FIXEDTOKEY, the note is interpreted as a linear value.

[Visual Basic]

For more information on the various play modes, see CONST_DMUS_PLAYMODE_FLAGS.

The subchord level is a value in the range from 0 trhough 31 that determines which subchords can be used in establishing the music value. A DirectMusic chord consists of one or more subchords, allowing for complex harmonies with multiple parallel chord progressions. Each subchord supports one or more levels. The author of the music defines the supported levels for each subchord.

When a segment is played, each note is encapsulated in a DMUS_NOTE_PMSG type. The midiValue member of this type holds the MIDI note value that would normally be sent to the synthesizer. The message also holds the original music value, as well as the play mode and subchord level that were used in transposition.

Music values and play modes are primarily of interest to tools, which are not supported by DirectX for Visual Basic. If you want to inject a note into the performance by using DirectMusicPerformance.SendNotePMSG, specify the desired midiValue in the DMUS_NOTE_PMSG type, and ignore the musicValue, playModeFlags, and subChordLevel members.

The following code example sends a message to play middle C immediately:

' perf is the DirectMusicPerformance.

Dim note As DMUS_NOTE_PMSG

note.midiValue = 60

note.mtDuration = 500

note.flags = DMUS_NOTEF_NOTEON

note.velocity = 127

Call perf.SendNotePMSG(0, DMUS_PMSGF_REFTIME, 1, note)

[C++]

For more information on the various play modes, see DMUS_PLAYMODE_FLAGS.

The subchord level is a value in the range from 0 through 31 that determines which subchords can be used in establishing the music value. A DirectMusic chord (as represented by a DMUS_CHORD_PARAM or DMUS_CHORD_KEY structure) consists of one or more subchords, allowing for complex harmonies with multiple parallel chord progressions. Each subchord supports one or more levels, as specified in the dwLevels member of the DMUS_SUBCHORD structure. The author of the music defines the supported levels for each subchord.

When a segment is played, each note is encapsulated in a DMUS_NOTE_PMSG structure. The bMidiValue member of this structure holds the MIDI note value that would normally be sent to the synthesizer. The message also holds the original music value, as well as the play mode and subchord level that were used in transposition. A tool can use this information to alter the note in any way it likes. For example, a tool could intercept a note that was transposed in a certain play mode, change the play mode, obtain a new MIDI note by using the IDirectMusicPerformance::MusicToMIDI method, and put the new value in the bMidiValue member of the message before passing it on.

The MusicToMIDI method is at the heart of the style playback mechanism of DirectMusic. It is called by the style track to convert its internal music values into notes, using the current chord in the chord track.

If a tool wants to reverse the process and obtain a new music value from a MIDI note using a different chord, play mode, or subchord level, it calls the IDirectMusicPerformance::MIDIToMusic method. The new music value can be placed in the wMusicValue member of the note message, in which it might be of use to other application-defined tools. However, the DirectMusic output tool ignores it and plays the note in bMidiValue as usual.

Using Compositional Elements

This section is a guide to incorporating music components into a DirectMusic application. It is presumed that you have a basic understanding of the purpose of each component and how it is represented by an object. If not, you might first want to read Composition Objects and Interfaces and Overview of Music Authoring.

You can incorporate DirectMusic into your applications without working with individual components, such as styles, chord maps, and templates. If you prefer, you can work with fully authored segments, or even with MIDI files. Using individual components simply gives you greater control over the performance at run time.

This section covers the following topics:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Using Authored Segments

�SYMBOL 183 \f "Symbol" \s 11 \h �	Using Styles

�SYMBOL 183 \f "Symbol" \s 11 \h �	Using Motifs

�SYMBOL 183 \f "Symbol" \s 11 \h �	Using Chord Maps

�SYMBOL 183 \f "Symbol" \s 11 \h �	Using Templates

�SYMBOL 183 \f "Symbol" \s 11 \h �	Using Transitions

Using Authored Segments

An authored segment is a file or resource that contains all the data for a piece of music. It can be based on a MIDI file or on a style and a chord map. Unlike a simple MIDI file or resource, it can contain band changes and variations.

Note

A template is an authored segment as well, but it does not represent a self-contained piece of music. For more information, see Using Templates.

[C++]

Create a segment in your application by loading the segment as an object and obtaining the IDirectMusicSegment interface, as in the following code example, in which the segment is loaded from a DirectMusic Producer file:

/* It is assumed that pLoader is a valid pointer to

 an IDirectMusicLoader interface and that the search

 directory has been properly set. */

DMUS_OBJECTDESC ObjectDescript;

IDirectMusicSegment* pSegment;

ObjectDescript.dwSize = sizeof(DMUS_OBJECTDESC);

ObjectDescript.idClass = CLSID_DirectMusicSegment;

strcpy(ObjectDescript.wszFileName, L"Dance.sgt");

ObjectDescript.dwValidData = DMOBJ_CLASS | DMOBJ_PATH ;

pLoader->GetObject(&ObjectDescript, IID_IDirectMusicSegment2,

 (void**) pSegment)))

You can now pass pSegment to the IDirectMusicPerformance::PlaySegment method.

[Visual Basic]

Create a segment in your application by using the DirectMusicLoader.LoadSegment or the DirectMusicLoader.LoadSegmentFromResource method, as in the following code example, in which the segment is loaded from a DirectMusic Producer file:

' loader is the DirectMusicLoader object.

Dim seg As DirectMusicSegment

Set seg = loader.LoadSegment("Sample.sgt")

You can now pass seg to the DirectMusicPerformance.PlaySegment method.

Using Styles

The DirectMusicStyle object represents a collection of musical patterns, usually including embellishments and motifs, with a time signature, tempo, and band. It defines the basic rhythm and the notes that are played in each instrument part.

You can obtain the DirectMusicStyle object from a style or segment file or from a resource. For more information, see DirectMusic Loader and Music Files for Composition.

A style by itself does not contain enough information to create a segment of music at run time. You need two other components: a chord map (map of chord progressions) and a command track to set the groove level and embellishments as the music plays. The command track can come from a template or be generated at run time from a shape. The chord map generally comes from a chord-map file or resource.

[C++]

To create a segment with a command track based on a template, call the IDirectMusicComposer::ComposeSegmentFromTemplate method. (See Using Templates.)

To create a segment based on a shape, call the IDirectMusicComposer::ComposeSegmentFromShape method. You supply pointers to the style and the chord map, and a variable to receive a pointer to the created segment. You also supply a rate of harmonic motion, which controls the frequency of chord changes, and a shape constant, which determines the progression of groove levels and embellishments.

[Visual Basic]

To create a segment with a command track based on a template, call the DirectMusicComposer.ComposeSegmentFromTemplate method. (See Using Templates.)

To create a segment based on a shape, call the DirectMusicComposer.ComposeSegmentFromShape method. You supply pointers to the style and the chord map, and a variable to receive a pointer to the created segment. You also supply a rate of harmonic motion, which controls the frequency of chord changes, and a shape constant, which determines the progression of groove levels and embellishments.

Using Motifs

A motif is a special kind of pattern in a style intended to be played over the basic style pattern, typically in response to an interactive event. Although a motif can be as complex as any other pattern, even containing variations and multiple instrument parts, usually it is a short, simple musical figure that sounds good against a variety of background patterns. It might also be a sound effect played by a custom DLS instrument or instruments.

[C++]

All the motifs authored into a style become available to you as soon as you have loaded that style. To get a particular motif ready for playback, call the IDirectMusicStyle::GetMotif method, passing in the following parameters:

�SYMBOL 183 \f "Symbol" \s 11 \h �	The name of the motif. You might know this from the documentation for the style, or you can obtain it from an index value by using the IDirectMusicStyle::EnumMotif method.

�SYMBOL 183 \f "Symbol" \s 11 \h �	A pointer to receive the IDirectMusicSegment interface to the segment object to be created by the method.

The following code example obtains and plays the motif whose name is passed in as pwszMotifName.

void PlayMotif(IDirectMusicPerformance* pPerf,

 IDirectMusicStyle* pStyle,

 WCHAR* pwszMotifName)

{

 IDirectMusicSegment* pSeg;

 // Get the motif segment from the style. Check for S_OK

 // specifically because GetMotif() returns S_FALSE if it

 // does not find the motif.

 if (S_OK == pStyle->GetMotif(pwszMotifName, &pSeg))

 {

 /* Play the segment. DMUS_SEGF_BEAT means play on the next beat if

 there is a segment currently playing. DMUS_SEGF_SECONDARY means

 play the segment as a secondary segment, which plays over

 the currently playing primary segment. The 0 indicates to

 play now. The final NULL means do not return an

 IDirectMusicSegmentState* in the last parameter

 because you don't need to track the state of playback. */

 pPerf->PlaySegment(pSeg,

 DMUS_SEGF_BEAT | DMUS_SEGF_SECONDARY,

 0,

 NULL);

 pSeg->Release();

 }

}

Note that pSeg is played as a secondary segment because a motif is normally played over a primary segment. You cannot play a motif as a primary segment because it does not have a chord track or band track. If you do want to play a motif against silence, create a primary segment from a style that has only blank patterns, and keep that segment playing while you play the motif.

[Visual Basic]

All the motifs authored into a style become available to you as soon as you have loaded that style. To get a particular motif ready for playback, call the DirectMusicStyle.GetMotif method, passing in the name of the motif. You might know this from the documentation for the style, or you can obtain it from an index value by using the DirectMusicStyle.GetMotifName method.

The following code example obtains and plays the first motif in the style:

' style is a DirectMusicStyle.

' perf is the DirectMusicPerformance.

Dim MotifName As String

Dim segMotif As DirectMusicSegment

MotifName = style.GetMotifName(0)

Set segMotif = style.GetMotif(MotifName)

Call perf.PlaySegment(segMotif, DMUS_SEGF_SECONDARY, 0)

Note that segMotif is played as a secondary segment because a motif is normally played over a primary segment. You cannot play a motif as a primary segment because it does not have a chord track or band track. If you want to play a motif against silence, create a primary segment from a style that has only blank patterns, and keep that segment playing while you play the motif.

Using Chord Maps

A chord-map object represents a collection of chords that provides the foundation of the harmonic structure and the mood of the music. A chord map contains several pathways with many interconnected chords, providing many possibilities for the composition engine to choose from in determining the chord progression in a piece of music.

For authored segments, applications do not normally need to concern themselves with chord maps. The chord map is used at the authoring stage to create a fixed chord progression. However, chord maps can be used to compose segments at run time and to alter the chord progression of existing segments.

You obtain the DirectMusicChordMap object from a chord-map file or resource. For more information, see DirectMusic Loader and Music Files for Composition.

[C++]

If a chord map has been authored into a style, you can retrieve a pointer to its IDirectMusicChordMap interface by passing its name (assigned by the author) to the IDirectMusicStyle::GetChordMap method. You can also use the IDirectMusicStyle::EnumChordMap method to search for a particular chord map, or the IDirectMusicStyle::GetDefaultChordMap method to obtain a pointer to the default chord map for the style.

Note

DirectMusic Producer does not support authoring chord maps into style files.

You set the chord map for a composition when you create a segment by using either IDirectMusicComposer::ComposeSegmentFromTemplate or IDirectMusicComposer::ComposeSegmentFromShape. For more information, see Using Styles.

Once a segment has been created, you can change its chord map by calling the IDirectMusicComposer::ChangeChordMap method. This changes the mood of the music without altering its basic rhythm and melody.

Every chord map has an underlying scale, consisting of 24 tones. You can determine the tones of the scale by using the IDirectMusicChordMap::GetScale method. The lower 24 bits of the variable pointed to by the pdwScale parameter of this method are set or clear, depending on whether the corresponding tone is part of the scale. The upper 8 bits give the root of the scale as an integer in the range from 0 through 23 (low C to middle B).

[Visual Basic]

You set the chord map for a composition when you create a segment by using either DirectMusicComposer.ComposeSegmentFromTemplate or DirectMusicComposer.ComposeSegmentFromShape. For more information, see Using Styles.

Once a segment has been created, you can change its chord map by calling the DirectMusicComposer.ChangeChordMap method. This changes the mood of the music without altering its basic rhythm and melody.

Using Templates

A template is a special kind of segment that can be used in composing a playable segment of music at run time. The template sets the length of the segment and any loop points. It provides the command track, which controls changes in the groove level and the choice of embellishment patterns. It also prescribes how the chord map is used in composing the segment, by specifying from which signpost group each new chord must come.

[C++]

A template is represented by a DirectMusicSegment object.

There are two ways to obtain a template:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Obtain one from a template file or resource. You load the file as a DirectMusicObject and query for the IDirectMusicSegment interface. For more information, see DirectMusic Loader.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Create one from a shape, using the IDirectMusicComposer::ComposeTemplateFromShape method. You choose the length, the overall shape, whether intro and end embellishment patterns are to be played, and how long the ending is to be. You get back a pointer to the IDirectMusicSegment interface.

Once you have obtained a template segment object, you can pass it to the IDirectMusicComposer::ComposeSegmentFromTemplate method, along with pointers to a style and a chord map. You also supply a rate of harmonic motion, which sets the frequency of chord changes. The ComposeSegmentFromTemplate method creates a segment and returns a pointer to its IDirectMusicSegment interface at the address given in the ppSectionSeg parameter. You pass this pointer to the IDirectMusicPerformance::PlaySegment method.

[Visual Basic]

A template is represented by a DirectMusicSegment object.

There are two ways to obtain a template object:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Obtain one from a template file or resource by using DirectMusicLoader.LoadSegment or DirectMusicLoader.LoadSegmentFromResource.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Create one from a shape, using the DirectMusicComposer.ComposeTemplateFromShape method. You choose the length, the overall shape, whether intro and end embellishment patterns are to be played, and how long the ending is to be.

Once you have obtained a template segment object, you can pass it to the DirectMusicComposer.ComposeSegmentFromTemplate method, along with pointers to a style and a chord map. You also supply a rate of harmonic motion, which sets the frequency of chord changes. The ComposeSegmentFromTemplate method creates a segment that can be passed to the DirectMusicPerformance.PlaySegment method.

Using Transitions

To avoid a sudden and perhaps discordant break when stopping one segment and beginning another, or when bringing the music to a close, you can have the composer create an intermediate or closing segment that provides an appropriate transition.

[C++]

There are two methods for composing transitional segments.

�SYMBOL 183 \f "Symbol" \s 11 \h �	The IDirectMusicComposer::AutoTransition method, given a pointer to the performance, creates a transition from the currently playing segment to a second segment of your choice, and then automatically cues the transitional segment and the second segment for playback, returning an IDirectMusicSegmentState interface for both. The transition begins playing immediately or on the next boundary, as specified in the dwFlags parameter. Optionally, the second segment can be NULL so that the transition is to silence.

�SYMBOL 183 \f "Symbol" \s 11 \h �	The IDirectMusicComposer::ComposeTransition method composes a transition from any point in one segment to the beginning of a second segment, or to silence, and returns an IDirectMusicSegment interface so that the application can play the transition.

Both these methods take a chord map, a command, and a set of flags as parameters.

�SYMBOL 183 \f "Symbol" \s 11 \h �	The chord map, as usual, is used to create a chord track that defines the chord progression in the segment.

�SYMBOL 183 \f "Symbol" \s 11 \h �	The command is one of the DMUS_COMMANDT_TYPES enumeration. It determines which type of pattern—either an ordinary groove pattern or one of the embellishments—is called for in the command track of the transitional segment. When the segment plays, an appropriate pattern is selected from the style.

�SYMBOL 183 \f "Symbol" \s 11 \h �	The flags are from DMUS_COMPOSEF_FLAGS and further define the transition, principally its timing. The DMUS_COMPOSEF_MODULATE flag can be used to cause the transition to move smoothly from one tonality to another; it cannot be used when there is no second segment because there can be no modulation to silence.

[Visual Basic]

There are two methods for composing transitional segments.

�SYMBOL 183 \f "Symbol" \s 11 \h �	The DirectMusicComposer.AutoTransition method, given a DirectMusicPerformance, creates a transition from the currently playing segment to a second segment of your choice, and then automatically cues the transitional segment and the second segment for playback. The transition begins playing immediately or on the next boundary, as specified in the lFlags parameter. Optionally, the second segment can be Nothing so that the transition is to silence.

�SYMBOL 183 \f "Symbol" \s 11 \h �	The DirectMusicComposer.ComposeTransition method composes a transition from any point in one segment to the beginning of a second segment, or to silence, and returns a DirectMusicSegment object so that the application can play the transition.

Both these methods take a chord map, a command, and a set of flags as parameters.

�SYMBOL 183 \f "Symbol" \s 11 \h �	The chord map, as usual, is used to create a chord track that defines the chord progression in the segment.

�SYMBOL 183 \f "Symbol" \s 11 \h �	The command is one of the CONST_DMUS_COMMANDT_TYPES enumeration. It determines which type of pattern—either an ordinary groove pattern or one of the embellishments—is called for in the command track of the transitional segment. When the segment plays, an appropriate pattern is selected from the style.

�SYMBOL 183 \f "Symbol" \s 11 \h �	The flags are from CONST_DMUS_COMPOSEF_FLAGS and further define the transition, principally its timing. The DMUS_COMPOSEF_MODULATE flag can be used to cause the transition to move smoothly from one tonality to another; it cannot be used when there is no second segment, because there can be no modulation to silence.

Transitions are normally a single measure in length. There are two exceptions: when the DMUS_COMPOSEF_LONG flag is included and when the command is DMUS_COMMANDT_END and the end embellishment in the style is more than one measure long.

DirectMusic Reference

This section contains reference information for the application programming interface (API) elements provided by Microsoft® DirectMusic® in C/C++ and Microsoft® Visual Basic®. Reference material is organized by language:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusic C/C++ Reference

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusic Visual Basic Reference

DirectMusic C/C++ Reference

This section contains reference information for the API elements of DirectMusic. Reference material is divided into the following categories.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Interfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Messages

�SYMBOL 183 \f "Symbol" \s 11 \h �	Structures

�SYMBOL 183 \f "Symbol" \s 11 \h �	File Structures

�SYMBOL 183 \f "Symbol" \s 11 \h �	DLS Structures

�SYMBOL 183 \f "Symbol" \s 11 \h �	Enumerated Types

�SYMBOL 183 \f "Symbol" \s 11 \h �	Return Values

Interfaces

This section contains references for the following DirectMusic interfaces:

�symbol 183 \f "Symbol" \s 11 \h �	IDirectMusic

�symbol 183 \f "Symbol" \s 11 \h �	IDirectMusicBand

�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirectMusicBuffer

�symbol 183 \f "Symbol" \s 11 \h �	IDirectMusicChordMap

�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirectMusicCollection

�symbol 183 \f "Symbol" \s 11 \h �	IDirectMusicComposer

�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirectMusicDownload

�symbol 183 \f "Symbol" \s 11 \h �	IDirectMusicDownloadedInstrument

�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirectMusicGetLoader

�symbol 183 \f "Symbol" \s 11 \h �	IDirectMusicGraph

�symbol 183 \f "Symbol" \s 11 \h �	IDirectMusicInstrument

�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirectMusicLoader

�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirectMusicObject

�symbol 183 \f "Symbol" \s 11 \h �	IDirectMusicPerformance

�symbol 183 \f "Symbol" \s 11 \h �	IDirectMusicPort

�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirectMusicPortDownload

�symbol 183 \f "Symbol" \s 11 \h �	IDirectMusicSegment

�symbol 183 \f "Symbol" \s 11 \h �	IDirectMusicSegmentState

�symbol 183 \f "Symbol" \s 11 \h �	IDirectMusicStyle

�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirectMusicThru

�symbol 183 \f "Symbol" \s 11 \h �	IDirectMusicTool

�symbol 183 \f "Symbol" \s 11 \h �	IDirectMusicTrack

�SYMBOL 183 \f "Symbol" \s 11 \h �	IKsControl

�SYMBOL 183 \f "Symbol" \s 11 \h �	IReferenceClock

IDirectMusic

The IDirectMusic interface provides methods for managing buffers, ports, and the master clock. There should not be more than one instance of this interface per application.

Note

There is no helper function to create this interface. Applications use the COM CoCreateInstance function or the IDirectMusicPerformance::Init method to create a DirectMusic object.

The methods of the IDirectMusic interface can be organized into the following groups:

Activation�Activate��Buffers�CreateMusicBuffer��Linkage�SetDirectSound��Ports�CreatePort���EnumPort���GetDefaultPort��Timing�EnumMasterClock���GetMasterClock���SetMasterClock��

All COM interfaces inherit the IUnknown interface methods. This interface supports the following three methods:

IUnknown�AddRef ���QueryInterface ���Release ��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

IDirectMusic::Activate

The IDirectMusic::Activate method activates or deactivates all output ports created from this interface.

HRESULT Activate(

 BOOL fEnable

);

Parameters

fEnable

Switch to activate (TRUE) or deactivate (FALSE) all port objects created in this instance of DirectMusic.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return DSERR_NODRIVER, indicating that no sound driver is present.

Remarks

Applications should call IDirectMusic::Activate(FALSE) when they lose input focus if they do not need to play music in the background. This allows another application that has the input focus to have access to the ports. Once the application has input focus again, it should call Activate(TRUE) to enable all its allocated ports.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

IDirectMusicPort::Activate

IDirectMusic::CreateMusicBuffer

The IDirectMusic::CreateMusicBuffer method creates a DirectMusicBuffer object to hold music messages being sequenced to the port. Most applications do not need to call this method directly because buffer management is handled by the performance when a port is added.

HRESULT CreateMusicBuffer(

 LPDMUS_BUFFERDESC pBufferDesc,

 LPDIRECTMUSICBUFFER *ppBuffer,

 LPUNKNOWN pUnkOuter

);

Parameters

pBufferDesc

Address of the DMUS_BUFFERDESC structure that contains the description of the music buffer to be created. The application must initialize the dwSize member of this structure before passing the pointer. See Remarks.

ppBuffer

Address of a variable to receive the IDirectMusicBuffer interface pointer.

pUnkOuter

Address of the controlling object's IUnknown interface for COM aggregation. Aggregration is not currently supported, so this value must be set to NULL.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_INVALIDARG��E_NOAGGREGATION��E_NOINTERFACE��E_OUTOFMEMORY��E_POINTER��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

IDirectMusic::CreatePort

The IDirectMusic::CreatePort method is used to create an object for a particular DirectMusic port.

HRESULT CreatePort(

 REFCLSID rclsidPort,

 LPDMUS_PORTPARAMS pPortParams,

 LPDIRECTMUSICPORT *ppPort,

 LPUNKNOWN pUnkOuter

);

Parameters

rclsidPort

Reference to (C++) or address of (C) the GUID that identifies the port for which the IDirectMusicPort interface is to be created. The GUID is retrieved through the IDirectMusic::EnumPort method. If it is GUID_NULL, the returned port is the default port. For more information, see Default Port.

pPortParams

Address of a DMUS_PORTPARAMS structure that contains parameters for the port. The dwSize member of this structure must be initialized before the method is called.

ppPort

Address of a variable to receive an IDirectMusicPort interface pointer.

pUnkOuter

Address of the controlling object's IUnknown interface for COM aggregation. Aggregation is not currently supported, so this value must be NULL.

Return Values

If the method succeeds, the return value is S_OK, or S_FALSE if a requested parameter is not available.

If it fails, the method can return one of the following error values:

DMUS_E_DSOUND_NOT_SET��E_INVALIDARG��E_NOAGGREGATION��E_NOINTERFACE��E_OUTOFMEMORY��E_POINTER��

Remarks

By default, the port is inactive when it is created. It must be activated by a call to IDirectMusic::Activate or IDirectMusicPort::Activate.

If not all parameters could be obtained, the DMUS_PORTPARAMS structure is changed as follows to match the available parameters of the port.

On entry, the dwValidParams member of the structure indicates which members in the structure are valid. If the flag is not set for a member of the structure, a default value is set for that parameter when the port is created.

On return, the flags in dwValidParams show which port parameters were set. If a particular parameter was not requested but was set to the default, that flag is added to those passed in.

If the port supports a specified parameter but the given value for the parameter is out of range, the parameter value in *pPortParams is changed. In this case, the flag in dwValidParams remains set, but S_FALSE is returned to indicate that the value has been changed.

The following code example shows how an application can request reverb capabilities and determine if they were obtained. (For an alternative way of checking and setting port properties, see Port Property Sets.)

DMUS_PORTPARAMS params;

ZeroMemory(¶ms, sizeof(params));

params.dwSize = sizeof(params);

params.dwValidParams = DMUS_PORTPARAMS_EFFECTS;

params.dwEffectFlags = DMUS_EFFECT_REVERB;

HRESULT hr = pDirectMusic->CreatePort(guidPort, ¶ms,

 &port, NULL);

if (SUCCEEDED(hr))

{

 fGotReverb = TRUE;

 if (hr == S_FALSE)

 {

 if (!(params.dwValidParams & DMUS_PORTPARAMS_EFFECTS))

 {

 // Device does not support any effects.

 fGotReverb = FALSE;

 }

 else if (!(params.dwEffectFlags & DMUS_EFFECT_REVERB))

 {

 // Device understands effects,

 // but could not allocate reverb.

 fGotReverb = FALSE;

 }

 }

}

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

IDirectMusic::EnumMasterClock

The IDirectMusic::EnumMasterClock method is used to enumerate and get the description of the clocks that DirectMusic can use as the master clock. Each time that it is called, this method retrieves information about a single clock.

HRESULT EnumMasterClock(

 DWORD dwIndex,

 LPDMUS_CLOCKINFO lpClockInfo

);

Parameters

dwIndex

Index of the clock for which the description is to be returned. This parameter should be 0 on the first call, and then incremented in each subsequent call until S_FALSE is returned.

lpClockInfo

Address of a DMUS_CLOCKINFO structure to receive the description of the clock. The application must initialize the dwSize member of this structure before passing the pointer.

Return Values

If the method succeeds, the return value is S_OK, or S_FALSE if there is no clock with that index number.

If it fails, the method can return one of the following error values:

E_INVALIDARG��E_NOINTERFACE��E_POINTER��

Remarks

Applications should not rely on or store the index number of a clock. Rebooting or adding and removing hardware could cause the index number of a clock to change.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

IDirectMusic::SetMasterClock, IDirectMusic::GetMasterClock

IDirectMusic::EnumPort

The IDirectMusic::EnumPort method is used to enumerate and get the capabilities of the DirectMusic ports connected to the system. Each time it is called, this method retrieves information about a single port.

HRESULT EnumPort(

 DWORD dwIndex,

 LPDMUS_PORTCAPS pPortCaps

);

Parameters

dwIndex

Index of the port for which the capabilities are to be returned. This parameter should be 0 on the first call, and then incremented in each subsequent call until S_FALSE is returned.

pPortCaps

Address of the DMUS_PORTCAPS structure to receive the capabilities of the port. The dwSize member of this structure must be initialized before the pointer is passed.

Return Values

If the method succeeds, the return value is S_OK, or S_FALSE if there is no port with that index value.

If it fails, the method can return one of the following error values:

E_INVALIDARG��E_NOINTERFACE��E_POINTER��

Remarks

Applications should not rely on or store the index number of a port. Rebooting or adding or removing ports could cause the index number of a port to change.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

IDirectMusic::GetDefaultPort

The IDirectMusic::GetDefaultPort method retrieves the GUID of the default output port. This is the port to be created if GUID_NULL is passed to IDirectMusic::CreatePort.

HRESULT GetDefaultPort(

 LPGUID pguidPort

);

Parameters

pguidPort

Address of a variable to receive the default port GUID.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

Default Port

IDirectMusic::GetMasterClock

The IDirectMusic::GetMasterClock method returns the GUID and a pointer to the IReferenceClock interface for the clock that is currently set as the DirectMusic master clock.

HRESULT GetMasterClock(

 LPGUID pguidClock,

 IReferenceClock **ppReferenceClock

);

Parameters

pguidClock

Address of a variable to receive the master clock’s GUID. The application can pass NULL if this value is not desired.

ppReferenceClock

Address of a variable to receive the IReferenceClock interface pointer for this clock. The application can pass NULL if this value is not desired.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_NOINTERFACE��E_POINTER��

Remarks

The IReferenceClock interface pointer must be released once the application has finished using the interface.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

IDirectMusic::SetMasterClock

IDirectMusic::SetDirectSound

The IDirectMusic::SetDirectSound method connects DirectMusic to a DirectSound object for wave output.

HRESULT SetDirectSound(

 LPDIRECTSOUND pDirectSound,

 HWND hWnd

);

Parameters

pDirectSound

Address of the IDirectSound interface to use for output. If this parameter is NULL, the method creates a DirectSound object and sets the DSSCL_PRIORITY cooperative level. (See Remarks.) If this parameter contains an IDirectSound pointer, the caller is responsible for setting the cooperative level.

hWnd

Window handle to the DirectSound object created by this call. If this value is NULL, the current foreground window is set as the focus window. See Remarks.

If pDirectSound is a valid interface, this parameter is ignored because it is the caller's responsibility to supply a valid window handle in the call to IDirectSound::SetCooperativeLevel.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return DMUS_E_DSOUND_ALREADY_SET.

Remarks

The specified DirectSound object is the one used for rendering audio on all ports. This default can be overridden by using the IDirectMusicPort::SetDirectSound method.

Whenever the IDirectMusic::SetDirectSound method is called, any existing DirectSound object is released.

When pDirectSound is NULL, a new DirectSound object is not created until a port that uses DirectSound is activated, and the DirectSound object is automatically released when the last port using it is deactivated.

If you created the DirectSound object yourself, you can release it by calling this method with NULL in the pDirectSound parameter after deactivating all ports. (It is an error to call SetDirectSound on an active port.)

You can pass NULL in the hWnd parameter to pass the current foreground window handle to DirectSound. However, it is not wise to assume that the application window is in the foreground during initialization. In general, the top-level application window handle should be passed to DirectMusic, DirectSound, and DirectDraw. See the Remarks for IDirectSound::SetCooperativeLevel.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

Integrating DirectMusic and DirectSound

IDirectMusic::SetMasterClock

The IDirectMusic::SetMasterClock method sets the DirectMusic master clock to a clock identified by a GUID obtained through the IDirectMusic::EnumMasterClock call. There is only one master clock for all DirectMusic applications.

HRESULT SetMasterClock(

 REFGUID rguidClock

);

Parameters

rguidClock

Reference to (C++) or address of (C) the GUID that identifies the clock to set as the master clock for DirectMusic. This parameter must be a GUID returned by the IDirectMusic::EnumMasterClock method.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return DMUS_E_PORTS_OPEN.

Remarks

If another running application is also using DirectMusic, it is not possible to change the master clock until that application is shut down.

Most applications do not need to call SetMasterClock. It should not be called unless there is a need to synchronize tightly with a hardware timer other than the system clock.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

IDirectMusic::GetMasterClock, IDirectMusic::EnumMasterClock

IDirectMusicBand

The IDirectMusicBand interface represents a DirectMusic band object. A band is used to set the instrument choices and mixer settings for a set of PChannels. For an overview, see Using Bands.

Bands can come from several places. They can be stored directly in their own files or embedded in a style's band list or a segment's band track.

The DirectMusicBand object also supports the IPersistStream and IDirectMusicObject interfaces for loading its data.

The IDirectMusicBand interface has the following methods:

Segment creation�CreateSegment��Instrument data�Download���Unload��

All COM interfaces inherit the IUnknown interface methods. This interface supports the following three methods:

IUnknown�AddRef ���QueryInterface ���Release ��

The LPDMUS_BAND type is defined as a pointer to the IDirectMusicBand interface.

typedef IDirectMusicBand __RPC_FAR *LPDMUS_BAND;

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicBand::CreateSegment

The IDirectMusicBand::CreateSegment method creates a DirectMusicSegment object that can be used to perform the volume, pan, transposition, and patch change commands in the band dynamically, using the IDirectMusicPerformance::PlaySegment method.

HRESULT CreateSegment(

 IDirectMusicSegment** ppSegment

);

Parameters

ppSegment

Address of a variable to receive a pointer to the created segment.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_FAIL��E_OUTOFMEMORY��E_POINTER��

Remarks

For an example of creating a segment from a band, see Making Band Changes Programmatically.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicBand::Download

The IDirectMusicBand::Download method downloads the DLS data for instruments in the band to a performance object. The method downloads each instrument in the band by calling the IDirectMusicPerformance::DownloadInstrument method. DownloadInstrument, in turn, uses the PChannel of the instrument to find the appropriate port, and then calls the IDirectMusicPort::DownloadInstrument method on that port.

Once a band has been downloaded, the instruments in the band can be selected, either individually with program-change MIDI messages, or all at once by playing a band segment created through a call to the IDirectMusicBand::CreateSegment method.

HRESULT Download(

 IDirectMusicPerformance* pPerformance

);

Parameters

pPerformance

Performance to which instruments are to be downloaded. The performance manages the mapping of PChannels to DirectMusic ports.

Return Values

If the method succeeds, the return value is S_OK, or DMUS_S_PARTIALDOWNLOAD. (See Remarks.)

If it fails, the method can return one of the following error values:

DMUS_E_NOT_INIT��E_OUTOFMEMORY��E_POINTER��

Remarks

Because a downloaded band uses synthesizer resources, it should be unloaded when no longer needed by using the IDirectMusicBand::Unload method.

In the current version of DirectMusic, this method may return S_OK even though the port does not support DLS.

If the download completely fails, DMUS_E_NOT_INIT is returned. This usually means that the performance was not properly connected up to an initialized port. Since this is a complete failure, there is no need to call IDirectMusicBand::Unload later.

If the download partially succeeds, DMUS_S_PARTIALDOWNLOAD is returned. This means that some of the instruments successfully downloaded while others did not. This usually occurs because of programming error setting up the performance and port. The best way to find the problem is to set debug traces to 1 for Dmime.dll, Dmband.dll, and Dmsynth.dll. (See Debugging DirectMusic Projects.)

The following are some common causes of a partial download:

�SYMBOL 183 \f "Symbol" \s 11 \h �	The band has instruments on PChannels that have not been set up on the performance (by using IDirectMusicPerformance::AssignPChannelBlock).

�SYMBOL 183 \f "Symbol" \s 11 \h �	The band has instruments on PChannels that are on channel groups not allocated on the port.

�SYMBOL 183 \f "Symbol" \s 11 \h �	The band has instruments in a DLS format incompatible with the synthesizer they are being downloaded to.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicBand::Unload

IDirectMusicBand::Unload

The IDirectMusicBand::Unload method unloads the DLS data for instruments in the band previously downloaded by IDirectMusicBand::Download.

HRESULT Unload(

 IDirectMusicPerformance* pPerformance

);

Parameters

pPerformance

Performance from which to unload instruments.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicBand::Download, IDirectMusicPort::UnloadInstrument

IDirectMusicBuffer

The IDirectMusicBuffer interface represents a buffer containing time-stamped data (typically in the form of MIDI messages) to be sequenced by a port. Unlike a segment, the buffer contains a small amount of data (typically less than 200 milliseconds) over which the application has control at event granularity.

Unless your application is doing its own sequencing, you do not need to use the methods of this interface.

Buffer objects are completely independent of port objects until the buffer is passed to the port by a call to the IDirectMusicPort::PlayBuffer or the IDirectMusicPort::Read method. The application is then free to reuse the buffer.

The methods of the IDirectMusicBuffer interface can be organized in the following groups:

Data�Flush���GetNextEvent���GetRawBufferPtr���PackStructured���PackUnstructured���ResetReadPtr��Parameters�GetBufferFormat���GetMaxBytes���GetUsedBytes���SetUsedBytes��Time�GetStartTime���SetStartTime���TotalTime��

All COM interfaces inherit the IUnknown interface methods. This interface supports the following three methods:

IUnknown�AddRef ���QueryInterface ���Release ��

The LPDIRECTMUSICBUFFER type is defined as a pointer to the IDirectMusicBuffer interface:

typedef IDirectMusicBuffer *LPDIRECTMUSICBUFFER;

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

IDirectMusicBuffer::Flush

The IDirectMusicBuffer::Flush method discards all data in the buffer.

HRESULT Flush();

Parameters

None.

Return Values

The method always returns S_OK.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

IDirectMusicBuffer::GetBufferFormat

The IDirectMusicBuffer::GetBufferFormat method retrieves the GUID representing the buffer format.

HRESULT GetBufferFormat(

 LPGUID pGuidFormat

);

Parameters

pGuidFormat

Address of a variable to receive the GUID of the buffer format.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Remarks

If the format was not specified when the buffer was created, KSDATAFORMAT_SUBTYPE_DIRECTMUSIC is returned in *pGuidFormat.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

IDirectMusic::CreateMusicBuffer, DMUS_EVENTHEADER

IDirectMusicBuffer::GetMaxBytes

The IDirectMusicBuffer::GetMaxBytes method retrieves the number of bytes that can be stored in the buffer.

HRESULT GetMaxBytes(

 LPDWORD pcb

);

Parameters

pcb

Address of a variable to contain the maximum number of bytes that the buffer can hold.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

IDirectMusicBuffer::GetNextEvent

The IDirectMusicBuffer::GetNextEvent method returns information about the next message in the buffer and advances the read pointer.

HRESULT GetNextEvent(

 LPREFERENCE_TIME prt,

 LPDWORD pdwChannelGroup,

 LPDWORD pdwLength,

 LPBYTE* ppData

);

Parameters

prt

Address of a variable to receive the time of the message.

pdwChannelGroup

Address of a variable to receive the channel group of the message.

pdwLength

Address of a variable to receive the length, in bytes, of the message.

ppData

Address of a variable to receive a pointer to the message data.

Return Values

If the method succeeds, the return value is S_OK, or S_FALSE if there are no messages in the buffer.

If it fails, the method can return E_POINTER.

Remarks

Any of the passed pointers can be NULL if the item is not needed.

The pointer returned in ppData is valid only for the lifetime of the buffer object.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

IDirectMusicBuffer::ResetReadPtr

IDirectMusicBuffer::GetRawBufferPtr

The IDirectMusicBuffer::GetRawBufferPtr method returns a pointer to the underlying buffer data structure.

HRESULT GetRawBufferPtr(

 LPBYTE* ppData

);

Parameters

ppData

Address of a variable to receive a pointer to the buffer's data.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Remarks

This method returns a pointer to the raw data of the buffer. The format of the data depends on the implementation. The lifetime of the data is the same as the lifetime of the buffer object; therefore, the returned pointer should not be held after the next call to the IDirectMusicBuffer::Release method.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

IDirectMusicBuffer::GetStartTime

The IDirectMusicBuffer::GetStartTime method retrieves the start time of the data in the buffer, relative to the master clock.

HRESULT GetStartTime(

 LPREFERENCE_TIME prt

);

Parameters

prt

Address of a variable to receive the start time.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

DMUS_E_BUFFER_EMPTY��E_POINTER��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

IDirectMusicBuffer::SetStartTime, IDirectMusicBuffer::TotalTime

IDirectMusicBuffer::GetUsedBytes

The IDirectMusicBuffer::GetUsedBytes method retrieves the number of bytes of data in the buffer.

HRESULT GetUsedBytes(

 LPDWORD pcb

);

Parameters

pcb

Address of a variable to receive the number of used bytes.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

IDirectMusicBuffer::SetUsedBytes

IDirectMusicBuffer::PackStructured

The IDirectMusicBuffer::PackStructured method inserts fixed-length data (typically a MIDI channel message), along with timing and routing information, into the buffer.

HRESULT PackStructured(

 REFERENCE_TIME rt,

 DWORD dwChannelGroup,

 DWORD dwChannelMessage

);

Parameters

rt

Absolute time of the message. See Remarks.

dwChannelGroup

Channel group to which the data belongs.

dwChannelMessage

Data (MIDI message) to pack.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

DMUS_E_INVALID_EVENT��E_OUTOFMEMORY��

Remarks

At least 32 bytes (the size of DMUS_EVENTHEADER plus dwChannelMessage) must be free in the buffer.

The rt parameter must contain the absolute time at which the data is to be sent to the port. To play a message immediately, retrieve the time from the latency clock, and use this as rt. See IDirectMusicPort::GetLatencyClock.

Messages stamped with the same time do not necessarily play in the same order in which they were placed in the buffer.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

IDirectMusicBuffer::PackUnstructured

IDirectMusicBuffer::PackUnstructured

The IDirectMusicBuffer::PackUnstructured method inserts unstructured data (typically a MIDI system-exclusive message), along with timing and routing information, into the buffer.

HRESULT PackUnstructured(

 REFERENCE_TIME rt,

 DWORD dwChannelGroup,

 DWORD cb,

 LPBYTE lpb

);

Parameters

rt

Absolute time of the message.

dwChannelGroup

Channel group to which the message belongs.

cb

Size of the data, in bytes.

lpb

Pointer to the data.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_OUTOFMEMORY��E_POINTER��

Remarks

This method can be used to send any kind of data to the port.

At least 28 bytes (the size of DMUS_EVENTHEADER) plus the size of the data, padded to a multiple of 4 bytes, must be free in the buffer. The buffer space required can be obtained by using the DMUS_EVENT_SIZE(cb) macro, where cb is the size of the data.

The rt parameter must contain the absolute time at which the data is to be sent to the port. To play a message immediately, retrieve the time from the latency clock, and use this as rt. See IDirectMusicPort::GetLatencyClock.

Messages stamped with the same time do not necessarily play in the same order in which they were placed in the buffer.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

IDirectMusicBuffer::PackStructured

IDirectMusicBuffer::ResetReadPtr

The IDirectMusicBuffer::ResetReadPtr method sets the read pointer to the start of the data in the buffer.

HRESULT ResetReadPtr()

Parameters

None.

Return Values

The method always returns S_OK.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

IDirectMusicBuffer::GetNextEvent

IDirectMusicBuffer::SetStartTime

The IDirectMusicBuffer::SetStartTime method sets the start time of the data in the buffer, relative to the master clock.

HRESULT SetStartTime(

 REFERENCE_TIME rt

);

Parameters

rt

New start time for the buffer.

Return Values

The method always returns S_OK.

Remarks

Events already in the buffer are time stamped relative to the start time and play at the same offset from the new start time.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

IDirectMusicBuffer::GetStartTime

IDirectMusicBuffer::SetUsedBytes

The IDirectMusicBuffer::SetUsedBytes method sets the number of bytes of data in the buffer.

HRESULT SetUsedBytes(

 DWORD cb

);

Parameters

cb

Number of valid data bytes in the buffer.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return DMUS_E_BUFFER_FULL.

Remarks

This method allows an application to repack a buffer manually. Normally, this should only be done if the data format in the buffer is different from the default format provided by DirectMusic.

The method fails if the specified number of bytes exceeds the maximum buffer size, as returned by the IDirectMusicBuffer::GetMaxBytes method.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

IDirectMusicBuffer::GetUsedBytes

IDirectMusicBuffer::TotalTime

The IDirectMusicBuffer::TotalTime method returns the total time spanned by the data in the buffer.

HRESULT TotalTime(

 LPREFERENCE_TIME prtTime

);

Parameters

prtTime

Address of a variable to receive the total time spanned by the buffer, in units of 100 nanoseconds.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

IDirectMusicBuffer::GetStartTime

IDirectMusicChordMap

The IDirectMusicChordMap interface represents a chord map. Chord maps provide the composer (represented by the IDirectMusicComposer interface) with the information needed to create chord progressions for segments to be composed. Chord maps can also be used to change the chords in an existing segment.

The DirectMusicChordMap object also supports the IDirectMusicObject and IPersistStream interfaces for loading its data.

The interface has the following method:

IDirectMusicChordMap�GetScale��

All COM interfaces inherit the IUnknown interface methods. This interface supports the following three methods:

IUnknown�AddRef ���QueryInterface ���Release ��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicChordMap::GetScale

The IDirectMusicChordMap::GetScale method retrieves the scale associated with the chord map.

HRESULT GetScale(

 DWORD* pdwScale

);

Parameters

pdwScale

Address of a variable to receive the scale value.

Return Values

If the method succeeds, the return value is S_OK.

If the method fails, the return value can be E_POINTER.

Remarks

The scale is defined by the bits in a DWORD, split into a scale pattern (lower 24 bits) and a root (upper 8 bits). For the scale pattern, the low bit (0x0001) is the lowest note in the scale, the next higher (0x0002) is a semitone higher, and so on for two octaves. The upper 8 bits give the root of the scale as an integer between 0 and 23 (low C to middle B).

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicCollection

The IDirectMusicCollection interface manages an instance of a DLS file. The collection provides methods to access instruments and download them to the synthesizer by means of the IDirectMusicPort interface.

The DirectMusicCollection object also supports the IDirectMusicObject and IPersistStream interfaces for loading its data.

For more information on how to work with collections, see Using Downloadable Sounds.

The IDirectMusicCollection interface has the following methods:

Instruments�EnumInstrument���GetInstrument��

All COM interfaces inherit the IUnknown interface methods. This interface supports the following three methods:

IUnknown�AddRef ���QueryInterface ���Release ��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

IDirectMusicCollection::EnumInstrument

The IDirectMusicCollection::EnumInstrument method retrieves the patch and name of an instrument by its index in the collection.

HRESULT EnumInstrument(

 DWORD dwIndex,

 DWORD* pdwPatch,

 LPWSTR pwszName,

 DWORD dwNameLen

);

Parameters

dwIndex

Index of the instrument in the collection.

pdwPatch

Address of a variable to receive the patch number.

pwszName

Address of a buffer to receive the instrument name. Can be NULL if the name is not wanted.

dwNameLen

Size of the instrument name buffer, in WCHARs.

Return Values

If the method succeeds, the return value is S_OK, or S_FALSE if there is no instrument with that index number.

If it fails, the method can return one of the following error values:

E_FAIL��E_OUTOFMEMORY��E_POINTER��

Remarks

To enumerate all instruments in a collection, start with a dwIndex of 0 and increment until EnumInstrument returns S_FALSE.

The patch number returned in pdwPatch describes the full patch address, including the MIDI parameters for MSB and LSB bank select. For more information, see MIDI Channel Messages.

Although the ordering of the enumeration is consistent within one instance of a DLS collection, it has no relationship to the ordering of instruments in the file, their patch numbers, or their names.

For an example of instrument enumeration, see Working with Instruments.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

IDirectMusicCollection::GetInstrument

The IDirectMusicCollection::GetInstrument method retrieves an instrument from a collection by its patch number.

HRESULT GetInstrument(

 DWORD dwPatch,

 IDirectMusicInstrument** ppInstrument

);

Parameters

dwPatch

Instrument patch number.

ppInstrument

Address of a variable to receive a pointer to the IDirectMusicInstrument interface.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

DMUS_E_INVALIDPATCH��E_FAIL��E_OUTOFMEMORY��E_POINTER��

Remarks

The patch number passed in dwPatch describes the full patch address, including the MIDI parameters for MSB and LSB bank select. MSB is shifted left 16 bits, and LSB is shifted left 8 bits. For more information, see MIDI Channel Messages.

In addition, the high bit must be set (0x80000000) if the instrument is specifically a drum kit intended to be played on MIDI channel 10. This a special tag for DLS Level 1, which always puts drums on MIDI channel 10.

For an example of how this method is used, see Working with Instruments.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

IDirectMusicComposer

The IDirectMusicComposer interface permits access to the composition engine. In addition to building new segments from templates and chord maps, the composer can generate transitions between different segments. It can also apply a chord map to an existing segment, thus altering the chord progression and the mood of the music.

For an overview, see Music Composition.

The methods of the IDirectMusicComposer interface can be grouped as follows:

Changing chord maps�ChangeChordMap��Composing ordinary segments�ComposeSegmentFromShape���ComposeSegmentFromTemplate��Composing template segments�ComposeTemplateFromShape��Composing transition segments�AutoTransition���ComposeTransition��

All COM interfaces inherit the IUnknown interface methods. This interface supports the following three methods:

IUnknown�AddRef ���QueryInterface ���Release ��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicComposer::AutoTransition

The IDirectMusicComposer::AutoTransition method composes a transition from inside a performance's primary segment (or from silence) to another segment, and then cues the transition and the second segment to play.

HRESULT AutoTransition(

 IDirectMusicPerformance* pPerformance,

 IDirectMusicSegment* pToSeg,

 WORD wCommand,

 DWORD dwFlags,

 IDirectMusicChordMap* pChordMap,

 IDirectMusicSegment** ppTransSeg,

 IDirectMusicSegmentState** ppToSegState,

 IDirectMusicSegmentState** ppTransSegState

);

Parameters

pPerformance

Performance in which to make the transition.

pToSeg

Segment to which the transition should smoothly flow. See Remarks.

wCommand

Embellishment to use when composing the transition. See DMUS_COMMANDT_TYPES. If this value is DMUS_COMMANDT_ENDANDINTRO, the method composes a segment containing both an ending to the primary segment and an introduction to pToSeg.

dwFlags

Composition options. See DMUS_COMPOSEF_FLAGS.

pChordMap

Chord map to be used when composing the transition.

ppTransSeg

Address of a variable to receive a pointer to the created segment. This value can be NULL, in which case the pointer is not returned.

ppToSegState

Address of a variable to receive a pointer to the segment state created by the performance (pPerformance) for the segment following the transition (pToSeg). See Remarks.

ppTransSegState

Address of a variable to receive a pointer to the segment state created by the performance (pPerformance) for the created segment (ppTransSeg). See Remarks.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Remarks

The value in pToSeg can be NULL as long as dwFlags does not include DMUS_COMPOSEF_MODULATE. If pToSeg is NULL or does not contain a style track (as would be the case if it is based on a MIDI file), intro embellishments are not valid. If the currently playing segment is NULL or does not contain a style track, then fill, break, end, and groove embellishments are not valid. If no style track is available either in the currently playing segment or in the one represented by pToSeg, all embellishments are invalid, and no transition occurs. In that case, both ppTransSeg and ppTransSegState return NULL, but the method succeeds and cues the segment represented by pToSeg, if that pointer is not NULL.

The value in pChordMap can be NULL. If it is, an attempt is made to obtain a chord map from a chord-map track, first from pToSeg, and then from the performance's primary segment. If neither of these segments contains a chord-map track, the chord occurring at the current time in the primary segment is used as the chord in the transition.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicComposer::ComposeTransition, Using Transitions

IDirectMusicComposer::ChangeChordMap

The IDirectMusicComposer::ChangeChordMap method modifies the chords and scale pattern of an existing segment to reflect a new chord map.

HRESULT ChangeChordMap(

 IDirectMusicSegment* pSegment,

 BOOL fTrackScale,

 IDirectMusicChordMap* pChordMap

);

Parameters

pSegment

Segment in which to change the chord map.

fTrackScale

If TRUE, the method transposes all the chords to be relative to the root of the new chord map's scale, rather than leaving their roots as they were.

pChordMap

New chord map for the segment.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Remarks

The method can be called while the segment is playing.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicComposer::ComposeSegmentFromShape

The IDirectMusicComposer::ComposeSegmentFromShape method creates an original segment from a style and a chord map, based on a predefined shape. The shape represents the way chords and embellishments occur over time across the segment.

HRESULT ComposeSegmentFromShape(

 IDirectMusicStyle* pStyle,

 WORD wNumMeasures,

 WORD wShape,

 WORD wActivity,

 BOOL fIntro,

 BOOL fEnd,

 IDirectMusicChordMap* pChordMap,

 IDirectMusicSegment** ppSegment

);

Parameters

pStyle

Style from which to compose the segment.

wNumMeasures

Length, in measures, of the segment to be composed.

wShape

Shape of the segment to be composed. Possible values are of the DMUS_SHAPET_TYPES enumerated type.

wActivity

Rate of harmonic motion. Valid values are from 0 through 3. Lower values mean more chord changes.

fIntro

TRUE if an introduction is to be composed for the segment.

fEnd

TRUE if an ending is to be composed for the segment.

pChordMap

Chord map from which to create the segment.

ppSegment

Address of a variable to receive a pointer to the created segment.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicComposer::ComposeSegmentFromTemplate, IDirectMusicComposer::ComposeTemplateFromShape

IDirectMusicComposer::ComposeSegmentFromTemplate

The IDirectMusicComposer::ComposeSegmentFromTemplate method creates an original segment from a style, a chord map, and a template.

HRESULT ComposeSegmentFromTemplate(

 IDirectMusicStyle* pStyle,

 IDirectMusicSegment* pTemplate,

 WORD wActivity,

 IDirectMusicChordMap* pChordMap,

 IDirectMusicSegment** ppSegment

);

Parameters

pStyle

Style from which to create the segment.

pTemplate

Template from which to create the segment.

wActivity

Rate of harmonic motion. Valid values are 0 through 3. Lower values mean more chord changes.

pChordMap

Chord map from which to create the segment.

ppSegment

Address of a variable to receive a pointer to the created segment.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_INVALIDARG��E_POINTER��

Remarks

If pStyle is non-NULL, it is used in composing the segment; if it is NULL, a style is retrieved from the template specified in pTempSeg. Similarly, if pChordMap is non-NULL, it is used in composing the segment; if it is NULL, a chord map is retrieved from the template.

If pStyle is NULL and there is no style track in the template, or pChordMap is NULL and there is no chord-map track, the method returns E_INVALIDARG.

The length of the segment is equal to the length of the template passed in.

The default start point and loop points of the created segment are 0, regardless of the values in the template segment.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicComposer::ComposeSegmentFromShape, IDirectMusicComposer::ComposeTemplateFromShape, Using Templates

IDirectMusicComposer::ComposeTemplateFromShape

The IDirectMusicComposer::ComposeTemplateFromShape method creates a new template segment, based on a predefined shape.

HRESULT ComposeTemplateFromShape(

 WORD wNumMeasures,

 WORD wShape,

 BOOL fIntro,

 BOOL fEnd,

 WORD wEndLength,

 IDirectMusicSegment** ppTemplate

);

Parameters

wNumMeasures

Length, in measures, of the segment to be composed. This value must be greater than 0.

wShape

Shape of the segment to be composed. Possible values are of the DMUS_SHAPET_TYPES enumerated type.

fIntro

TRUE if an introduction is to be composed for the segment.

fEnd

TRUE if an ending is to be composed for the segment.

wEndLength

Length in measures of the ending, if one is to be composed. If fEnd is TRUE, this value must be greater than 0 and equal to or less than the number of measures available (that is, not used in the introduction). See also Remarks.

ppTemp;ate

Address of a variable to receive a pointer to the created template segment.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_INVALIDARG��E_OUTOFMEMORY��E_POINTER��

Remarks

The value of wEndLength should not be greater than the length of the longest ending available in any style likely to be associated with this template through the IDirectMusicComposer::ComposeSegmentFromTemplate method. The ending starts playing at wEndLength measures before the end of the segment. If the ending is less than wEndLength measures long, the music then reverts to the basic groove level.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicComposer::ComposeSegmentFromShape, IDirectMusicComposer::ComposeSegmentFromTemplate, Using Templates

IDirectMusicComposer::ComposeTransition

The IDirectMusicComposer::ComposeTransition method composes a transition from a measure inside one segment to another.

HRESULT ComposeTransition(

 IDirectMusicSegment* pFromSeg,

 IDirectMusicSegment* pToSeg,

 MUSIC_TIME mtTime,

 WORD wCommand,

 DWORD dwFlags,

 IDirectMusicChordMap* pChordMap,

 IDirectMusicSegment** ppTransSeg

);

Parameters

pFromSeg

Segment from which to compose the transition.

pToSeg

Segment to which the transition should smoothly flow. Can be NULL if dwFlags does not include DMUS_COMPOSEF_MODULATE.

mtTime

Time in pFromSeg from which to compose the transition.

wCommand

Embellishment to use when composing the transition. See DMUS_COMMANDT_TYPES. If this value is DMUS_COMMANDT_ENDANDINTRO, the method composes a segment containing both an ending to pFromSeg and an introduction to pToSeg.

dwFlags

Composition options. This parameter can contain one or more of the DMUS_COMPOSEF_FLAGS enumerated type values.

pChordMap

Chord map to be used when composing the transition. See Remarks.

ppTransSeg

Address of a variable to receive a pointer to the created segment.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_INVALIDARG��E_OUTOFMEMORY��E_POINTER��

Remarks

The value in pChordMap can be NULL. If it is, an attempt is made to obtain a chord map from a chord-map track, first from pToSeg, and then from pFromSeg. If neither of these segments contains a chord-map track, the chord occurring at mtTime in pFromSeg is used as the chord in the transition.

The composer looks for a tempo, first in pFromSeg, and then in pToSeg. If neither of those segments contains a tempo track, the tempo for the transition segment is taken from the style.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicComposer::AutoTransition, Using Transitions

IDirectMusicDownload

The IDirectMusicDownload interface represents a contiguous memory chunk used for downloading to a DLS synthesizer port.

The IDirectMusicDownload interface and its contained memory chunk are created by the IDirectMusicPortDownload::AllocateBuffer method. The memory can then be accessed by using the single method of this interface.

The interface has the following method:

IDirectMusicDownload�GetBuffer��

All COM interfaces inherit the IUnknown interface methods. This interface supports the following three methods:

IUnknown�AddRef ���QueryInterface ���Release ��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

IDirectMusicDownload::GetBuffer

The IDirectMusicDownload::GetBuffer method retrieves a pointer to a buffer containing data to be downloaded.

HRESULT GetBuffer(

 void** ppvBuffer,

 DWORD* pdwSize

);

Parameters

ppvBuffer

Address of a variable to receive a pointer to the data buffer.

pdwSize

Address of a variable to receive the size of the returned buffer, in bytes.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

DMUS_E_BUFFERNOTAVAILABLE��E_POINTER��

Remarks

The method returns DMUS_E_BUFFERNOTAVAILABLE if the buffer has already been downloaded.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

IDirectMusicDownloadedInstrument

The IDirectMusicDownloadedInstrument interface is used to identify an instrument that has been downloaded to the synthesizer by using the IDirectMusicPort::DownloadInstrument or the IDirectMusicPerformance::DownloadInstrument method. The interface is then used to unload the instrument through a call to IDirectMusicPort::UnloadInstrument. Once the instrument has been unloaded, the interface pointer must be released by the application.

For an example, see Working with Instruments.

The IDirectMusicDownloadedInstrument interface has no methods of its own. Like all COM interfaces, it inherits the IUnknown interface methods. This interface supports the following three methods:

IUnknown�AddRef ���QueryInterface ���Release ��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

IDirectMusicGetLoader

The IDirectMusicGetLoader interface is used by an object parsing a stream when the object needs to load another object referenced by the stream. If a stream supports the loader, it must provide an IDirectMusicGetLoader interface.

For an example of how to obtain the IDirectMusicGetLoader interface from the stream, see IDirectMusicGetLoader::GetLoader.

The IDirectMusicGetLoader interface has the following method:

IDirectMusicGetLoader�GetLoader ��

All COM interfaces inherit the IUnknown interface methods. This interface supports the following three methods:

IUnknown�AddRef ���QueryInterface ���Release ��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicLoader, DirectMusic Loader, Custom Loading

IDirectMusicGetLoader::GetLoader

The IDirectMusicGetLoader::GetLoader method retrieves a pointer to the loader object that created the stream.

HRESULT GetLoader(

 IDirectMusicLoader ** ppLoader

);

Parameters

ppLoader

Address of a variable to receive the IDirectMusicLoader interface pointer. The reference count of the interface is incremented.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_NOINTERFACE.

Remarks

The following code example is from a file parser that finds a reference to an object that needs to be accessed by the loader.

HRESULT myGetReferencedObject(

 DMUS_OBJECTDESC *pDesc, // Descriptor already prepared

 IStream *pIStream, // Stream being parsed

 IDirectMusicObject **ppIObject) // Object to be accessed

{

 IDirectMusicGetLoader *pIGetLoader;

 IDirectMusicLoader *pILoader;

 ppIObject = NULL;

 HRESULT hr = pIStream->QueryInterface(

 IID_IDirectMusicGetLoader,

 (void **) &pIGetLoader);

 if (SUCCEEDED(hr))

 {

 hr = pIGetLoader->GetLoader(&pILoader);

 if (SUCCEEDED(hr))

 {

 hr = pILoader->GetObject(pDesc, IID_DirectMusicLoader,

 (void**) ppIObject);

 pILoader->Release();

 }

 pIGetLoader->Release();

 }

 return hr;

}

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

Custom Loading

IDirectMusicGraph

The IDirectMusicGraph interface manages the loading and message flow of tools.

Graphs can occur in two places: performances and segments. The graph of tools in a performance is global in nature; it processes messages from all segments. A graph in a segment exists only for playback of that segment.

The IDirectMusicGraph interface has the following methods:

Routing�StampPMsg��Tools�GetTool���InsertTool���RemoveTool��

All COM interfaces inherit the IUnknown interface methods. This interface supports the following three methods:

IUnknown�AddRef ���QueryInterface ���Release ��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicGraph::GetTool

The IDirectMusicGraph::GetTool method retrieves a tool by index.

HRESULT GetTool(

 DWORD dwIndex,

 IDirectMusicTool** ppTool

);

Parameters

dwIndex

Zero-based index of the requested tool in the graph.

ppTool

Address of a variable to receive a pointer to the tool.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following values:

DMUS_E_NOT_FOUND��E_POINTER��

Remarks

The application is responsible for releasing the retrieved tool.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicGraph::InsertTool

The IDirectMusicGraph::InsertTool method inserts a tool in the graph.

HRESULT InsertTool(

 IDirectMusicTool * pTool,

 DWORD * pdwPChannels,

 DWORD cPChannels,

 LONG lIndex

);

Parameters

pTool

Tool to insert.

pdwPChannels

Address of an array of PChannels on which the tool accepts messages. If the tool accepts messages on all PChannels, pass NULL.

cPChannels

Count of how many PChannels are pointed to by pdwPChannels. Ignored if pdwPChannels is NULL.

lIndex

Position at which to place the tool. This is a zero-based index from either the start or (if it is negative) the end of the current tool list. If lIndex is out of range, the tool is placed at the beginning or end of the list. To place a tool at the end of the list, use a number for lIndex that is larger than the number of tools in the current tool list.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

DMUS_E_ALREADY_EXISTS��E_OUTOFMEMORY��E_POINTER��

Remarks

The reference count of the tool is incremented.

This method calls IDirectMusicTool::Init.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicGraph::RemoveTool

The IDirectMusicGraph::RemoveTool method removes a tool from the graph.

HRESULT RemoveTool(

 IDirectMusicTool * pTool

);

Parameters

pTool

Address of a variable that contains the tool to be removed.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

DMUS_E_NOT_FOUND��E_POINTER��

Remarks

The graph's reference to the tool object is released.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicGraph::StampPMsg

The IDirectMusicGraph::StampPMsg method stamps a message with a pointer to the next tool that is to receive it. After processing a message, a tool must call this method.

HRESULT StampPMsg(

 DMUS_PMSG* pPMSG

);

Parameters

pPMSG

Address of a structure that contains the message to stamp. This structure is of a type derived from DMUS_PMSG. For an overview of message types, see Messages.

Return Values

If the method succeeds, the return value is S_OK or DMUS_S_LAST_TOOL. See Remarks.

If it fails, the method can return E_POINTER.

Remarks

On entry, pPMSG->pTool (see DMUS_PMSG) points to the current tool. StampPMsg uses this member to determine the current tool to find the next tool in the graph. A value of NULL represents the first tool in the graph.

The object pointed to by pPMSG->pGraph represents the graph that contains the tool. This is stamped inside StampPMsg, along with the tool itself, and can change while the message travels from the segment state to the performance because there can be multiple tool graphs.

The value of pPMSG->dwType equals the media type of the message, and is also used to find the next tool. The media types supported are those returned by the IDirectMusicTool::GetMediaTypes method.

The value of pPMSG->dwPChannel is used to determine which track the tool must be capable of processing. Tracks are identified by unique numbers when a segment is authored.

This method calls Release on the current IDirectMusicTool pointed to by pPMSG->pTool, replaces it with the next tool in the graph and calls AddRef on the new tool.

It also flags the message with the correct delivery type, according to what type the next tool returns in its IDirectMusicTool::GetMsgDeliveryType method. This flag determines when the message is delivered to the next tool.

The implementations of this method in the DirectMusicSegmentState and DirectMusicPerformance objects always return S_OK on success. The implementation in DirectMusicGraph returns DMUS_S_LAST_TOOL if there is no tool other than the output tool waiting to receive the message.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

DirectMusic Tools

IDirectMusicInstrument

The IDirectMusicInstrument interface represents an individual instrument from a DLS collection.

The only way to create a DirectMusicInstrument object to download an instrument is to first create a DirectMusicCollection object, and then call the IDirectMusicCollection::GetInstrument method. GetInstrument creates a DirectMusicInstrument object and returns its IDirectMusicInstrument interface pointer.

To download the instrument, pass its interface pointer to the IDirectMusicPort::DownloadInstrument or the IDirectMusicPerformance::DownloadInstrument method. If the method succeeds, it returns a pointer to an IDirectMusicDownloadedInstrument interface, which is used only to unload the instrument.

The methods of IDirectMusicInstrument operate only on an instrument that has not been downloaded. Any instances of the instrument that have been downloaded to a port are not affected by the IDirectMusicInstrument::GetPatch and IDirectMusicInstrument::SetPatch methods.

The interface has the following methods:

IDirectMusicInstrument�GetPatch���SetPatch ��

All COM interfaces inherit the IUnknown interface methods. This interface supports the following three methods:

IUnknown�AddRef ���QueryInterface ���Release ��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

IDirectMusicInstrument::GetPatch

The IDirectMusicInstrument::GetPatch method retrieves the patch number for the instrument. The patch number is an address composed of the MSB and LSB bank selects and the MIDI patch (program change) number. An optional flag bit indicates that the instrument is a drum, rather than a melodic instrument.

HRESULT GetPatch(

 DWORD* pdwPatch

);

Parameters

pdwPatch

Address of a variable to receive the patch number.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Remarks

The patch number returned at pdwPatch describes the full patch address, including the MIDI parameters for MSB and LSB bank select. In addition, the high bit is set if the instrument is specifically a drum kit, intended to be played on MIDI channel 10. This is a special tag for DLS Level 1, since DLS Level 1 always plays drums on MIDI channel 10. For more information, see MIDI Channel Messages.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

IDirectMusicInstrument::SetPatch

The IDirectMusicInstrument::SetPatch method sets the patch number for the instrument. Although each instrument in a DLS collection has a predefined patch number, the patch number can be reassigned once the IDirectMusicCollection::GetInstrument method has been used to retrieve the instrument from the collection. For more information on DirectMusic patch numbers, see IDirectMusicInstrument::GetPatch.

HRESULT SetPatch(

 DWORD dwPatch

);

Parameters

dwPatch

New patch number to assign to instrument.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return DMUS_E_INVALIDPATCH.

Remarks

The following code example gets an instrument from a collection, remaps its MSB bank select to a different bank, then downloads the instrument.

HRESULT myRemappedDownload(

 IDirectMusicCollection *pCollection,

 IDirectMusicPort *pPort,

 IDirectMusicDownloadedInstrument **ppDLInstrument,

 BYTE bMSB, // Requested MIDI MSB for patch bank select

 DWORD dwPatch) // Requested patch

{

 HRESULT hr;

 IDirectMusicInstrument* pInstrument;

 hr = pCollection->GetInstrument(dwPatch, &pInstrument);

 if (SUCCEEDED(hr))

 {

 dwPatch &= 0xFF00FFFF; // Clear MSB.

 dwPatch |= bMSB << 16; // Insert new MSB value.

 pInstrument->SetPatch(dwPatch);

 hr = pPort->DownloadInstrument(pInstrument,

 ppDLInstrument,

 NULL, 0); // Download all regions.

 pInstrument->Release();

 }

 return hr;

}

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

IDirectMusicLoader

The IDirectMusicLoader interface is used for finding, enumerating, caching, and loading objects. For an overview, see DirectMusic Loader.

The methods of the IDirectMusicLoader interface can be organized into the following groups:

Searching�EnumObject���ScanDirectory���SetSearchDirectory��Caching�CacheObject���ClearCache���EnableCache��Object management�GetObject���ReleaseObject���SetObject��

All COM interfaces inherit the IUnknown interface methods. This interface supports the following three methods:

IUnknown�AddRef ���QueryInterface ���Release ��

The LPDMUS_LOADER type is defined as a pointer to the IDirectMusicLoader interface.

typedef IDirectMusicLoader __RPC_FAR *LPDMUS_LOADER;

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicLoader::CacheObject

The IDirectMusicLoader::CacheObject method tells the loader to keep a reference to the object. This guarantees that the object is not loaded twice.

HRESULT CacheObject(

 IDirectMusicObject * pObject

);

Parameters

pObject

Address of the IDirectMusicObject interface of the object to cache.

Return Values

If the method succeeds, the return value is S_OK, or S_FALSE if the object is already cached.

If it fails, the method can return one of the following error values:

E_POINTER��DMUS_E_LOADER_OBJECTNOTFOUND��

Remarks

If you have an object that is accessed in multiple places throughout the life of your application, letting the loader cache the object can significantly speed up performance. For an overview, see Caching Objects.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicLoader::EnableCache, IDirectMusicLoader::ClearCache, IDirectMusicLoader::ReleaseObject

IDirectMusicLoader::ClearCache

The IDirectMusicLoader::ClearCache method tells the loader to release all references to a particular type of object.

HRESULT ClearCache(

 REFGUID rguidClass

);

Parameters

rguidClass

Reference to (C++) or address of (C) the identifier of the class of objects to clear. You can specify all types with GUID_DirectMusicAllTypes.

Return Values

The method returns S_OK.

Remarks

This method clears all objects that are currently being held, but does not turn off caching. Use the IDirectMusicLoader::EnableCache method to turn off automatic caching.

To clear a single object from the cache, call the IDirectMusicLoader::ReleaseObject method.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicLoader::CacheObject, Caching Objects

IDirectMusicLoader::EnableCache

The IDirectMusicLoader::EnableCache method tells the loader to enable or disable automatic caching of all objects it loads. By default, caching is enabled for all classes.

HRESULT EnableCache(

 REFGUID rguidClass,

 BOOL fEnable

);

Parameters

rguidClass

Reference to (C++) or address of (C) the identifier of the class of objects to cache. You can specify all types with GUID_DirectMusicAllTypes.

fEnable

TRUE to enable caching; FALSE to clear and disable.

Return Values

The method returns S_OK if the cache state is changed, or S_FALSE if the cache is already in the desired state.

Remarks

To clear the cache without disabling caching, call the IDirectMusicLoader::ClearCache method.

The following code example disables caching only for segment objects so that they do not stay in memory after the application releases them. Other objects that should be shared, such as styles, chord maps and DLS collections, continue to be cached. The first call to EnableCache would normally be unnecessary because caching is enabled for all objects by default.

void myPrepareLoader(IDirectMusicLoader *pILoader)

{

 pILoader->EnableCache(GUID_DirectMusicAllTypes, TRUE);

 pILoader->EnableCache(CLSID_DirectMusicSegment, FALSE);

}

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicLoader::CacheObject, IDirectMusicLoader::ClearCache, Caching Objects

IDirectMusicLoader::EnumObject

The IDirectMusicLoader::EnumObject method enumerates all available objects of the requested type. Objects are available if they have been loaded or if IDirectMusicLoader::ScanDirectory has been called on the search directory.

HRESULT EnumObject(

 REFGUID rguidClass,

 DWORD dwIndex,

 LPDMUS_OBJECTDESC pDesc

);

Parameters

rguidClass

Reference to (C++) or address of (C) the identifier for the class of objects to view.

dwIndex

Index into the list. Typically, starts with 0 and increments.

pDesc

Address of a DMUS_OBJECTDESC structure to be filled with data about the object.

Return Values

If the method succeeds, the return value is S_OK, or S_FALSE if dwIndex is past the end of the list.

Remarks

For an example of the use of this method, see Enumerating Objects.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicLoader::ScanDirectory

IDirectMusicLoader::GetObject

The IDirectMusicLoader::GetObject method retrieves the specified object from a file or resource and returns the desired interface.

HRESULT GetObject(

 LPDMUS_OBJECTDESC pDESC,

 REFIID riid,

 LPVOID FAR * ppv

);

Parameters

pDESC

Address of a DMUS_OBJECTDESC structure describing the object.

riid

Unique identifier of the interface. See the IID defines in Dmusici.h. All the standard interfaces have a defined identifier consisting of "IID_" plus the name of the interface. For example, the identifier of IDirectMusicTrack is IID_IDirectMusicTrack.

ppv

Address of a variable to receive a pointer to the desired interface of the object.

Return Values

If the method succeeds, the return value is S_OK or DMUS_S_PARTIALLOAD.

If it fails, the method can return one of the following error values:

E_FAIL��E_INVALIDARG��E_OUTOFMEMORY��E_POINTER��DMUS_E_LOADER_NOCLASSID��DMUS_E_LOADER_FAILEDOPEN��DMUS_E_LOADER_FAILEDCREATE��DMUS_E_LOADER_FORMATNOTSUPPORTED��REGDB_E_CLASSNOTREG��

Remarks

A return value of DMUS_S_PARTIALLOAD can mean that the default instrument collection file, Gm.dls, is not available.

The current version of DirectMusic does not support loading from URLs. If the dwValidData member of the DMUS_OBJECTDESC structure contains DMUS_OBJ_URL, the method returns DMUS_E_LOADER_FORMATNOTSUPPORTED.

The method does not require that all valid members of the DMUS_OBJECTDESC structure match before retrieving an object. It searches in the following order:

	1.	DMUS_OBJ_OBJECT

	2.	DMUS_OBJ_MEMORY

	3.	DMUS_OBJ_FILENAME and DMUS_OBJ_FULLPATH

	4.	DMUS_OBJ_NAME and DMUS_OBJ_CATEGORY

	5.	DMUS_OBJ_NAME

	6.	DMUS_OBJ_FILENAME

In other words, the highest priority goes to a unique GUID, followed by a resource, followed by the full file path name, followed by an internal name plus category, followed by an internal name, followed by a local file name.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicLoader::ReleaseObject, IDirectMusicLoader::ScanDirectory

IDirectMusicLoader::ReleaseObject

The IDirectMusicLoader::ReleaseObject method releases the loader's reference to the object.

HRESULT ReleaseObject(

 IDirectMusicObject * pObject

);

Parameters

pObject

Address of a variable that contains the object to release.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_POINTER��DMUS_E_LOADER_OBJECTNOTFOUND��

Remarks

ReleaseObject is the reciprocal of IDirectMusicLoader::CacheObject.

Objects can be cached explicitly by using the CacheObject method, or automatically by using the IDirectMusicLoader::EnableCache method.

To tell the loader to flush all objects of a particular type, call the IDirectMusicLoader::ClearCache method.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicLoader::GetObject, Caching Objects

IDirectMusicLoader::ScanDirectory

The IDirectMusicLoader::ScanDirectory method searches a directory on disk for all files of a requested class type and file extension. For each file found, it calls the IDirectMusicObject::ParseDescriptor method to extract the GUID and name of the object. This information is stored in an internal database. Once a directory has been scanned, all files of the requested type become available for enumeration through the IDirectMusicLoader::EnumObject method; in addition, an object can be retrieved by using IDirectMusicLoader::GetObject, even without a file name.

HRESULT ScanDirectory(

 REFGUID rguidClass,

 WCHAR* pwzFileExtension,

 WCHAR* pwzScanFileName

);

Parameters

rguidClass

Reference to (C++) or address of (C) the identifier of the class of objects.

pwzFileExtension

File extension for the type of file to look for—for example, L"sty" for style files. Use L"*" to look in files with any or no extension.

pwzScanFileName

Name of an optional storage file to store and retrieve cached file information. This file is created by the first call to ScanDirectory and used by subsequent calls. Pass NULL if a cache file is not wanted.

Return Values

If the method succeeds, the return value is S_OK, or S_FALSE if no files were found.

If it fails, the method can return one of the following error values:

DMUS_E_NOT_FOUND��E_FAIL��E_OUTOFMEMORY��E_POINTER��REGDB_E_CLASSNOTREG��

Remarks

The IDirectMusicLoader::SetSearchDirectory method must be called first to set the location to search.

The scanned information can be stored in a cache file defined by pwzScanFileName. Once it has been so stored, subsequent calls to ScanDirectory are much quicker because only files that have changed are scanned (the cache file stores the file size and date for each object, so it can tell if a file has changed).

If the file type has more than one extension, call ScanDirectory once for each file extension.

GUID_DirectMusicAllTypes is not a valid value for rguidClass.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

Scanning a Directory for Objects

IDirectMusicLoader::SetObject

The IDirectMusicLoader::SetObject method tells the loader where to find an object when it is later referenced by another object being loaded, and adds attributes to an object so that it can be referred to by those attributes. For an overview, see Setting Objects.

HRESULT SetObject(

 LPDMUS_OBJECTDESC pDESC

);

Parameters

pDESC

Address of a DMUS_OBJECTDESC structure describing the object.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_FAIL��E_INVALIDARG��E_OUTOFMEMORY��E_POINTER��DMUS_E_LOADER_NOCLASSID��DMUS_E_LOADER_FAILEDOPEN��DMUS_E_LOADER_FAILEDCREATE��DMUS_E_LOADER_FORMATNOTSUPPORTED��REGDB_E_CLASSNOTREG��

Remarks

This method can be used to set attributes that are not currently valid for an object. For example, you can supply a value in the wszName member of the DMUS_OBJECTDESC structure to assign an internal name to an unnamed object, such as a segment based on a MIDI file. However, it cannot be used to change existing attributes. Most authored segments, for example, already have names, and these cannot be changed by the application.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicLoader::GetObject

IDirectMusicLoader::SetSearchDirectory

The IDirectMusicLoader::SetSearchDirectory method sets a search path for finding object files. The search path can be set for one object file type or for all files.

HRESULT SetSearchDirectory(

 REFGUID rguidClass,

 WCHAR* pwszPath,

 BOOL fClear

);

Parameters

rguidClass

Reference to (C++) or address of (C) the identifier of the class of objects that the call pertains to. GUID_DirectMusicAllTypes specifies all objects.

pwszPath

File path for directory. Must be a valid directory and must be less than MAX_PATH in length.

fClear

If TRUE, clears all information about objects before setting the directory. This avoids accessing objects from the previous directory that might have the same name. However, objects are not removed from the cache.

Return Values

If the method succeeds, the return value is S_OK, or S_FALSE if the search directory is already set to pwszPath.

If it fails, the method can return one of the following error values:

E_OUTOFMEMORY��E_POINTER��DMUS_E_LOADER_BADPATH��

Remarks

Once a search path is set, the loader does not need a full path every time it is given an object to load by file name. This enables objects that refer to other objects to find them by file name without knowing the full path.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicLoader::ScanDirectory, Setting the Loader's Search Directory

IDirectMusicObject

All DirectMusic objects that can be loaded from a file support the IDirectMusicObject interface so that they can work with the DirectMusic loader. New types of objects need to implement this interface. For more information, see Custom Loading.

Most applications do not use the methods of this interface directly. However, IDirectMusicObject::GetDescriptor can be used to query an object for information, including its name, GUID, file path, and version.

The IDirectMusicObject interface must be obtained by calling another interface's QueryInterface method. It cannot be obtained by using CoCreateInstance.

The IDirectMusicObject interface has the following methods:

Descriptor�GetDescriptor ���ParseDescriptor ���SetDescriptor ��

All COM interfaces inherit the IUnknown interface methods. This interface supports the following three methods:

IUnknown�AddRef ���QueryInterface ���Release ��

The LPDMUS_OBJECT type is defined as a pointer to the IDirectMusicObject interface.

typedef IDirectMusicObject __RPC_FAR *LPDMUS_OBJECT;

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

DirectMusic Loader, Custom Loading

IDirectMusicObject::GetDescriptor

The IDirectMusicObject::GetDescriptor method retrieves the object's internal description.

The method takes a DMUS_OBJECTDESC structure and fills in everything the object knows about itself.

HRESULT GetDescriptor(

 LPDMUS_OBJECTDESC pDesc

);

Parameters

pDesc

Address of a DMUS_OBJECTDESC structure to be filled with data about the object. Depending on the implementation of the object and how it was loaded from a file, some or all of the standard parameters are filled by GetDescriptor. Check the flags in the dwValidData member to know which other members are valid.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Remarks

For an example, see Getting Object Descriptors.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicObject::SetDescriptor

IDirectMusicObject::ParseDescriptor

Given a file stream, the IDirectMusicObject::ParseDescriptor method scans the file for data that it can store in the DMUS_OBJECTDESC structure. All members that are supplied are marked with the appropriate flags in dwValidData.

This method is primarily used by the loader when scanning a directory for objects, and is not normally used directly by an application. However, if an application implements an object type in DirectMusic, it should support this method.

HRESULT ParseDescriptor(

 LPSTREAM pStream,

 LPDMUS_OBJECTDESC pDesc

);

Parameters

pStream

Stream source for the file.

pDesc

Address of a DMUS_OBJECTDESC structure to receive data about the file.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

DMUS_E_CHUNKNOTFOUND��DMUS_E_INVALID_BAND��DMUS_E_INVALIDFILE��DMUS_E_NOTADLSCOL��E_POINTER��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicObject::SetDescriptor

IDirectMusicObject::SetDescriptor

The IDirectMusicObject::SetDescriptor method sets some or all members of the object's internal description.

This method is primarily used by the loader when creating an object, and is not normally used directly by an application. However, if an application implements an object type in DirectMusic, it should support this method.

HRESULT SetDescriptor(

 LPDMUS_OBJECTDESC pDesc

);

Parameters

pDesc

Address of a DMUS_OBJECTDESC structure to receive data about the object. Data is copied to all members that are enabled in the dwValidData member

Return Values

If the method succeeds, the return value is S_OK, or S_FALSE (see Remarks).

If it fails, the method can return one of the following error values:

E_INVALIDARG��E_POINTER��

Remarks

Applications do not normally call this method on standard objects. Although it is possible to change the object descriptor returned by IDirectMusicObject::GetDescriptor, the new description cannot successfully be passed to the IDirectMusicLoader::GetObject method. For example, you could change the name of an object, but GetObject still find the object only under its original name, since it relies on the object's own implementation of SetDescriptor.

Members that are not copied keep their previous values. For example, an object might already have its name and GUID stored internally. A call to its SetDescriptor method with a new name and file path (and DMUS_OBJ_NAME | DMUS_OBJ_FILENAME in the dwValidData member) would replace the name, supply a file name, and leave the GUID as it is.

If the object is unable to set one or more members, it sets the members that it does support, clears the flags in dwValidData that it does not support, and returns S_FALSE. An application-defined object should support at least DMUS_OBJ_NAME and DMUS_OBJ_OBJECT.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicObject::ParseDescriptor, IDirectMusicObject::GetDescriptor

IDirectMusicPerformance

The IDirectMusicPerformance interface is the overall manager of music playback. It is used for adding and removing ports, mapping performance channels to ports, playing segments, dispatching messages and routing them through tools, requesting and receiving event notification, and setting and retrieving music parameters. It also has several methods for getting information about timing and for converting time and music values from one system to another.

If an application needs two complete sets of music playing at the same time, it can do so by creating more than one performance. Separate performances obey separate tempo maps, and so play completely asynchronously, whereas all segments within one performance play in lock step.

The methods of the IDirectMusicPerformance interface can be organized into the following groups:

Channels�AssignPChannel���AssignPChannelBlock���PChannelInfo��Instruments�DownloadInstrument��Messages�AllocPMsg���FreePMsg���SendPMsg��MIDI conversion�MIDIToMusic���MusicToMIDI��Notification�AddNotificationType���GetNotificationPMsg���RemoveNotificationType���SetNotificationHandle��Parameters�GetGlobalParam���GetParam���SetGlobalParam���SetParam��Ports�AddPort���RemovePort��Segments�GetSegmentState���IsPlaying���PlaySegment���Stop��Timing�AdjustTime���GetBumperLength���GetLatencyTime���GetPrepareTime���GetQueueTime���GetResolvedTime���GetTime���MusicToReferenceTime���ReferenceToMusicTime���RhythmToTime���SetBumperLength���SetPrepareTime���TimeToRhythm��Tools�GetGraph���SetGraph��Miscellaneous�CloseDown���Init���Invalidate��

All COM interfaces inherit the IUnknown interface methods. This interface supports the following methods:

IUnknown�AddRef ���QueryInterface ���Release ��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicPerformance::AddNotificationType

The IDirectMusicPerformance::AddNotificationType method adds a notification type to the performance. All segments and tracks are automatically updated with the new notification by calling their AddNotificationType methods.

HRESULT AddNotificationType(

 REFGUID rguidNotificationType

);

Parameters

rguidNotificationType

Reference to (C++) or address of (C) the identifier of the notification type to add. For the defined types, see DMUS_NOTIFICATION_PMSG. Applications can also define their own types for custom tracks.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_OUTOFMEMORY��E_POINTER��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::RemoveNotificationType, IDirectMusicSegment::AddNotificationType, IDirectMusicTrack::AddNotificationType, Notification and Event Handling

IDirectMusicPerformance::AddPort

The IDirectMusicPerformance::AddPort method assigns a port to the performance.

HRESULT AddPort(

 IDirectMusicPort* pPort

);

Parameters

pPort

Address of a variable that contains the port to add. If NULL, the default port is added. See Remarks.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

DMUS_E_NOT_INIT��DMUS_E_CANNOT_OPEN_PORT��E_OUTOFMEMORY��E_POINTER��

Remarks

If you want to pass NULL to this method, you must first pass NULL to IDirectMusicPerformance::Init.

When the default port is specified by passing NULL in pPort, it is assigned one channel group. If no PChannels have been set up for any other port, PChannels from 0 through 15 are assigned to MIDI channels from 0 through 15.

If pPort is not NULL, the port must be activated by a call to IDirectMusicPort::Activate, and a block of channels must be assigned by a call to IDirectMusicPerformance::AssignPChannelBlock.

This method creates a reference to IDirectMusicPort that is released by IDirectMusicPerformance::RemovePort or IDirectMusicPerformance::CloseDown.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::RemovePort, Default Port

IDirectMusicPerformance::AdjustTime

The IDirectMusicPerformance::AdjustTime method adjusts the internal performance time forward or backward. This is mostly used to compensate for drift when synchronizing to another source.

HRESULT AdjustTime(

 REFERENCE_TIME rtAmount

);

Parameters

rtAmount

Amount of time to add or subtract. This can be a number from –10,000,000 through 10,000,000 (–1 second through +1 second).

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_INVALIDARG.

Remarks

The adjusted time is used internally by DirectMusic. It is not reflected in the time retrieved by the IDirectMusicPerformance::GetTime method.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::GetTime, Timing

IDirectMusicPerformance::AllocPMsg

The IDirectMusicPerformance::AllocPMsg method allocates a performance message.

HRESULT AllocPMsg(

 ULONG cb,

 DMUS_PMSG** ppPMSG

);

Parameters

cb

Size of the message structure. For the various types, see Messages.

ppPMSG

Address of a variable to receive the pointer to the allocated message structure.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_INVALIDARG��E_OUTOFMEMORY��E_POINTER��

Remarks

The memory returned is not initialized to any particular state, with the exception of the pTool member of the DMUS_PMSG structure, which is initialized to 0, and the dwSize member, which is set to the value of cb.

Once the message is sent by IDirectMusicPerformance::SendPMsg, the application no longer owns the memory and is not responsible for freeing the message. However, a tool can free a message within its IDirectMusicTool::Flush or its IDirectMusicTool::ProcessPMsg method. Applications are also responsible for freeing notification messages.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::FreePMsg, IDirectMusicPerformance::SendPMsg, DirectMusic Messages

IDirectMusicPerformance::AssignPChannel

The IDirectMusicPerformance::AssignPChannel method assigns a single performance channel (PChannel) to the performance and maps it to a port, group, and MIDI channel.

HRESULT AssignPChannel(

 DWORD dwPChannel,

 IDirectMusicPort* pPort,

 DWORD dwGroup,

 DWORD dwMChannel

);

Parameters

dwPChannel

PChannel to assign.

pPort

Address of a variable that contains the port to which the PChannel is assigned.

dwGroup

Channel group on the port.

dwMChannel

Channel in the group. Must be in the range from 0 through 15.

Return Values

If the method succeeds, the return value is S_OK, or S_FALSE (see Remarks).

If it fails, the method can return one of the following error values:

E_INVALIDARG��E_POINTER��

Remarks

The method returns S_FALSE if dwGroup is out of the range of the port. The channel has been assigned, but the port cannot play this group.

The method returns E_INVALIDARG if dwMChannel is out of range or the port has not been added to the performance through a call to the IDirectMusicPerformance::AddPort method.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::AssignPChannelBlock, IDirectMusicPerformance::PChannelInfo, Channels

IDirectMusicPerformance::AssignPChannelBlock

The IDirectMusicPerformance::AssignPChannelBlock method assigns a block of 16 performance channels (PChannels) to the performance and maps them to a port and a channel group. This method must be called when a port has been added to a performance, except when the default port has been added by passing NULL to IDirectMusicPerformance::AddPort.

HRESULT AssignPChannelBlock(

 DWORD dwBlockNum,

 IDirectMusicPort* pPort,

 DWORD dwGroup

);

Parameters

dwBlockNum

Block number, in which 0 represents channels 0 through 15, 1 represents channels 16 through 31, and so on.

pPort

Address of a variable that contains the port to which the channels are assigned.

dwGroup

Channel group on the port. Must be 1 or greater.

Return Values

If the method succeeds, the return value is S_OK or S_FALSE (see Remarks).

If it fails, the method can return one of the following error values:

E_INVALIDARG��E_POINTER��

Remarks

The method returns S_FALSE if dwGroup is out of the range of the port. The channels have been assigned, but the port cannot play this group.

The method returns E_INVALIDARG if the port has not been added to the performance through a call to the IDirectMusicPerformance::AddPort method.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::AssignPChannel, IDirectMusicPerformance::PChannelInfo, Channels

IDirectMusicPerformance::CloseDown

The IDirectMusicPerformance::CloseDown method closes down the performance object. An application that created the performance object and called IDirectMusicPerformance::Init on it must call CloseDown before the performance is released.

HRESULT CloseDown();

Parameters

None.

Return Values

The method returns S_OK.

Remarks

Failure to call CloseDown can cause memory leaks or program failures.

CloseDown handles the release of the IDirectMusic interface if the application passed NULL, or a pointer to NULL, to IDirectMusicPerformance::Init, causing a DirectMusic object to be created. In cases in which the application explicitly created the DirectMusic object and passed the pointer to Init, the application is responsible for releasing the IDirectMusic interface.

CloseDown also releases any downloaded instruments that have not been unloaded.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::Init

IDirectMusicPerformance::DownloadInstrument

The IDirectMusicPerformance::DownloadInstrument method downloads DLS data for an instrument to a port.

HRESULT DownloadInstrument(

 IDirectMusicInstrument* pInst,

 DWORD dwPChannel,

 IDirectMusicDownloadedInstrument** ppDownInst,

 DMUS_NOTERANGE* pNoteRanges,

 DWORD dwNumNoteRanges,

 IDirectMusicPort** ppPort,

 DWORD* pdwGroup,

 DWORD* pdwMChannel

);

Parameters

pInst

Address of a variable that contains the instrument to download.

dwPChannel

PChannel to which the instrument is assigned.

ppDownInst

Address of a variable to receive a pointer to the downloaded instrument.

pNoteRanges

Address of an array of DMUS_NOTERANGE structures. Each entry in the array specifies a contiguous range of MIDI note messages to which the instrument must respond. An instrument region is downloaded only if at least one note in that region is specified in the DMUS_NOTERANGE structures.

dwNumNoteRanges

Number of DMUS_NOTERANGE structures in the array pointed to by pNoteRanges. If this value is set to 0, the pNoteRanges parameter is ignored, and all regions and wave data for the instrument are downloaded.

ppPort

Address of a variable to receive a pointer to the port to which the instrument was downloaded.

pdwGroup

Address of a variable to receive the group to which the instrument is assigned.

pdwMChannel

Address of a variable to receive the MIDI channel to which the instrument is assigned.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_INVALIDARG��E_POINTER��

Remarks

Most applications do not need to use this method because instrument downloading is normally handled by bands. See Downloading and Unloading Bands.

The method returns E_INVALIDARG if the PChannel is not assigned to a port.

To prevent loss of resources, unload the instrument by using the IDirectMusicPort::UnloadInstrument method when the instrument is no longer needed.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPort::DownloadInstrument, IDirectMusicPort::UnloadInstrument, Working with Instruments

IDirectMusicPerformance::FreePMsg

The IDirectMusicPerformance::FreePMsg method frees a message.

HRESULT FreePMsg(

 DMUS_PMSG* pPMSG

);

Parameters

pPMSG

Address of a variable that contains a message to free. This message must have been allocated using the IDirectMusicPerformance::AllocPMsg method.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

DMUS_E_CANNOT_FREE��E_POINTER��

Remarks

Most messages are released automatically by the performance once they have been processed, and IDirectMusicPerformance::FreePMsg must not be called on a message that has been sent by using IDirectMusicPerformance::SendPMsg. However, IDirectMusicPerformance::FreePMsg can be used within IDirectMusicTool::ProcessPMsg or IDirectMusicTool::Flush to free a message that is no longer needed. It must also be used to free notification messages.

The method returns DMUS_E_CANNOT_FREE in the following cases:

�SYMBOL 183 \f "Symbol" \s 11 \h �	If pPMSG is not a message allocated by AllocPMsg.

�SYMBOL 183 \f "Symbol" \s 11 \h �	If it is currently in the performance queue because IDirectMusicPerformance::SendPMsg was called on it.

�SYMBOL 183 \f "Symbol" \s 11 \h �	If it has already been freed.

If there is a value in the pTool, pGraph, or punkUser members (see DMUS_PMSG), each referenced object is released.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::AllocPMsg, DirectMusic Messages

IDirectMusicPerformance::GetBumperLength

The IDirectMusicPerformance::GetBumperLength method retrieves the amount of time between the time at which messages are placed in the port buffer and the time at which they begin to be processed by the port. For an overview of this topic, see Timing.

HRESULT GetBumperLength(

 DWORD* pdwMilliSeconds

);

Parameters

pdwMilliSeconds

Address of a variable that contains the amount of preplay time.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Remarks

The default value is 50 milliseconds.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::SetBumperLength

IDirectMusicPerformance::GetGlobalParam

The IDirectMusicPerformance::GetGlobalParam method retrieves global values from the performance.

HRESULT GetGlobalParam(

 REFGUID rguidType,

 void* pParam,

 DWORD dwSize

);

Parameters

rguidType

Reference to (C++) or address of (C) the identifier of the type of data.

pParam

Pointer to the allocated memory to receive a copy of the data. This must be the correct size, which is constant for each type of data. This parametercontains information that was passed in to the IDirectMusicPerformance::SetGlobalParam method.

dwSize

Size of the data. This is constant for each rguidType.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_INVALIDARG��E_POINTER��

Remarks

If SetGlobalParam has never been called for rguidType, the parameter might not be in the list of global data being handled by this performance, and the method might return E_INVALIDARG. In other words, do not assume that any parameter has a default value that can be retrieved by using GetGlobalParam.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::SetGlobalParam, IDirectMusicPerformance::GetParam, Music Parameters

IDirectMusicPerformance::GetGraph

The IDirectMusicPerformance::GetGraph method retrieves the tool graph of a performance.

HRESULT GetGraph(

 IDirectMusicGraph** ppGraph

);

Parameters

ppGraph

Address of a variable to receive a pointer to the tool graph.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

DMUS_E_NOT_FOUND��E_POINTER��

Remarks

The reference count of the graph is incremented.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::SetGraph, IDirectMusicSegment::GetGraph, IDirectMusicPerformance::SendPMsg

IDirectMusicPerformance::GetLatencyTime

The IDirectMusicPerformance::GetLatencyTime method retrieves the current latency time. Latency time is the time being heard from the speakers plus the time required to queue and render messages into the IDirectMusicPort. For an overview of this topic, see Timing.

HRESULT GetLatencyTime(

 REFERENCE_TIME * prtTime

);

Parameters

prtTime

Address of a variable to receive the current latency time.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_POINTER��DMUS_E_NO_MASTER_CLOCK��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicPerformance::GetNotificationPMsg

The IDirectMusicPerformance::GetNotificationPMsg method retrieves a pending notification message.

HRESULT GetNotificationPMsg(

 DMUS_NOTIFICATION_PMSG** ppNotificationPMsg

);

Parameters

ppNotificationPMsg

Address of a variable to receive a pointer to a DMUS_NOTIFICATION_PMSG structure. The application retrieving this message is responsible for calling IDirectMusicPerformance::FreePMsg on it.

Return Values

If the method succeeds, the return value is S_OK or, S_FALSE if there are no more notification events to return.

If it fails, the method can return E_POINTER.

Remarks

For an example, see Handle Notifications in the tutorial on using compositions.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

Notification and Event Handling

IDirectMusicPerformance::GetParam

The IDirectMusicPerformance::GetParam method retrieves data from a track inside the control segment.

HRESULT GetParam(

 REFGUID rguidType,

 DWORD dwGroupBits,

 DWORD dwIndex,

 MUSIC_TIME mtTime,

 MUSIC_TIME* pmtNext,

 void* pParam

);

Parameters

rguidType

Reference to (C++) or address of (C) the identifier of the type of data to obtain. See Track Parameter Types.

dwGroupBits

Group that the desired track is in (see Remarks). Set this value to 0xFFFFFFFF for all groups.

dwIndex

Index of the track in the group from which to obtain the data.

mtTime

Time from which to obtain the data, in performance time.

pmtNext

Address of a variable to receive the time (relative to mtTime) until which the data is valid. If this returns a value of 0, either the data is always valid, or it is not known when it might become invalid. If this information is not needed, pmtNext can be set to NULL. See Remarks.

pParam

Address of an allocated structure in which the data is to be returned. The structure must be of the appropriate kind and size for the data type identified by rguidType.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

DMUS_E_GET_UNSUPPORTED��DMUS_E_NO_MASTER_CLOCK��DMUS_E_NOT_FOUND��DMUS_E_TRACK_NOT_FOUND��E_POINTER��

Remarks

Normally, the primary segment is the control segment. However, a secondary segment can be designated as a control segment when it is played. For more information on control segments, see Segments and DMUS_SEGF_FLAGS.

The data returned in *pParam can become invalid before the time returned in *pmtNext if another control segment is cued.

Each track belongs to one or more groups, and each group is represented by a bit in dwGroupBits. For more information, see IDirectMusicSegment::InsertTrack and Identifying the Track.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::SetParam, IDirectMusicSegment::GetParam, IDirectMusicTrack::GetParam, IDirectMusicPerformance::SetGlobalParam, IDirectMusicPerformance::GetTime, Music Parameters

IDirectMusicPerformance::GetPrepareTime

The IDirectMusicPerformance::GetPrepareTime method retrieves the amount of time ahead that IDirectMusicTrack::Play is called before the messages is heard through the speakers. This interval allows sufficient time for the message to be processed by tools.

HRESULT GetPrepareTime(

 DWORD* pdwMilliSeconds

);

Parameters

pdwMilliSeconds

Address of a variable to receive the amount of prepare time.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Remarks

The default value is 1000 milliseconds.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::SetPrepareTime, Timing

IDirectMusicPerformance::GetQueueTime

The IDirectMusicPerformance::GetQueueTime method retrieves the current flush time, which is the earliest time in the queue at which messages can be flushed. Messages that have time stamps earlier than this time have already been sent to the port and cannot be invalidated.

HRESULT GetQueueTime(

 REFERENCE_TIME * prtTime

);

Parameters

prtTime

Address of a variable to receive the current flush time.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_POINTER��DMUS_E_NO_MASTER_CLOCK��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

Latency and Bumper Time

IDirectMusicPerformance::GetResolvedTime

The IDirectMusicPerformance::GetResolvedTime method resolves a given time to a given boundary.

HRESULT GetResolvedTime(

 REFERENCE_TIME rtTime,

 REFERENCE_TIME* prtResolved,

 DWORD dwTimeResolveFlags

);

Parameters

rtTime

Time to resolve. If this is less than the current time, the current time is used.

prtResolved

Address of a variable to receive the resolved time.

dwTimeResolveFlags

One or more DMUS_TIME_RESOLVE_FLAGS describing the resolution desired.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

Timing

IDirectMusicPerformance::GetSegmentState

The IDirectMusicPerformance::GetSegmentState method retrieves the currently playing primary segment state or the primary segment state that is playing at a given time.

HRESULT GetSegmentState(

 IDirectMusicSegmentState ** ppSegmentState,

 MUSIC_TIME mtTime

);

Parameters

ppSegmentState

Address of a variable to receive a pointer to the segment state. The caller is responsible for calling Release on this pointer.

mtTime

Time for which the segment state is to be retrieved.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

DMUS_E_NOT_FOUND��E_POINTER��

Remarks

To get the currently playing segment state, pass the time returned by the IDirectMusicPerformance::GetTime method. The currently playing segment state represents the segment currently generating messages. Because of latency, the currently playing segment state is not necessarily the one being heard.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicPerformance::GetTime

The IDirectMusicPerformance::GetTime method retrieves the current time of the performance.

HRESULT GetTime(

 REFERENCE_TIME* prtNow,

 MUSIC_TIME* pmtNow

);

Parameters

prtNow

Address of a variable to receive the current time in REFERENCE_TIME format. Can be NULL.

pmtNow

Address of a variable to receive the current time in MUSIC_TIME format. Can be NULL.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

DMUS_E_NO_MASTER_CLOCK��E_POINTER��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

Timing

IDirectMusicPerformance::Init

The IDirectMusicPerformance::Init method associates the performance with a DirectMusic object and a DirectSound object.

HRESULT Init(

 IDirectMusic** ppDirectMusic,

 LPDIRECTSOUND pDirectSound,

 HWND hWnd

);

Parameters

ppDirectMusic

Address of a variable containing the IDirectMusic interface pointer to be assigned to the performance, if one already exists. The reference count of the interface is incremented. Ports passed to the IDirectMusicPerformance::AddPort method must be created from this DirectMusic object.

If the variable contains NULL, a DirectMusic object is created, and the interface pointer is returned.

If ppDirectMusic is NULL, a DirectMusic object is created and used internally by the performance.

See Remarks.

pDirectSound

Address of a IDirectSound interface to use by default for wave output. If this value is NULL, DirectMusic creates a DirectSound object. There should, however, only be one DirectSound object per process. If your application uses DirectSound separately, it should pass in that interface here, or to IDirectMusic::SetDirectSound if the application creates the DirectMusic object explicitly.

hWnd

Window handle to be used for the creation of DirectSound. This parameter can be NULL, in which case the foreground window is used. See Remarks.

This parameter is ignored if pDirectSound is not NULL, in which case the application is responsible for setting the window handle in a call to IDirectSound::SetCooperativeLevel.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

DMUS_E_ALREADY_INITED��E_OUTOFMEMORY��E_POINTER��

Remarks

This method should be called only once; it must be called before the performance can play.

A DirectMusic object can be associated with the performance in any of the following ways:

�SYMBOL 183 \f "Symbol" \s 11 \h �	The application creates its own DirectMusic object and gives it to the performance by passing the address of the IDirectMusic pointer in ppDirectMusic. In this case, the pDirectSound and hWnd parameters are ignored because the application is responsible for calling IDirectMusic::SetDirectSound.

�SYMBOL 183 \f "Symbol" \s 11 \h �	The application allows the performance to create the DirectMusic object and wants a pointer to that object. In this case, *ppDirectMusic is NULL on entry, and contains the IDirectMusic pointer on exit.

�SYMBOL 183 \f "Symbol" \s 11 \h �	The application allows the performance to initialize itself and does not need a DirectMusic object pointer. In this case, ppDirectMusic is NULL.

The performance must be terminated by using the IDirectMusicPerformance::CloseDown method before being released.

You can pass NULL in the hWnd parameter to pass the current foreground window handle to DirectSound. However, do not assume that the application window will be in the foreground during initialization. In general, the top-level application window handle is passed to DirectMusic, DirectSound, and DirectDraw. See the Remarks for IDirectSound::SetCooperativeLevel.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

Creating the Performance, Integrating DirectMusic and DirectSound

IDirectMusicPerformance::Invalidate

The IDirectMusicPerformance::Invalidate method flushes all queued messages from the supplied time forward and causes all tracks of all segments to resend their data from the given time forward.

HRESULT Invalidate(

 MUSIC_TIME mtTime,

 DWORD dwFlags

);

Parameters

mtTime

Time from which to invalidate, adjusted by dwFlags. Setting this value to 0 causes immediate invalidation.

dwFlags

Flags that adjust mtTime to align to measures, beats, or grids. This value can be 0 or one of the following members of the DMUS_SEGF_FLAGS enumeration:

DMUS_SEGF_MEASURE�DMUS_SEGF_BEAT�DMUS_SEGF_GRID

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return DMUS_E_NO_MASTER_CLOCK.

Remarks

If mtTime is so long ago that it is impossible to invalidate that time, the earliest possible time is used.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

Prepare Time, Segment Timing

IDirectMusicPerformance::IsPlaying

The IDirectMusicPerformance::IsPlaying method determines whether a particular segment or segment state is currently being heard from the speakers.

HRESULT IsPlaying(

 IDirectMusicSegment* pSegment,

 IDirectMusicSegmentState* pSegState

);

Parameters

pSegment

Segment to check. If NULL, check only pSegState.

pSegState

Segment state to check. If NULL, check only pSegment.

Return Values

If the method succeeds and the requested segment or segment state is playing, the return value is S_OK. If neither is playing or only one was requested and it is not playing, the return value is S_FALSE.

If it fails, the method can return one of the following error values:

E_POINTER��DMUS_E_NO_MASTER_CLOCK��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicPerformance::MIDIToMusic

The IDirectMusicPerformance::MIDIToMusic method converts a MIDI note value to a DirectMusic music value, using a supplied chord, subchord level, and play mode.

HRESULT MIDIToMusic(

 BYTE bMIDIValue,

 DMUS_CHORD_KEY* pChord,

 BYTE bPlayMode,

 BYTE bChordLevel,

 WORD *pwMusicValue

);

Parameters

bMIDIValue

MIDI note value to convert, in the range from 0 through 127.

pChord

Address of a DMUS_CHORD_KEY structure containing information about the chord and key structure to be used in translating the note. This includes the underlying scale. For example, if the chord is a CM7, the note is interpreted against the chord positions for root note C, chord intervals of a major seventh. The structure carries up to eight parallel subchords, with chord intervals, root, scale, and inversion flags for each. It also carries the overall key root.

bPlayMode

Play mode determining how the music value is derived from the chord. For a list of values, see DMUS_PLAYMODE_FLAGS.

bChordLevel

Subchord level, defining which subchords can be used. See DMUS_SUBCHORD.

pwMusicValue

Address of a variable to receive the music value. For information on this value, see DMUS_NOTE_PMSG.

Return Values

If the method succeeds, the return value is one of the following. See Remarks.

S_OK��DMUS_S_DOWN_OCTAVE��DMUS_S_UP_OCTAVE��

If it fails, the method can return one of the following error values:

DMUS_E_CANNOT_CONVERT��E_INVALIDARG��

Remarks

If the method fails, *pwMusicValue is not changed.

If the return value is DMUS_S_UP_OCTAVE or DMUS_DOWN_OCTAVE, the note conversion generated a note value that is less than 0 or greater than 127, so it has been bumped up or down one or more octaves to be in the proper MIDI range of from 0 through 127. This can occur when using play modes DMUS_PLAYMODE_FIXEDTOCHORD and DMUS_PLAYMODE_FIXEDTOKEY, both of which return MIDI values in *pwMusicValue.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::MusicToMIDI, Music Values and MIDI Notes

IDirectMusicPerformance::MusicToMIDI

The IDirectMusicPerformance::MusicToMIDI method converts a DirectMusic music value to a MIDI note value.

HRESULT MusicToMIDI(

 WORD wMusicValue,

 DMUS_CHORD_KEY* pChord,

 BYTE bPlayMode,

 BYTE bChordLevel,

 BYTE *pbMIDIValue

);

Parameters

wMusicValue

Music value to convert. For information on music values, see DMUS_NOTE_PMSG.

pChord

Address of a DMUS_CHORD_KEY structure containing information about the chord and key structure to be used in translating the note. This includes the underlying scale. For example, if the chord is a CM7, the note is interpreted against the chord positions for root note C, chord intervals of a major seventh. The structure carries up to eight parallel subchords, with chord intervals, root, scale, and inversion flags for each. It also carries the overall key root.

bPlayMode

Play mode determining how the music value is related to the chord. For a list of values, see DMUS_PLAYMODE_FLAGS.

bChordLevel

Subchord level, defining which subchords can be used. See DMUS_SUBCHORD.

pbMIDIValue

Address of a variable to receive the MIDI value, in the range from 0 through 127.

Return Values

If the method succeeds, the return value is one of the following. See Remarks.

S_OK��DMUS_S_OVER_CHORD��DMUS_S_DOWN_OCTAVE��DMUS_S_UP_OCTAVE��

If it fails, the method can return one of the following error values:

DMUS_E_CANNOT_CONVERT��E_INVALIDARG��

Remarks

If the method fails or returns DMUS_S_OVER_CHORD, *pwMIDIValue is not changed.

The method returns DMUS_S_OVER_CHORD if no note has been calculated because the music value has the note at a position higher than the top note of the chord. This applies only to DMUS_PLAYMODE_NORMALCHORD play mode. The caller should not do anything with the note, which is not meant to be played against this chord.

If the return value is DMUS_S_UP_OCTAVE or DMUS_DOWN_OCTAVE, the note conversion generated a note value that is less than 0 or greater than 127, so it has been bumped up or down one or more octaves to be in the proper MIDI range of 0 through 127. This can occur when using any play mode except DMUS_PLAYMODE_FIXED.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::MIDIToMusic, Music Values and MIDI Notes

IDirectMusicPerformance::MusicToReferenceTime

The IDirectMusicPerformance::MusicToReferenceTime method converts time in MUSIC_TIME format to time in REFERENCE_TIME format.

HRESULT MusicToReferenceTime(

 MUSIC_TIME mtTime,

 REFERENCE_TIME* prtTime

);

Parameters

mtTime

Time in MUSIC_TIME format to convert.

prtTime

Address of a variable to receive the converted time in REFERENCE_TIME format.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_POINTER��DMUS_E_NO_MASTER_CLOCK��

Remarks

Because reference time has a greater precision than music time, a time that has been converted from reference time to music time, and then back again, probably does not have its original value.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::ReferenceToMusicTime, Clock Time vs. Music Time

IDirectMusicPerformance::PChannelInfo

The IDirectMusicPerformance::PChannelInfo method retrieves the port, group, and MIDI channel for a given performance channel.

HRESULT PChannelInfo(

 DWORD dwPChannel,

 IDirectMusicPort** ppPort,

 DWORD* pdwGroup,

 DWORD* pdwMChannel

);

Parameters

dwPChannel

PChannel for which information is desired.

ppPort

Address of a variable to receive an IDirectMusicPort pointer. This value can be NULL if the pointer is not wanted. If a non-NULL pointer is returned, the reference count is incremented, and it is the responsibility of the application to call Release on the pointer. See also Remarks.

pdwGroup

Address of a variable to receive the group on the port. Can be NULL if this value is not wanted.

pdwMChannel

Address of a variable to receive the MIDI channel on the group. Can be NULL if this value is not wanted.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_INVALIDARG��E_POINTER��

Remarks

A NULL pointer is returned in *ppPort if the port has been removed by a call to IDirectMusicPerformance::RemovePort, but the method succeeds.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::AssignPChannel, IDirectMusicPerformance::AssignPChannelBlock

IDirectMusicPerformance::PlaySegment

The IDirectMusicPerformance::PlaySegment method begins playback of a segment.

HRESULT PlaySegment(

 IDirectMusicSegment* pSegment,

 DWORD dwFlags,

 __int64 i64StartTime,

 IDirectMusicSegmentState** ppSegmentState

);

Parameters

pSegment

Segment to play.

dwFlags

Flags that modify the method's behavior. See DMUS_SEGF_FLAGS.

i64StartTime

Time at which to begin playing the segment, adjusted to any resolution boundary specified in dwFlags. The time is in music time unless the DMUS_SEGF_REFTIME flag is set. A value of 0 causes the segment to start playing as soon as possible.

ppSegmentState

Address of a variable to receive a pointer to the segment state for this instance of the playing segment. This field can be NULL. If it is non-NULL, the segment state pointer is returned, and the application must call Release on it.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_OUTOFMEMORY��E_POINTER��DMUS_E_NO_MASTER_CLOCK��DMUS_E_SEGMENT_INIT_FAILED��DMUS_E_TIME_PAST��

Remarks

Segments should be greater than 250 milliseconds in length.

The boundary resolutions in dwFlags are relative to the currently playing primary segment.

If a primary segment is scheduled to play while another primary segment is playing, the first one stops unless you set the DMUS_SEGF_QUEUE flag for the second segment, in which case it plays as soon as the first one finishes.

For more information on the exact start time of segments, see Segment Timing. For information on how the start time of segments can be affected by tempo changes, see Clock Time vs. Music Time.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

Segments

IDirectMusicPerformance::ReferenceToMusicTime

The IDirectMusicPerformance::ReferenceToMusicTime method converts time in REFERENCE_TIME format to time in MUSIC_TIME format.

HRESULT ReferenceToMusicTime(

 REFERENCE_TIME rtTime,

 MUSIC_TIME* pmtTime

);

Parameters

rtTime

Time in REFERENCE_TIME format.

pmtTime

Address of a variable to receive the converted time in MUSIC_TIME format.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_POINTER��DMUS_E_NO_MASTER_CLOCK��

Remarks

If a master tempo has been set for the performance, it is taken into account when converting to music time. See Setting and Retrieving Global Parameters.

Because music time is less precise than reference time, rounding off occurs.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::MusicToReferenceTime, Clock Time vs. Music Time

IDirectMusicPerformance::RemoveNotificationType

The IDirectMusicPerformance::RemoveNotificationType method removes a previously added notification type from the performance. All segments and tracks are updated by a call to their RemoveNotificationType methods.

HRESULT RemoveNotificationType(

 REFGUID rguidNotificationType

);

Parameters

rguidNotificationType

Reference to (C++) or address of (C) the identifier of the notification type to remove. (For the defined types, see DMUS_NOTIFICATION_PMSG.) If this value is GUID_NULL, all notifications are to be removed.

Return Values

If the method succeeds, the return value is S_OK or S_FALSE (see Remarks).

If it fails, the method can return E_POINTER.

Remarks

S_FALSE is returned when rguidNotificationType is not an active notification.

If a notification was added to a segment that has stopped playing, the performance cannot remove the notification type from that segment because it no longer has a reference to the segment.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::AddNotificationType, IDirectMusicSegment::RemoveNotificationType, IDirectMusicTrack::RemoveNotificationType, Notification and Event Handling

IDirectMusicPerformance::RemovePort

The IDirectMusicPerformance::RemovePort method removes a port from the performance. Any PChannels that map to this port are invalidated, and messages stamped with them do not play.

HRESULT RemovePort(

 IDirectMusicPort* pPort

);

Parameters

pPort

Port to remove.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_INVALIDARG��E_POINTER��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::AddPort

IDirectMusicPerformance::RhythmToTime

The IDirectMusicPerformance::RhythmToTime method converts rhythm time to music time.

HRESULT RhythmToTime(

 WORD wMeasure,

 BYTE bBeat,

 BYTE bGrid,

 short nOffset,

 DMUS_TIMESIGNATURE *pTimeSig,

 MUSIC_TIME *pmtTime)

);

Parameters

wMeasure

Measure of the time to convert.

bBeat

Beat of the time to convert.

bGrid

Grid of the time to convert.

nOffset

Offset from the grid, in music-time ticks, of the time to convert.

pTimeSig

Address of a DMUS_TIMESIGNATURE structure containing information about the time signature.

pmtTime

Address of a variable to receive the music time.

Return Values

If the method succeeds, the return value is S_OK.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::TimeToRhythm

IDirectMusicPerformance::SendPMsg

The IDirectMusicPerformance::SendPMsg method sends a performance message. This method is called by tracks when they are played. It might also be called by a tool to inject new data into a performance.

HRESULT SendPMsg(

 DMUS_PMSG* pPMSG

);

Parameters

pPMSG

Message allocated by IDirectMusicPerformance::AllocPMsg.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

DMUS_E_NO_MASTER_CLOCK��DMUS_E_ALREADY_SENT��E_INVALIDARG��E_POINTER��

Remarks

The dwFlags member (see DMUS_PMSG) must contain either DMUS_PMSGF_MUSICTIME or DMUS_PMSGF_REFTIME, depending on the time stamp in either rtTime or mtTime. The dwFlags member should also contain the appropriate delivery type—DMUS_PMSGF_TOOL_QUEUE, DMUS_PMSGF_TOOL_ATTIME, or DMUS_PMSGF_TOOL_IMMEDIATE—depending on the type of message. If none is selected, DMUS_PMSGF_TOOL_IMMEDIATE is used by default.

If the time of the message is set to 0 and the dwFlags member contains DMUS_PMSGF_REFTIME, it is assumed that this message is cued to go out immediately

In most cases, the IDirectMusicGraph::StampPMsg method should be called on the message before SendPMsg is called. However, when sending a message directly to the main output tool, this step can be skipped. If you want the message to pass only through the performance graph, obtain the IDirectMusicGraph interface by calling IDirectMusicPerformance::QueryInterface. Otherwise, obtain it by calling IDirectMusicSegment::QueryInterface. Do not attempt to obtain the interface by calling IDirectMusicPerformance::GetGraph or IDirectMusicSegment::GetGraph; these methods return a pointer to the graph object, rather than to the implementation of the IDirectMusicGraph interface on the performance or segment.

Normally, the performance frees the message after it has been processed. For more information, see the Remarks for IDirectMusicPerformance::FreePMsg.

The follow code example shows how to allocate and send a system-exclusive message and a tempo message:

/* Assume that pPerformance is a valid IDirectMusicPerformance

 pointer and that mtTime is an initialized MUSIC_TIME

 variable. */

IDirectMusicGraph* pGraph;

/# Get the graph pointer from the performance. If you wanted the

 message to go through a segment graph, you would

 QueryInterface a segment object instead. */

if (SUCCEEDED(pPerformance->QueryInterface(

 IID_IDirectMusicGraph, (void**)&pGraph)))

{

 // Allocate a DMUS_SYSEX_PMSG of the appropriate size,

 // and read the system-exclusive data into it.

 DMUS_SYSEX_PMSG* pSysEx;

 if (SUCCEEDED(pPerformance->AllocPMsg(

 sizeof(DMUS_SYSEX_PMSG) + m_dwSysExLength,

 (DMUS_PMSG**)&pSysEx)))

 {

 // All fields are initialized to 0 from the

 // AllocPMsg method.

 // Assume that m_pbSysExData is a pointer to an array

 // containing data of length m_dwSysExLength.

 memcpy(pSysEx->abData, m_pbSysExData, m_dwSysExLength);

 pSysEx->dwSize = sizeof(DMUS_SYSEX_PMSG);

 pSysEx->dwLen = dwSysExLength;

 pSysEx->mtTime = mtTime;

 pSysEx->dwFlags = DMUS_PMSGF_MUSICTIME;

 pSysEx->dwType = DMUS_PMSGT_SYSEX;

 pGraph->StampPMsg((DMUS_PMSG*)pSysEx);

 if (FAILED(pPerformance->SendPMsg((DMUS_PMSG*)pSysEx)))

 {

 pPerformance->FreePMsg((DMUS_PMSG*)pSysEx);

 }

 }

 // Change the tempo at time mtTime to 120 bpm.

 DMUS_TEMPO_PMSG* pTempo;

 if(SUCCEEDED(pPerformance->AllocPMsg(

 sizeof(DMUS_TEMPO_PMSG),

 (DMUS_PMSG**)&pTempo)))

 {

 pTempo->dwSize = sizeof(DMUS_TEMPO_PMSG);

 pTempo->dblTempo = 120;

 pTempo->mtTime = mtTime;

 pTempo->dwFlags = DMUS_PMSGF_MUSICTIME;

 pTempo->dwType = DMUS_PMSGT_TEMPO;

 pGraph->StampPMsg((DMUS_PMSG*)pTempo);

 if (FAILED(pPerformance->SendPMsg((DMUS_PMSG*)pTempo)))

 {

 pPerformance->FreePMsg((DMUS_PMSG*)pTempo);

 }

 }

 pGraph->Release();

}

The next code example shows a function that sends a note message associated with the track identified by dwTrackID. The virtual track ID should be 0 if the message is not being generated from a DirectMusicTrack object.

HRESULT CreateNotePMsg(IDirectMusicPerformance* pPerformance,

 MUSIC_TIME mtTime, DWORD dwTrackID)

{

 // Allocate a Note PMessage.

 DMUS_NOTE_PMSG* pNote = NULL;

 HRESULT hr = pPerformance->AllocPMsg(sizeof(DMUS_NOTE_PMSG),

 (DMUS_PMSG**) &pNote);

 if (FAILED(hr)) return hr;

 pNote->dwSize = sizeof(DMUS_NOTE_PMSG); // Size of a Note PMessage

 pNote->rtTime = 0; // Ignored

 pNote->mtTime = mtTime; // When to play the note

 pNote->dwFlags = DMUS_PMSGF_MUSICTIME; // Use the mtTime field.

 pNote->dwPChannel = 5; // Play on PChannel 5.

 pNote->dwVirtualTrackID = dwTrackID; // Track ID from parameter.

 // The following two fields should be set to NULL when a

 // message is initially sent. They will be updated in

 // IDirectMusicGraph::StampPMsg.

 pNote->pTool = NULL;

 pNote->pGraph = NULL;

 pNote->dwType = DMUS_PMSGT_NOTE;

 pNote->dwVoiceID = 0; // For DirectX 6.1, always 0

 pNote->dwGroupID = 0xFFFFFFFF; // All track groups

 pNote->punkUser = NULL; // Always NULL

 // Get the current time signature from the performance

 // to compute measure and beat information.

 DMUS_TIMESIGNATURE TimeSig;

 MUSIC_TIME mtNext;

 hr = pPerformance->GetParam(GUID_TimeSignature, 0xFFFFFFFF,

 0, mtTime, &mtNext, &TimeSig);

 if (FAILED(hr)) return hr;

 // Recompute TimeSig.mtTime to have the value expected

 // by pPerformance->TimeToRhythm.

 TimeSig.mtTime += mtTime;

 // Get the current chord from the performance

 // to create a note value.

 DMUS_CHORD_KEY Chord;

 hr = pPerformance->GetParam(GUID_ChordParam, 0xFFFFFFFF, 0,

 mtTime, &mtNext, &Chord);

 if (FAILED(hr)) return hr;

 // Create a note with octave 5, chord tone 2 (fifth), scale

 // offset 1 (=> sixth), and no accidentals.

 WORD wMusicValue = 0x5210;

 // Use DMUS_PLAYMODE_PEDALPOINT as your play mode

 // in pPerformance->MusicToMIDI.

 BYTE bPlayModeFlags = DMUS_PLAYMODE_PEDALPOINT;

 // Fill in the fields specific to DMUS_NOTE_PMSG.

 pNote->wMusicValue = wMusicValue;

 hr = pPerformance->MusicToMIDI(

 wMusicValue,

 &Chord,

 bPlayModeFlags,

 0,

 &(pNote->bMidiValue));

 if (FAILED(hr)) return hr;

 hr = pPerformance->TimeToRhythm(

 TimeSig.mtTime,

 &TimeSig,

 &(pNote->wMeasure),

 &(pNote->bBeat),

 &(pNote->bGrid),

 &(pNote->nOffset));

 if (FAILED(hr)) return hr;

 pNote->mtDuration = DMUS_PPQ; // Quarter note duration

 pNote->bVelocity = 120; // MIDI velocity (0 to 127)

 pNote->bFlags = DMUS_NOTEF_NOTEON; // Always set to this value.

 pNote->bTimeRange = 250; // Randomize start time a lot.

 pNote->bDurRange = 5; // Randomize duration a little.

 pNote->bVelRange = 0; // Don't randomize velocity.

 pNote->bPlayModeFlags = bPlayModeFlags;

 pNote->bSubChordLevel = 0; // Note uses subchord level 0.

 pNote->cTranspose = 0; // No transposition

 // Stamp the message with the performance graph.

 IDirectMusicGraph* pGraph;

 hr = pPerformance->QueryInterface(IID_IDirectMusicGraph,

 (void**)&pGraph);

 if (FAILED(hr)) return hr;

 pGraph->StampPMsg((DMUS_PMSG*)pNote);

 pGraph->Release();

 // Finally, send the message.

 hr = pPerformance->SendPMsg((DMUS_PMSG*)pNote);

 if (FAILED(hr))

 {

 pPerformance->FreePMsg((DMUS_PMSG*)pNote);

 return hr;

 }

 return S_OK;

}

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicTool::ProcessPMsg, Messages, DirectMusic Messages, DirectMusic Tools

IDirectMusicPerformance::SetBumperLength

The IDirectMusicPerformance::SetBumperLength method sets the amount of time to buffer ahead of the port's latency for messages to be sent to the port for rendering. For an overview of this topic, see Timing.

HRESULT SetBumperLength(

 DWORD dwMilliSeconds

);

Parameters

dwMilliSeconds

Amount of preplay time, in milliseconds. The default value is 50.

Return Values

The method returns S_OK.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::GetBumperLength, IDirectMusicPerformance::SetPrepareTime

IDirectMusicPerformance::SetGlobalParam

The IDirectMusicPerformance::SetGlobalParam method sets global values for the performance.

HRESULT SetGlobalParam(

 REFGUID rguidType,

 void* pParam,

 DWORD dwSize

);

Parameters

rguidType

Reference to (C++) or address of (C) the identifier of the type of data.

pParam

Pointer to the data to be copied and stored by the performance.

dwSize

Size of the data. This is constant for each rguidType.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_FAIL��E_POINTER��E_OUTOFMEMORY��

Remarks

The dwSize parameter is needed because the performance does not know about all types of data. New types can be created as needed.

For the parameters defined by DirectMusic and their associated data types, see Setting and Retrieving Global Parameters.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::GetGlobalParam, IDirectMusicPerformance::SetParam, Music Parameters

IDirectMusicPerformance::SetGraph

The IDirectMusicPerformance::SetGraph method replaces the performance's tool graph.

HRESULT SetGraph(

 IDirectMusicGraph* pGraph

);

Parameters

pGraph

Tool graph to be set. Can be set to NULL to clear the graph from the performance.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Remarks

Any messages flowing through tools in the current tool graph are deleted.

The graph's reference count is incremented by this method, so it is safe to release the original reference.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicSegment::SetGraph, IDirectMusicPerformance::GetGraph, IDirectMusicPerformance::SendPMsg

IDirectMusicPerformance::SetNotificationHandle

The IDirectMusicPerformance::SetNotificationHandle method sets the event handle (created by the Microsoft® Win32® CreateEvent function) for notifications. The application should use the Win32 WaitForSingleObject function on this handle. When signaled, the application should call the IDirectMusicPerformance::GetNotificationPMsg method to retrieve the notification event.

HRESULT SetNotificationHandle(

 HANDLE hNotification,

 REFERENCE_TIME rtMinimum

);

Parameters

hNotification

Event handle created by CreateEvent, or 0 to clear out an existing handle.

rtMinimum

Minimum time that the performance should hold onto old notify events before discarding them. The value 0 means to use the default minimum time of 20,000,000 reference time units, which is 2 seconds, or the previous value if this method has been called previously. If the application has not called GetNotificationPMsg by this time, the event is discarded to free the memory.

Return Values

The method returns S_OK.

Remarks

It is the application's responsibility to call the Win32 CloseHandle function on the notification handle when it is no longer needed.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

Notification and Event Handling

IDirectMusicPerformance::SetParam

The IDirectMusicPerformance::SetParam method sets data on a track inside the control segment.

HRESULT SetParam(

 REFGUID rguidType,

 DWORD dwGroupBits,

 DWORD dwIndex,

 MUSIC_TIME mtTime,

 void* pParam

);

Parameters

rguidType

Reference to (C++) or address of (C) the identifier of the type of data to set. See Track Parameter Types.

dwGroupBits

Group that the desired track is in.

dwIndex

Index of the track in the group identified by dwGroupBits in which data is to be set.

mtTime

Time at which to set the data. Unlike IDirectMusicSegment::SetParam, this time is in performance time. The start time of the segment is subtracted from this time, and the result is passed to IDirectMusicSegment::SetParam.

pParam

Address of a structure containing the data. This structure must be of the appropriate kind and size for the data type identified by rguidType.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

DMUS_E_NO_MASTER_CLOCK��DMUS_E_SET_UNSUPPORTED��DMUS_E_TRACK_NOT_FOUND��E_POINTER��

Remarks

Normally the primary segment is the control segment. However, a secondary segment can be designated as the control segment when it is played. See DMUS_SEGF_FLAGS.

For an explanation of dwGroupBits and dwIndex, see Identifying the Track.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::GetParam, IDirectMusicPerformance::SetGlobalParam, IDirectMusicSegment::SetParam, IDirectMusicTrack::SetParam, IDirectMusicPerformance::GetTime, Music Parameters

IDirectMusicPerformance::SetPrepareTime

The IDirectMusicPerformance::SetPrepareTime method sets the interval between the time that the IDirectMusicTrack::Play method is called and the time at which the messages should be heard through the speakers.

HRESULT SetPrepareTime(

 DWORD dwMilliSeconds

);

Parameters

dwMilliSeconds

Amount of prepare time, in milliseconds. The default value is 1000.

Return Values

The method returns S_OK.

Remarks

For an overview, see Timing.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::GetPrepareTime, IDirectMusicPerformance::SetBumperLength

IDirectMusicPerformance::Stop

The IDirectMusicPerformance::Stop method stops playback of one or more segments.

HRESULT Stop(

 IDirectMusicSegment* pSegment,

 IDirectMusicSegmentState* pSegmentState,

 MUSIC_TIME mtTime,

 DWORD dwFlags

);

Parameters

pSegment

Segment to stop playing. All segment states based on this segment are stopped at mtTime. See Remarks.

pSegmentState

Segment state to stop playing. See Remarks.

mtTime

Time at which to stop the segment, segment state, or both. If the time is in the past or 0 is passed in this parameter, the requested segments and segment states stop playing immediately.

dwFlags

Flag that indicates when the stop should occur. Boundaries are in relation to the current primary segment. Must be one of the following values:

0

Stop immediately.

DMUS_SEGF_GRID

Stop on the next grid boundary at or after mtTime.

DMUS_SEGF_MEASURE

Stop on the next measure boundary at or after mtTime.

DMUS_SEGF_BEAT

Stop on the next beat boundary at or after mtTime.

DMUS_SEGF_DEFAULT

Stop on the default boundary, as set by the IDirectMusicSegment::SetDefaultResolution method.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Remarks

If pSegment and pSegmentState are both NULL, all music stops, and all currently cued segments are released. If either pSegment or pSegmentState is not NULL, only the requested segment states are removed from the performance. If both are non-NULL and DMUS_SEGF_DEFAULT is used, the default resolution from the pSegment is used.

If you set all parameters to NULL or 0, everything stops immediately, and controller reset messages and note-off messages are sent to all mapped PChannels.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::PlaySegment, DMUS_SEGF_FLAGS

IDirectMusicPerformance::TimeToRhythm

The IDirectMusicPerformance::TimeToRhythm method converts music time to rhythm time.

HRESULT TimeToRhythm(

 MUSIC_TIME mtTime,

 DMUS_TIMESIGNATURE *pTimeSig,

 WORD *pwMeasure,

 BYTE *pbBeat,

 BYTE *pbGrid,

 short *pnOffset

);

Parameters

mtTime

Time to convert.

pTimeSig

Address of a DMUS_TIMESIGNATURE structure that contains information about the time signature.

pwMeasure

Address of a variable to receive the measure in which the time falls.

pbBeat

Address of a variable to receive the beat at which the time falls.

pbGrid

Address of a variable to receive the grid at which the time falls.

pnOffset

Address of a variable to receive the offset from the grid (in music-time ticks) at which the time falls.

Return Values

If the method succeeds, the return value is S_OK.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::RhythmToTime

IDirectMusicPort

The IDirectMusicPort interface provides access to a DirectMusicPort object, which represents a device that sends or receives music data. The input port of an MPU-401, the output port of an MPU-401, the Microsoft Software Synthesizer, and an IHV-provided filter are all ports. A physical device such as an MPU-401 might provide multiple ports. A single port, however, cannot both capture and render data.

For an overview, see Using Ports.

The methods of the IDirectMusicPort interface can be organized into the following groups:

Buffers�PlayBuffer���Read���SetReadNotificationHandle��Channels�GetChannelPriority���GetNumChannelGroups���SetChannelPriority���SetNumChannelGroups��Device management�Activate���DeviceIoControl���SetDirectSound��Information�GetCaps���GetFormat���GetLatencyClock���GetRunningStats��Downloadable sounds�Compact���DownloadInstrument���UnloadInstrument��

All COM interfaces inherit the IUnknown interface methods. This interface supports the following three methods:

IUnknown�AddRef ���QueryInterface ���Release ��

The LPDIRECTMUSICPORT type is defined as a pointer to the IDirectMusicPort interface:

typedef IDirectMusicPort *LPDIRECTMUSICPORT;

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

IDirectMusicPort::Activate

The IDirectMusicPort::Activate method activates or deactivates the port.

HRESULT Activate(

 BOOL fActive

);

Parameters

fActive

Switch to activate (TRUE) or deactivate (FALSE) the port.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return DSERR_NODRIVER, indicating that no sound driver is present.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

IDirectMusic::Activate, Using Ports

IDirectMusicPort::Compact

The IDirectMusicPort::Compact method is used to instruct the port to compact DLS or wave-table memory, thus making the largest possible contiguous chunk of memory available for new instruments to be downloaded.

HRESULT Compact();

Parameters

None.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_FAIL��E_INVALIDARG��E_NOTIMPL��E_OUTOFMEMORY��

Remarks

This method only affects DLS devices that need to manage their own DLS wavetable memory. On ports that do not manage their own memory (such as software synthesizers or hardware synthesizers that utilize host system memory), the method will return E_NOTIMPL.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

IDirectMusicPort::DeviceIoControl

The IDirectMusicPort::DeviceIoControl method calls the Win32 DeviceIoControl function on the underlying file handle implementing the port.

HRESULT DeviceIoControl(

 DWORD dwIoControlCode,

 LPVOID lpInBuffer,

 DWORD nInBufferSize,

 LPVOID lpOutBuffer,

 DWORD nOutBufferSize,

 LPDWORD lpBytesReturned,

 LPOVERLAPPED lpOverlapped

);

Parameters

dwIoControlCode

Control code of the operation to perform.

lpInBuffer

Pointer to the buffer that contains input data.

nInBufferSize

Size of input buffer.

lpOutBuffer

Pointer to the buffer to receive output data.

nOutBufferSize

Size of the output buffer.

lpBytesReturned

Address of a variable to receive the output byte count.

lpOverlapped

Address of an overlapped structure for asynchronous operation.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_POINTER��E_NOTIMPL��

Remarks

This method is supported only on ports implemented by a Windows Driver Model (WDM) filter graph. In the case of a WDM filter graph, the file handle used is the topmost pin in the graph.

DirectMusic can refuse to perform defined kernel streaming operations on a pin that might collide with operations that it is performing on the filter graph. User-defined operations, however, are never blocked.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

IDirectMusicPort::DownloadInstrument

The IDirectMusicPort::DownloadInstrument method is used to download an instrument to the DLS device. Downloading an instrument means handing the data that makes up the instrument to the DLS device. This includes articulation data and all waves needed by the instrument. To save wave space, only waves and articulation required for a range are downloaded. The method returns an IDirectMusicDownloadedInstrument interface pointer, which is later used to unload the instrument.

HRESULT DownloadInstrument(

 IDirectMusicInstrument *pInstrument,

 IDirectMusicDownloadedInstrument **ppDownloadedInstrument,

 DMUS_NOTERANGE *pNoteRanges,

 DWORD dwNumNoteRanges;

);

Parameters

pInstrument

Instrument from which the method extracts the data to be downloaded.

ppDownloadedInstrument

Address of a variable to receive a pointer to the IDirectMusicDownloadedInstrument interface.

pNoteRanges

Address of an array of DMUS_NOTERANGE structures. Each entry in the array specifies a contiguous range of MIDI note messages to which the instrument must respond. An instrument region is downloaded only if at least one note in that region is specified in the DMUS_NOTERANGE structures.

dwNumNoteRanges

Number of DMUS_NOTERANGE structures in the array pointed to by pNoteRanges. If this value is set to 0, the pNoteRanges parameter is ignored, and all regions and wave data for the instrument are downloaded.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_POINTER��E_OUTOFMEMORY��E_NOTIMPL��

Remarks

To prevent memory loss, the instrument must be unloaded by calling both IDirectMusicPort::UnloadInstrument and IDirectMusicDownloadedInstrument::Release when it is no longer needed.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

IDirectMusicPort::Compact, Working with Instruments

IDirectMusicPort::GetCaps

The IDirectMusicPort::GetCaps method retrieves the port’s capabilities.

HRESULT GetCaps(

 LPDMUS_PORTCAPS pPortCaps

);

Parameters

pPortCaps

Address of a DMUS_PORTCAPS structure to receive the capabilities of the port. The dwSize member of this structure must be properly initialized before the method is called.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_POINTER��E_INVALIDARG��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

IDirectMusicPort::GetChannelPriority

The IDirectMusicPort::GetChannelPriority method is used to retrieve the priority of a MIDI channel. For an overview, see Channels.

HRESULT GetChannelPriority(

 DWORD dwChannelGroup,

 DWORD dwChannel,

 LPDWORD pdwPriority

);

Parameters

dwChannelGroup

Group that the channel is in.

dwChannel

Index of the channel on the group.

pdwPriority

Address of a variable to receive the priority ranking. See Remarks.

Return Values

If the method succeeds, the return value is S_OK.

Remarks

The following values, defined in Dmusicc.h, each represent a range of priorities. They are listed here in descending order of priority.

DAUD_CRITICAL_VOICE_PRIORITY��DAUD_HIGH_VOICE_PRIORITY��DAUD_STANDARD_VOICE_PRIORITY��DAUD_LOW_VOICE_PRIORITY��

The following values express the default ranking of the channels within a range, according to the DLS Level 1 standard. They are listed here in descending order. Channel 10, the percussion channel, has the highest priority.

DAUD_CHAN10_DEF_VOICE_PRIORITY_OFFSET��DAUD_CHAN1_DEF_VOICE_PRIORITY_OFFSET��DAUD_CHAN2_DEF_VOICE_PRIORITY_OFFSET��DAUD_CHAN3_DEF_VOICE_PRIORITY_OFFSET��DAUD_CHAN4_DEF_VOICE_PRIORITY_OFFSET��DAUD_CHAN5_DEF_VOICE_PRIORITY_OFFSET��DAUD_CHAN6_DEF_VOICE_PRIORITY_OFFSET��DAUD_CHAN7_DEF_VOICE_PRIORITY_OFFSET��DAUD_CHAN8_DEF_VOICE_PRIORITY_OFFSET��DAUD_CHAN9_DEF_VOICE_PRIORITY_OFFSET��DAUD_CHAN11_DEF_VOICE_PRIORITY_OFFSET��DAUD_CHAN12_DEF_VOICE_PRIORITY_OFFSET��DAUD_CHAN13_DEF_VOICE_PRIORITY_OFFSET��DAUD_CHAN14_DEF_VOICE_PRIORITY_OFFSET��DAUD_CHAN15_DEF_VOICE_PRIORITY_OFFSET��DAUD_CHAN16_DEF_VOICE_PRIORITY_OFFSET��

The priority of a channel is represented by a range plus an offset. For example, DAUD_STANDARD_VOICE_PRIORITY plus DAUD_CHAN10_DEF_VOICE_PRIORITY represents the highest priority within the standard range.

Channels that have the same priority value have equal priority, regardless of which channel group they belong to.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

IDirectMusicPort::SetChannelPriority

IDirectMusicPort::GetFormat

The IDirectMusicPort::GetFormat method retrieves information about the wave format specified in the DMUS_PORTPARAMS structure passed to IDirectMusic::CreatePort, and the recommended size of the buffer to use for wave output. The information can be used to create a compatible IDirectSoundBuffer for the port.

HRESULT GetFormat(

 LPWAVEFORMATEX pWaveFormatEx,

 LPDWORD pdwWaveFormatExSize

 LPDWORD pdwBufferSize

);

Parameters

pWaveFormatEx

Address of the WAVEFORMATEX structure to receive information about the format. This value can be NULL. See Remarks.

pdwWaveFormatExSize

Address of a variable that contains, or is to receive, the size of the structure. See Remarks.

pdwBufferSize

Address of a variable to receive the recommended size of the DirectSound buffer.

Return Values

Return values are determined by the implementation. If the method succeeds, it returns S_OK.

If it fails, the method can return E_POINTER.

Remarks

The WAVEFORMATEX structure can have a variable length that depends on the details of the format. Before retrieving the format description, the application should query the synthesizer object for the size of the format by calling this method and specifying NULL for the pWaveFormatEx parameter. The size of the structure is returned in the variable pointed to by pdwWaveFormatExSize. The application can then allocate sufficient memory and call GetFormat again to retrieve the format description.

If pWaveFormatEx is not NULL, DirectMusic writes, at most, pdwWaveFormatExSize bytes to the structure.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

IDirectMusicPort::SetDirectSound

IDirectMusicPort::GetLatencyClock

The IDirectMusicPort::GetLatencyClock method is used to get an IReferenceClock interface pointer to the port’s latency clock. The latency clock specifies the nearest time in the future at which a message can be played on time. The latency clock is based on the DirectMusic master clock, which is set by using the IDirectMusic::SetMasterClock method.

HRESULT GetLatencyClock(

 IReferenceClock** ppClock

);

Parameters

ppClock

Address of a variable to receive the latency clock’s IReferenceClock interface pointer.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Remarks

In accordance with COM rules, GetLatencyClock increments the reference count of the returned interface. Therefore, the application must call Release on the IReferenceClock interface at some point.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

Latency and Bumper Time

IDirectMusicPort::GetNumChannelGroups

The IDirectMusicPort::GetNumChannelGroups method retrieves the number of channel groups on the port.

HRESULT GetNumChannelGroups

 LPDWORD pdwChannelGroups

);

Parameters

pdwChannelGroups

Address of a variable to receive the number of channel groups.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_FAIL��E_INVALIDARG��E_NOTIMPL��E_OUTOFMEMORY��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

IDirectMusicPort::SetNumChannelGroups, Channels

IDirectMusicPort::GetRunningStats

The IDirectMusicPort::GetRunningStats method retrieves information about the state of the port’s synthesizer.

HRESULT GetRunningStats(

 LPDMUS_SYNTHSTATS pStats

);

Parameters

pStats

Address of a DMUS_SYNTHSTATS structure to receive running statistics of the synthesizer. The dwSize member of this structure must be properly initialized before the method is called.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_POINTER��E_INVALIDARG��E_NOTIMPL��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

IDirectMusicPort::PlayBuffer

The IDirectMusicPort::PlayBuffer method is used to cue a buffer for playback by the port.

HRESULT PlayBuffer(

 IDIRECTMUSICBUFFER* pBuffer

);

Parameters

pBuffer

Address of a DirectMusicBuffer object to be added to the port’s playback queue.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_FAIL��E_INVALIDARG��E_NOTIMPL��E_OUTOFMEMORY��

Remarks

The buffer is in use by the system only for the duration of this method and can be reused after the method returns.

If no start time has been set by using the IDirectMusicBuffer::SetStartTime method, the start time is the time of the earliest event in the buffer, as set by the IDirectMusicBuffer::PackStructured or the IDirectMusicBuffer::PackUnstructured method.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

IDirectMusicBuffer, IDirectMusic::CreateMusicBuffer

IDirectMusicPort::Read

The IDirectMusicPort::Read method fills a buffer with incoming MIDI data. The method should be called with new buffer objects until no more data is available to be read.

HRESULT Read(

 IDirectMusicBuffer *pBuffer

);

Parameters

pBuffer

Address of a DirectMusicBuffer object to be filled with the incoming MIDI data.

Return Values

If the method succeeds, the return value is S_OK or S_FALSE.

If it fails, the method can return one of the following error values:

E_POINTER��E_NOTIMPL��

Remarks

When there is no more data to read, the method returns S_FALSE.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

Capturing Music

IDirectMusicPort::SetChannelPriority

The IDirectMusicPort::SetChannelPriority method is used to set the priority of a MIDI channel. For an overview, see Channels.

HRESULT SetChannelPriority(

 DWORD dwChannelGroup,

 DWORD dwChannel,

 DWORD dwPriority

);

Parameters

dwChannelGroup

Group that the channel is in. This value must be 1 or greater.

dwChannel

Index of the channel on the group.

dwPriority

The priority ranking. See Remarks for IDirectMusicPort::GetChannelPriority.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_FAIL��E_INVALIDARG��E_OUTOFMEMORY��E_NOTIMPL��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

IDirectMusicPort::GetChannelPriority, DMUS_CHANNEL_PRIORITY_PMSG.

IDirectMusicPort::SetDirectSound

The IDirectMusicPort::SetDirectSound method is used to override the default DirectSound object or buffer, or both, to which a port's wave data is streamed. It is also used to disconnect the port from DirectSound.

HRESULT SetDirectSound(

 LPDIRECTSOUND pDirectSound,

 LPDIRECTSOUNDBUFFER pDirectSoundBuffer

);

Parameters

pDirectSound

Address of the IDirectSound interface of the DirectSound object to which the port is to be connected, or NULL to disconnect and release the existing DirectSound object.

pDirectSoundBuffer

Address of the IDirectSoundBuffer interface to connect the port to. This value can be NULL.

Return Values

If the method succeeds, the return value is S_OK or DMUS_S_NOBUFFERCONTROL. See Remarks.

If it fails, the method can return one of the following error values:

DMUS_E_ALREADY_ACTIVATED��E_INVALIDARG��

Remarks

If a valid pointer is passed in pDirectSoundBuffer, the method returns DMUS_S_NOBUFFERCONTROL if control changes in the buffer such as pan and volume do not affect DirectMusic playback. This affects only WDM ports.

When the port is activated, the primary DirectSound buffer is upgraded, if necessary, to support the sample rate and channel information for this port (specified in the DMUS_PORTPARAMS structure passed to IDirectMusic::CreatePort).

The buffer pointed to by pDirectSoundBuffer must be a secondary streaming buffer with a format that matches the sample rate and channel information for this port. If this parameter is NULL, an appropriate IDirectSoundBuffer instance is created internally.

Neither the IDirectSound nor the IDirectSoundBuffer can be changed once the port has been activated.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

IDirectMusicPort::Activate, IDirectMusicPort::GetFormat, Integrating DirectMusic and DirectSound

IDirectMusicPort::SetNumChannelGroups

The IDirectMusicPort::SetNumChannelGroups method changes the number of channel groups that the application needs on the port.

HRESULT SetNumChannelGroups(

 DWORD dwChannelGroups

);

Parameters

dwChannelGroups

Number of channel groups on this port that the application wants to allocate.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_FAIL��E_INVALIDARG��E_NOTIMPL��E_OUTOFMEMORY��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

IDirectMusicPort::GetNumChannelGroups, Channels

IDirectMusicPort::SetReadNotificationHandle

The IDirectMusicPort::SetReadNotificationHandle method specifies an event that is to be set when MIDI messages are available to be read with the IDirectMusicPort::Read method. The event is signaled whenever new data is available. To turn off event notification, call SetReadNotificationHandle with a NULL value for the hEvent parameter.

HRESULT SetReadNotificationHandle(

 HANDLE hEvent

);

Parameters

hEvent

Event handle obtained from a call to the the Win32 CreateEvent function. It is the application's responsibility to close this handle once the port has been released.

Return Values

The method returns S_OK.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

Capturing Music

IDirectMusicPort::UnloadInstrument

The IDirectMusicPort::UnloadInstrument method is used to unload a previously downloaded DLS instrument.

HRESULT UnloadInstrument(

 IDirectMusicDownloadedInstrument *pDownloadedInstrument

);

Parameters

pDownloadedInstrument

Address of an IDirectMusicDownloadedInstrument interface, obtained when the instrument was downloaded by calling the IDirectMusicPort::DownloadInstrument method.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

DMUS_E_NOT_DOWNLOADED_TO_PORT��E_POINTER��E_NOTIMPL��

Remarks

This method must be called to free memory allocated by IDirectMusicPort::DownloadInstrument.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

Working with Instruments

IDirectMusicPortDownload

The IDirectMusicPortDownload interface allows an application to communicate directly with a port that supports DLS downloading and to download memory chunks directly to the port. The interface is used primarily by authoring applications that edit DLS instruments directly. For an overview, see Low-Level DLS.

To obtain the IDirectMusicPortDownload interface, call the IDirectMusicPort::QueryInterface method, passing in IID_IDirectMusicPortDownload as the interface GUID. If the port does not support DLS downloading, this call might fail.

The methods of the IDirectMusicPortDownload interface can be grouped as follows:

Buffer management�AllocateBuffer���GetAppend���GetBuffer���GetDLId��Loading�Download���Unload��

All COM interfaces inherit the IUnknown interface methods. This interface supports the following three methods:

IUnknown�AddRef ���QueryInterface ���Release ��Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

IDirectMusicPortDownload::AllocateBuffer

The IDirectMusicPortDownload::AllocateBuffer method allocates a chunk of memory for downloading DLS data to the port and returns an IDirectMusicDownload interface pointer that allows access to this buffer.

HRESULT AllocateBuffer(

 DWORD dwSize,

 IDirectMusicDownload** ppIDMDownload

);

Parameters

dwSize

Requested size of buffer.

ppIDMDownload

Address of a variable to receive the IDirectMusicDownload interface pointer.

Return Values

If the method succeeds, it returns S_OK.

If it fails, the method can return one of the following error values:

E_POINTER��E_INVALIDARG��E_OUTOFMEMORY��

Remarks

Once a buffer has been allocated, its size cannot change.

The buffer is freed when the IDirectMusicDownload interface is released.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

IDirectMusicPortDownload::GetBuffer, Low-Level DLS

IDirectMusicPortDownload::Download

The IDirectMusicPortDownload::Download method downloads a wave or instrument definition to the port. The memory must first be allocated by using the IDirectMusicPortDownload::AllocateBuffer method.

HRESULT Download(

 IDirectMusicDownload* pIDMDownload

);

Parameters

pIDMDownload

Address of the IDirectMusicDownload interface for the buffer.

Return Values

Return values are determined by the implementation of the port.

If the method succeeds, it returns S_OK.

If the method fails, it can return one of the following values:

E_POINTER��E_FAIL��DMUS_E_ALREADY_DOWNLOADED��DMUS_E_BADARTICULATION��DMUS_E_BADINSTRUMENT��DMUS_E_BADOFFSETTABLE��DMUS_E_BADWAVE��DMUS_E_BADWAVELINK��DMUS_E_BUFFERNOTSET��DMUS_E_NOARTICULATION��DMUS_E_NOTMONO��DMUS_E_NOTPCM��DMUS_E_UNKNOWNDOWNLOAD��

Remarks

For more information on how to prepare the data to be downloaded, see Low-Level DLS.

Once the memory has been downloaded, you cannot do anything more with it. To update the download, you must create a new buffer and assign it a new download ID obtained by using the IDirectMusicPortDownload::GetDLId method, then send it down.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

IDirectMusicPortDownload::Unload, DMUS_DOWNLOADINFO, DMUS_OFFSETTABLE

IDirectMusicPortDownload::GetAppend

The IDirectMusicPortDownload::GetAppend method retrieves the amount of memory that the port needs to be appended to the end of a download buffer. This extra memory can be used by the port to interpolate across a loop boundary.

HRESULT GetAppend(

 DWORD* pdwAppend

);

Parameters

pdwAppend

Address of a variable to receive the number of appended samples for which memory is required. The amount of memory can be calculated from the wave format.

Return Values

Return values are determined by the port implementation.

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_POINTER��E_NOTIMPL��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

IDirectMusicPortDownload::GetBuffer

The IDirectMusicPortDownload::GetBuffer method retrieves the IDirectMusicDownload interface pointer of a buffer whose unique identifier is known.

HRESULT GetBuffer(

 DWORD dwDLId,

 IDirectMusicDownload** ppIDMDownload

);

Parameters

dwDLId

Download identifier of the buffer. See DMUS_DOWNLOADINFO.

ppIDMDownload

Address of a variable to receive the IDirectMusicDownload interface pointer for the buffer.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_POINTER��DMUS_E_INVALID_DOWNLOADID��DMUS_E_NOT_DOWNLOADED_TO_PORT��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

IDirectMusicPortDownload::GetDLId, IDirectMusicDownload::GetBuffer, Low-Level DLS.

IDirectMusicPortDownload::GetDLId

The IDirectMusicPortDownload::GetDLId method obtains sequential identifiers for one or more download buffers.

Every memory chunk downloaded to the synthesizer must have a unique identifier placed in its DMUS_DOWNLOADINFO structure. The GetDLId method guarantees that no two downloads have the same identifier.

HRESULT GetDLId(

 DWORD* pdwStartDLId,

 DWORD dwCount

);

Parameters

pdwStartDLId

Address of a variable to receive the first identifier.

dwCount

Number of identifiers to reserve. You might plan to download a whole series of chunks at once. Instead of calling GetDLId for each chunk, set dwCount to the number of chunks. GetDLId returns the first ID of the set, and the additional identifiers are automatically reserved up through *pdwStartDLId plus dwCount. A subsequent call to GetDLId would skip past the reserved values.

Return Values

If the method succeeds, it returns S_OK.

If it fails, the method can return one of the following error values:

E_POINTER��E_INVALIDARG��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

IDirectMusicPortDownload::GetBuffer, Low-Level DLS

IDirectMusicPortDownload::Unload

The IDirectMusicPortDownload::Unload method unloads a buffer that was previously downloaded by using IDirectMusicPortDownload::Download.

HRESULT Unload(

 IDirectMusicDownload* pIDMDownload

);

Parameters

pIDMDownload

Address of the IDirectMusicDownload interface for the buffer.

Return Values

Return values are determined by the port implementation.

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following values:

E_NOINTERFACE��DMUS_E_SYNTHNOTCONFIGURED��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

IDirectMusicSegment

The IDirectMusicSegment interface represents a segment, a chunk of music made up of multiple tracks. Because almost all the information that defines a segment is stored in the tracks, and because tracks can be nearly anything, the segment itself is a relatively simple object. There are methods to access data in tracks, even though the segment object has no knowledge of the nature of the data.

The DirectMusicSegment object also supports the IDirectMusicObject and IPersistStream interfaces for loading its data.

The methods of the IDirectMusicSegment interface can be grouped as follows:

Timing and looping�GetDefaultResolution���GetLength���GetLoopPoints���GetRepeats���GetStartPoint���SetDefaultResolution���SetLength���SetLoopPoints���SetRepeats���SetStartPoint��Tracks�GetTrack���GetTrackGroup���InsertTrack���RemoveTrack��Notification�AddNotificationType���RemoveNotificationType��Parameters�GetParam���SetParam��Tools�GetGraph���SetGraph��Miscellaneous�Clone���InitPlay���SetPChannelsUsed��

All COM interfaces inherit the IUnknown interface methods. This interface supports the following three methods:

IUnknown�AddRef ���QueryInterface ���Release ��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

Segments

IDirectMusicSegment::AddNotificationType

The IDirectMusicSegment::AddNotificationType method is similar to and called from the IDirectMusicPerformance::AddNotificationType method, allowing the segment to respond to notifications. The segment calls each track's IDirectMusicTrack::AddNotificationType method.

HRESULT AddNotificationType(

 REFGUID rguidNotificationType

);

Parameters

rguidNotificationType

Reference to (C++) or address of (C) the identifier of the notification type to add. For the defined types, see DMUS_NOTIFICATION_PMSG. Applications can also define their own types for custom tracks.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_POINTER��E_OUTOFMEMORY��

Remarks

Segments cannot generate notifications of type GUID_NOTIFICATION_PERFORMANCE. To get notifications of this type, you must call IDirectMusicPerformance::AddNotificationType.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

Notification and Event Handling

IDirectMusicSegment::Clone

The IDirectMusicSegment::Clone method copies all or part of the segment and the tracks that it contains.

HRESULT Clone(

 MUSIC_TIME mtStart,

 MUSIC_TIME mtEnd,

 IDirectMusicSegment** ppSegment

);

Parameters

mtStart

Start of the part to copy. If less than 0 or greater than the length of the segment, 0 is used.

mtEnd

End of the part to copy. If this value is past the end of the segment, the segment is copied to the end. A value of 0 or anything less than mtStart also copies to the end.

ppSegment

Address of a variable to receive a pointer to the created segment, if successful. It is the caller's responsibility to call Release when finished with the segment.

Return Values

If the method succeeds, the return value is S_OK, or S_FALSE if some tracks failed to copy.

If it fails, the method can return one of the following error values:

E_OUTOFMEMORY��E_POINTER��

Remarks

If an IDirectMusicGraph interface exists in the segment, a copy of the pointer is included in the clone, and the reference count is incremented. The start point and loop points set by the IDirectMusicSegment::SetStartPoint and IDirectMusicSegment::SetLoopPoints methods are set to their default values (0, and 0 to the end of the segment, respectively) inside the clone. The number of repeats is also reset to 0. The resolution set by the IDirectMusicSegment::SetDefaultResolution method is copied into the clone.

For style-based segments, if mtStart is greater than 0, it should be on a measure boundary.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicSegment::GetDefaultResolution

The IDirectMusicSegment::GetDefaultResolution method retrieves the default resolution for synchronization.

HRESULT GetDefaultResolution(

 DWORD* pdwResolution

);

Parameters

pdwResolution

Address of a variable to receive the default resolution. See DMUS_SEGF_FLAGS.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicSegment::SetDefaultResolution, Segment Timing

IDirectMusicSegment::GetGraph

The IDirectMusicSegment::GetGraph method retrieves the segment's tool graph.

HRESULT GetGraph(

 IDirectMusicGraph** ppGraph

);

Parameters

ppGraph

Address of a variable to receive a pointer to the tool graph.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_FAIL��E_POINTER��

Remarks

If there is no graph in the segment, the method returns E_FAIL.

The reference count of the tool graph is incremented.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicSegment::SetGraph

IDirectMusicSegment::GetLength

The IDirectMusicSegment::GetLength method retrieves the length of the segment.

HRESULT GetLength(

 MUSIC_TIME* pmtLength

);

Parameters

pmtLength

Address of a variable to receive the segment's length in music time.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Remarks

If for some reason the segment's length was never set, *pmtLength is set to 0.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicSegment::SetLength

IDirectMusicSegment::GetLoopPoints

The IDirectMusicSegment::GetLoopPoints method retrieves the start and end loop points inside the segment that repeat the number of times set by the IDirectMusicSegment::SetRepeats method.

HRESULT GetLoopPoints(

 MUSIC_TIME* pmtStart,

 MUSIC_TIME* pmtEnd

);

Parameters

pmtStart

Address of a variable to receive the start point of the loop.

pmtEnd

Address of a variable to receive the end point of the loop. A value of 0 indicates that the entire segment loops.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicSegment::SetLoopPoints, Segment Timing

IDirectMusicSegment::GetParam

The IDirectMusicSegment::GetParam method retrieves data from a track inside this segment.

HRESULT GetParam(

 REFGUID rguidType,

 DWORD dwGroupBits,

 DWORD dwIndex,

 MUSIC_TIME mtTime,

 MUSIC_TIME* pmtNext,

 void* pParam

);

Parameters

rguidType

Reference to (C++) or address of (C) the identifier of the type of data to obtain. See Track Parameter Types.

dwGroupBits

Group that the desired track is in. Use 0xFFFFFFFF for all groups. For more information, see Identifying the Track.

dwIndex

Index of the track in the group identified by dwGroupBits from which to obtain the data.

mtTime

Time from which to obtain the data.

pmtNext

Address of a variable to receive the segment time (relative to mtTime) until which the data is valid. If this returns a value of 0, it means either that the data is always valid, or that it is unknown when it might become invalid. If this information is not needed, pmtNext can be set to NULL. See Remarks.

pParam

Address of an allocated structure in which the data is to be returned. The structure must be of the appropriate kind and size for the data type identified by rguidType.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

DMUS_E_GET_UNSUPPORTED��DMUS_E_TRACK_NOT_FOUND��E_POINTER��

Remarks

The data can become invalid before the time returned in *pmtNext if another control segment is cued. For more information on control segments, see Segments.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::GetParam, IDirectMusicSegment::SetParam, IDirectMusicTrack::GetParam, Music Parameters

IDirectMusicSegment::GetRepeats

The IDirectMusicSegment::GetRepeats method retrieves the number of times the looping portion of the segment is set to repeat.

HRESULT GetRepeats(

 DWORD* pdwRepeats

);

Parameters

pdwRepeats

Address of a variable to receive the number of times that the looping portion of the segment is set to repeat.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicSegment::SetRepeats

IDirectMusicSegment::GetStartPoint

The IDirectMusicSegment::GetStartPoint method retrieves the point at which the segment starts playing in response to the IDirectMusicPerformance::PlaySegment method.

HRESULT GetStartPoint(

 MUSIC_TIME* pmtStart

);

Parameters

pmtStart

Address of a variable to receive the time within the segment at which it starts playing.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicSegment::SetStartPoint

IDirectMusicSegment::GetTrack

The IDirectMusicSegment::GetTrack method searches the list of tracks for the one with the supplied type, group, and index, and retrieves a pointer to the DirectMusicTrack object.

HRESULT GetTrack(

 REFGUID rguidType,

 DWORD dwGroupBits,

 DWORD dwIndex,

 IDirectMusicTrack** ppTrack

);

Parameters

rguidType

Reference to (C++) or address of (C) the identifier of the track to find (for example, CLSID_DirectMusicChordTrack). A value of GUID_NULL retrieves any track. For the track identifiers, see IDirectMusicTrack.

dwGroupBits

Track groups in which to scan for the track. A value of 0 is invalid. Each bit in dwGroupBits corresponds to a track group. To scan all tracks, regardless of groups, set this parameter to 0xFFFFFFFF.

dwIndex

Zero-based index into the list of tracks of type rguidType and in group dwGroupBits to return. If multiple groups are selected in dwGroupBits, this index indicates the nth track of type rguidType encountered in the union of the groups selected.

ppTrack

Address of a variable to receive a pointer to the track. The variable is set to NULL if the track is not found.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_FAIL.

Remarks

To enumerate all tracks, use GUID_NULL for the rguidType and 0xFFFFFFFF for dwGroupBits. Call GetTrack starting with 0 for dwIndex, incrementing dwIndex until the method no longer returns a success code.

 For more information on track groups, see Identifying the Track.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicSegment::InsertTrack

IDirectMusicSegment::GetTrackGroup

The IDirectMusicSegment::GetTrackGroup method retrieves the group bits set on a track inside the segment.

HRESULT GetTrackGroup(

 IDirectMusicTrack* pTrack,

 DWORD* pdwGroupBits

);

Parameters

pTrack

Track for which to find the group bits.

pdwGroupBits

Address of a variable to receive the groups. Each bit in *pdwGroupBits corresponds to a track group.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_FAIL��E_INVALIDARG��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicSegment::InsertTrack, Identifying the Track

IDirectMusicSegment::InitPlay

The IDirectMusicSegment::InitPlay method is called by the performance when the segment is about to be played.

HRESULT InitPlay(

 IDirectMusicSegmentState** ppSegState,

 IDirectMusicPerformance* pPerformance,

 DWORD dwFlags

);

Parameters

ppSegState

Address of a variable to receive a pointer to the IDirectMusicSegmentState interface, which is created in response to this method call and is used to hold state data. It is returned with a reference count of 1, so a call to its Release method fully releases it.

pPerformance

Address of the IDirectMusicPerformance interface. This is needed by the segment and segment state to call methods on the performance object.

dwFlags

DMUS_SEGF_FLAGS that modify the track's behavior. See Remarks.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_POINTER��E_OUTOFMEMORY��

Remarks

This method is for internal use by DirectMusic and should not be called by applications. It will not be supported in future versions.

The InitPlay method is called by the performance engine when the segment is about to be played. The segment, in turn, collects state objects for each of the tracks by calling their IDirectMusicTrack::InitPlay methods and stores the result in a segment state object, accessed by using the IDirectMusicSegmentState interface.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicSegment::InsertTrack

The IDirectMusicSegment::InsertTrack method inserts the supplied track into the segment's list of tracks.

HRESULT InsertTrack(

 IDirectMusicTrack* pTrack,

 DWORD dwGroupBits

);

Parameters

pTrack

Track to add to the segment.

dwGroupBits

Group or groups into which to insert the track. This value cannot be 0.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_FAIL��E_INVALIDARG��E_OUTOFMEMORY��E_POINTER��

Remarks

Tracks are put in groups to link them correctly. For example, a segment might contain two style tracks and two mute tracks. Each style track would be put in a different group, along with its associated mute track. For more information on track groups, see Identifying the Track.

If the segment is currently playing, the new track is not included in playback because the segment state was not initialized with the new track.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicSegment::RemoveTrack, IDirectMusicSegment::GetTrackGroup

IDirectMusicSegment::RemoveNotificationType

The IDirectMusicSegment::RemoveNotificationType method is similar to and is called from the IDirectMusicPerformance::RemoveNotificationType method, allowing the segment to remove notifications. The segment calls each track's IDirectMusicTrack::RemoveNotificationType method.

HRESULT RemoveNotificationType(

 REFGUID rguidNotificationType

);

Parameters

rguidNotificationType

Reference to (C++) or address of (C) the identifier of the notification type to remove. (For the defined types, see DMUS_NOTIFICATION_PMSG.) Setting this value to GUID_NULL causes all notifications to be removed.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

Notification and Event Handling

IDirectMusicSegment::RemoveTrack

The IDirectMusicSegment::RemoveTrack method removes a track from the segment's track list.

HRESULT RemoveTrack(

 IDirectMusicTrack* pTrack

);

Parameters

pTrack

Track to remove from the segment's track list.

Return Values

If the method succeeds, the return value is S_OK, or S_FALSE if the specified track is not in the track list.

If the method fails, the return value can be E_POINTER.

Remarks

The track is released when removed.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicSegment::InsertTrack

IDirectMusicSegment::SetDefaultResolution

The IDirectMusicSegment::SetDefaultResolution method sets the default resolution for synchronization.

HRESULT SetDefaultResolution(

 DWORD dwResolution

);

Parameters

dwResolution

Desired default resolution. This value can be 0 or one of the following members of the DMUS_SEGF_FLAGS enumeration:

DMUS_SEGF_MEASURE�DMUS_SEGF_BEAT�DMUS_SEGF_GRID

Return Values

The method returns S_OK.

Remarks

This method is used primarily by secondary segments (motifs) to define whether they are synchronized to the measure, beat, or grid resolutions.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicSegment::GetDefaultResolution, Segment Timing

IDirectMusicSegment::SetGraph

The IDirectMusicSegment::SetGraph method assigns a tool graph to the segment.

HRESULT SetGraph(

 IDirectMusicGraph* pGraph

);

Parameters

pGraph

Tool graph to be set. Can be set to NULL to clear the segment graph.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Remarks

Any messages flowing through tools in the current tool graph are deleted.

The graph's reference count is incremented, so it is safe to release the original reference.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::SetGraph, DirectMusic Tools

IDirectMusicSegment::SetLength

The IDirectMusicSegment::SetLength method sets the length, in music time, of the segment. This method is usually called by the loader, which retrieves the segment length from the file and passes it to the segment object.

HRESULT SetLength(

 MUSIC_TIME mtLength

);

Parameters

mtLength

Desired length. Must be greater than 0.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_INVALIDARG��DMUS_E_OUT_OF_RANGE��

Remarks

Neglecting to set a primary segment length can cause problems when cuing other primary segments with the DMUS_SEGF_QUEUE flag.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicSegment::GetLength

IDirectMusicSegment::SetLoopPoints

The IDirectMusicSegment::SetLoopPoints method sets the start and end points of the part of the segment that repeats. It repeats the number of times set by the IDirectMusicSegment::SetRepeats method.

HRESULT SetLoopPoints(

 MUSIC_TIME mtStart,

 MUSIC_TIME mtEnd

);

Parameters

mtStart

Point at which to begin the loop.

mtEnd

Point at which to end the loop. A value of 0 loops the entire segment.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return DMUS_E_OUT_OF_RANGE.

Remarks

When the segment is played, it plays from the segment start time until mtEnd, then loops to mtStart, plays the looped portion the number of times set by IDirectMusicSegment::SetRepeats, then plays to the end.

The default values are set to loop the entire segment from beginning to end.

The method fails if mtStart is greater than or equal to the length of the segment, or if mtEnd is greater than the length of the segment. If mtEnd is 0, mtStart must be 0, as well.

This method does not affect any currently playing segment states created from this segment.

The loop points of a cached segment persist even if the segment is released, and then reloaded. To ensure that a segment is not subsequently reloaded from the cache, call IDirectMusicLoader::ReleaseObject on it before releasing it.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicSegment::GetLoopPoints, Segment Timing

IDirectMusicSegment::SetParam

The IDirectMusicSegment::SetParam method sets data on a track inside this segment.

HRESULT SetParam(

 REFGUID rguidType,

 DWORD dwGroupBits,

 DWORD dwIndex,

 MUSIC_TIME mtTime,

 void* pParam

);

Parameters

rguidType

Reference to (C++) or address of (C) the type of data to set. See Track Parameter Types.

dwGroupBits

Group that the desired track is in. Use 0xFFFFFFFF for all groups. For more information, see the Remarks for IDirectMusicPerformance::SetParam.

dwIndex

Index of the track in the group identified by dwGroupBits in which to set the data.

mtTime

Time at which to set the data.

pParam

Address of a structure containing the data, or NULL if no data is required. The structure must be of the appropriate kind and size for the data type identified by rguidType.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

DMUS_E_SET_UNSUPPORTED��DMUS_E_TRACK_NOT_FOUND��E_POINTER��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::SetParam, IDirectMusicSegment::GetParam, IDirectMusicTrack::SetParam, Music Parameters

IDirectMusicSegment::SetPChannelsUsed

The IDirectMusicSegment::SetPChannelsUsed method sets the performance channels (PChannels) that this segment uses. This method is usually called by a track in the IDirectMusicTrack::Init method to inform the segment of which PChannels the track uses.

HRESULT SetPChannelsUsed(

 DWORD dwNumPChannels,

 DWORD* paPChannels

);

Parameters

dwNumPChannels

Number of PChannels to set. This must be equal to the number of members in the array pointed to by paPChannels.

paPChannels

Address of an array of PChannels.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_INVALIDARG��E_OUTOFMEMORY��E_POINTER��

Remarks

This method allows the performance to know which ports are being used by the segment so that it can determine the actual latency, rather than providing for the worst case.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

Latency and Bumper Time, Channels

IDirectMusicSegment::SetRepeats

The IDirectMusicSegment::SetRepeats method sets the number of times the looping portion of the segment is to repeat. By default, the entire segment is looped.

HRESULT SetRepeats(

 DWORD dwRepeats

);

Parameters

dwRepeats

Number of times that the looping portion of the segment is to repeat. A value of 0 indicates a single play with no repeats.

Return Values

The method returns S_OK.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicSegment::GetRepeats, IDirectMusicSegment::SetLoopPoints, Segment Timing

IDirectMusicSegment::SetStartPoint

The IDirectMusicSegment::SetStartPoint method sets the point at which the segment starts playing in response to a call to the IDirectMusicPerformance::PlaySegment method.

HRESULT SetStartPoint(

 MUSIC_TIME mtStart

);

Parameters

mtStart

Point within the segment at which it is to start playing. If this value is less than 0 or greater than the length of the segment, the start point is set to 0.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return DMUS_E_OUT_OF_RANGE.

Remarks

By default, the start point is 0, meaning that the segment starts from the beginning.

The method fails if mtStart is greater than or equal to the length of the segment. If the segment does not already have a length, IDirectMusicSegment::SetLength must be called before this method.

The method does not affect any currently playing segment states created from this segment.

The start point of a cached segment persists even if the segment is released, and then reloaded. To ensure that a segment is not subsequently reloaded from the cache, call IDirectMusicLoader::ReleaseObject on it before releasing it.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicSegment::GetStartPoint, IDirectMusicSegmentState::GetStartPoint, IDirectMusicSegment::SetLength, IDirectMusicSegment::SetLoopPoints, Segment Timing

IDirectMusicSegmentState

When the IDirectMusicPerformance::PlaySegment method is called, the performance engine generates a segment-state object that tracks the state of the playing segment. It also provides the application with a handle to the segment, in the form of the IDirectMusicSegmentState interface, which can be used to track the playback status of the segment. This method can also be used directly to stop playback or remove the segment from the performance, using methods of IDirectMusicPerformance.

The interface has the following methods:

Information�GetRepeats ���GetSeek ���GetSegment ���GetStartPoint���GetStartTime��

All COM interfaces inherit the IUnknown interface methods. This interface supports the following three methods:

IUnknown�AddRef ���QueryInterface ���Release ��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicSegmentState::GetRepeats

The IDirectMusicSegmentState::GetRepeats method returns the number of times that the looping portion of the segment is set to repeat.

HRESULT GetRepeats(

 DWORD* pdwRepeats

);

Parameters

pdwRepeats

Address of a variable to receive the repeat count. A value of 0 indicates that the segment is to play through only once, with no portion repeated.

Return Values

If the method succeeds, the return value is S_OK.

If the method fails, the return value can be E_POINTER.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicSegment::SetRepeats

IDirectMusicSegmentState::GetSeek

The IDirectMusicSegmentState::GetSeek method retrieves the current seek pointer in the segment state. This is the value that is passed in the mtStart parameter of IDirectMusicTrack::Play the next time that method is called. It does not take into account looping and repeating; if the entire segment state repeats to the beginning, the seek pointer is reset to 0.

HRESULT GetSeek(

 MUSIC_TIME* pmtSeek

);

Parameters

pmtSeek

Address of a variable to receive the current seek pointer.

Return Values

If the method succeeds, the return value is S_OK.

If the method fails, the return value can be E_POINTER.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicSegmentState::GetSegment

The IDirectMusicSegmentState::GetSegment method returns a pointer to the segment that owns this segment state.

HRESULT GetSegment(

 IDirectMusicSegment** ppSegment

);

Parameters

ppSegment

Address of a variable to receive a pointer to the IDirectMusicSegment interface.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Remarks

The pointer returned in ppSegment must be released by the application.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicSegmentState::GetStartPoint

The IDirectMusicSegmentState::GetStartPoint method returns the offset into the segment at which play begins or began.

HRESULT GetStartPoint(

 MUSIC_TIME * pmtStart

);

Parameters

pmtStart

Address of a variable to receive the music-time offset from the start of the segment at which the segment state initially plays.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicSegment::SetStartPoint, IDirectMusicSegmentState::GetStartTime

IDirectMusicSegmentState::GetStartTime

The IDirectMusicSegmentState::GetStartTime method gets the performance time at which the segment started or will start playing.

HRESULT GetStartTime(

 MUSIC_TIME* pmtStart

);

Parameters

pmtStart

Address of a variable to receive the music-time offset stored in this segment state.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Remarks

If the segment was started from some point other than the beginning, you can retrieve the time at which the beginning of the segment would have fallen by subtracting the time returned by IDirectMusicSegmentState::GetStartPoint from the value returned by this method.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicSegment::SetStartPoint, IDirectMusicSegment::GetStartPoint, IDirectMusicSegmentState::GetStartPoint

IDirectMusicStyle

The IDirectMusicStyle interface provides access to a style object. The style object provides the performance with the information that it needs to play musical patterns. For an overview, see Using Styles.

Since styles usually include bands and motifs, the IDirectMusicStyle interface provides methods for accessing these objects.

The DirectMusicStyle object also supports the IDirectMusicObject and IPersistStream interfaces for loading its data.

The methods of the IDirectMusicStyle interface can be organized in the following groups:

Enumeration�EnumBand���EnumChordMap���EnumMotif��Information�GetBand���GetChordMap���GetDefaultBand���GetDefaultChordMap���GetEmbellishmentLength���GetMotif���GetTempo���GetTimeSignature��

All COM interfaces inherit the IUnknown interface methods. This interface supports the following three methods:

IUnknown�AddRef ���QueryInterface ���Release ��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicStyle::EnumBand

The IDirectMusicStyle::EnumBand method retrieves the name of the band with a given index value.

HRESULT EnumBand(

 DWORD dwIndex,

 WCHAR * pwszName

);

Parameters

dwIndex

Zero-based index into the style's band list.

pwszName

Address of a buffer to receive the band name. This should be of size MAX_PATH.

Return Values

If the method succeeds, it returns S_OK, S_FALSE if there is no band with the given index value, or DMUS_S_STRING_TRUNCATED if the length of the name is greater than MAX_PATH.

If it fails, the method can return one of the following error values:

DMUS_E_TYPE_UNSUPPORTED��E_POINTER��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicStyle::EnumChordMap

The IDirectMusicStyle::EnumChordMap method retrieves the name of the chord map with the given index value.

HRESULT EnumChordMap(

 DWORD dwIndex,

 WCHAR * pwszName

);

Parameters

dwIndex

Zero-based index of the chord map in the style's chord-map list.

pwszName

Address of a buffer to receive the chord-map name. This should be of size MAX_PATH.

Return Values

If the method succeeds, the return value is S_OK, S_FALSE if there is no chord map with the given index value, or DMUS_S_STRING_TRUNCATED if the length of the name is greater than MAX_PATH.

If it fails, the method can return one of the following error values:

DMUS_E_TYPE_UNSUPPORTED��E_POINTER��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicStyle::EnumMotif

The IDirectMusicStyle::EnumMotif method retrieves the name of a motif with a given index value.

HRESULT EnumMotif(

 DWORD dwIndex,

 WCHAR * pwszName

);

Parameters

dwIndex

Zero-based index into the style's motif list.

pwszName

Address of a buffer to receive the motif name. This should be of size MAX_PATH.

Return Values

If the method succeeds, the return value is S_OK, S_FALSE if there is no motif with the given index value, or DMUS_S_STRING_TRUNCATED if the length of the motif name is greater than MAX_PATH.

If it fails, the method can return E_POINTER.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicStyle::GetMotif, Using Motifs

IDirectMusicStyle::GetBand

The IDirectMusicStyle::GetBand method retrieves the named band.

HRESULT GetBand(

 WCHAR* pwszName,

 IDirectMusicBand** ppBand

);

Parameters

pwszName

Name of the band to be retrieved. This name is assigned by the author of the style.

ppBand

Address of a variable to receive a pointer to the band.

Return Values

If the method succeeds, the return value is S_OK if a band is returned, or S_FALSE if there is no band with that name.

If the method fails, the return value can be E_POINTER.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicStyle::GetDefaultBand, Using Bands

IDirectMusicStyle::GetChordMap

The IDirectMusicStyle::GetChordMap method retrieves a named chord map.

HRESULT GetChordMap(

 WCHAR* pwszName,

 IDirectMusicChordMap** ppChordMap

);

Parameters

pwszName

Name of the chord map to be retrieved.

ppChordMap

Address of a variable to receive a pointer to the IDirectMusicChordMap interface.

Return Values

If the method succeeds, the return value is S_OK if a chord map is returned, or S_FALSE if there is no chord map by that name.

If ppChordMap is not a valid pointer, the method returns E_POINTER.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicStyle::GetDefaultChordMap, Using Chord Maps

IDirectMusicStyle::GetDefaultBand

The IDirectMusicStyle::GetDefaultBand method retrieves the style's default band.

HRESULT GetDefaultBand(

 IDirectMusicBand ** ppBand

);

Parameters

ppBand

Address of a variable to receive a pointer to the default band.

Return Values

If the method succeeds, the return value is S_OK if a band is returned, or S_FALSE if the style does not have a default band.

If it fails, the method can return E_POINTER.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicStyle::GetBand, Using Bands

IDirectMusicStyle::GetDefaultChordMap

The IDirectMusicStyle::GetDefaultChordMap method retrieves the style's default chord map.

HRESULT GetDefaultChordMap(

 IDirectMusicChordMap** ppChordMap

);

Parameters

ppChordMap

Address of a variable to receive a pointer to the IDirectMusicChordMap interface.

Return Values

If the method succeeds, the return value is S_OK if a chord map is returned, or S_FALSE if the style does not have a default chord map.

If it fails, the method can return E_POINTER.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicStyle::GetChordMap, Using Chord Maps

IDirectMusicStyle::GetEmbellishmentLength

The IDirectMusicStyle::GetEmbellishmentLength method finds the shortest and longest lengths for patterns of the specified embellishment type and groove level.

HRESULT GetEmbellishmentLength(

 DWORD dwType,

 DWORD dwLevel,

 DWORD* pdwMin,

 DWORD* pdwMax

);

Parameters

dwType

Embellishment type. See DMUS_COMMANDT_TYPES.

dwLevel

Groove level in the range from 1 through 100. Ignored for nongroove embellishments.

pdwMin

Address of a variable to receive the length of the shortest pattern of the specified type and groove level.

pdwMax

Address of a variable to receive the length of the longest pattern of the specified type and groove level.

Return Values

If the method succeeds, the return value is S_OK or S_FALSE.

If it fails, the method can return E_POINTER.

Remarks

If there are no patterns of the specified type and groove level, the method returns S_FALSE.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicStyle::GetMotif

The IDirectMusicStyle::GetMotif method creates a segment containing the named motif.

HRESULT GetMotif(

 WCHAR* pwszName,

 IDirectMusicSegment** ppSegment

);

Parameters

pwszName

Name of the motif to be retrieved.

ppSegment

Address of a variable to receive a pointer to a segment containing the named motif.

Return Values

If the method succeeds, the return value is S_OK or S_FALSE.

If it fails, the method can return E_POINTER.

Remarks

The method searches the style's list of motifs for one whose name matches pwszName. If one is found, a segment is created containing a motif track. The track references the style as its associated style and the motif as its pattern.

If there is no motif with the name, the method returns S_FALSE.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

Using Motifs

IDirectMusicStyle::GetTempo

The IDirectMusicStyle::GetTempo method retrieves the recommended tempo of the style.

HRESULT GetTempo(

 double* pTempo

);

Parameters

pTempo

Address of a variable to receive the recommended tempo of the style.

Return Values

If the method succeeds, the return value is S_OK.

If pTempo is not a valid pointer, the method returns E_POINTER.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicStyle::GetTimeSignature

The IDirectMusicStyle::GetTimeSignature method retrieves the style's time signature.

HRESULT GetTimeSignature(

 DMUS_TIMESIGNATURE* pTimeSig

);

Parameters

pTimeSig

Address of a DMUS_TIMESIGNATURE structure to receive data.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicThru

The IDirectMusicThru interface supports thruing of music messages from a capture port to another port. It is obtained by calling QueryInterface on the IDirectMusicPort interface for the capture port. For an example, see the Remarks for IDirectMusicThru::ThruChannel.

The interface has the following method:

IDirectMusicThru�ThruChannel��

All COM interfaces inherit the IUnknown interface methods. This interface supports the following three methods:

IUnknown�AddRef ���QueryInterface ���Release ��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

Capturing Music

IDirectMusicThru::ThruChannel

The IDirectMusicThru::ThruChannel method establishes or breaks a thruing connection between a channel on a capture port and a channel on another port.

HRESULT ThruChannel(

 DWORD dwSourceChannelGroup,

 DWORD dwSourceChannel,

 DWORD dwDestinationChannelGroup,

 DWORD dwDestinationChannel,

 LPDIRECTMUSICPORT pDestinationPort

);

Parameters

dwSourceChannelGroup

Channel group on the capture port. In the current version of DirectMusic, this value is always 1.

dwSourceChannel

Source channel.

dwDestinationChannelGroup

Channel group on the destination port.

dwDestinationChannel

Destination channel.

pDestinationPort

Address of the IDirectMusicPort interface for the destination channel. Set this value to NULL to break an existing thruing connection.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_NOTIMPL��E_INVALIDARG��DMUS_E_PORT_NOT_RENDER��

Remarks

System-exclusive messages are not transmitted to the destination port.

Thruing to the Microsoft Software Synthesizer or other synthesizers that do not have a constant latency is not recommended. Thruing is done as soon as possible upon reception of the incoming MIDI events. Because of the comparatively high latency of the software synthesizer (compared with a hardware port) and the fact that it renders blocks of audio data at the same time, each event is delayed by a small, essentially random amount of time before it plays. This random offset shows up as jitter in the playback of the data. Latency of other devices (such as an MPU-401 port) is small enough that jitter does not occur.

If an application needs to thru to the software synthesizer, it should add a small offset to the incoming note event time stamps to compensate for the rendering latency of the synthesizer.

The following code example obtains the IDirectMusicThru interface and establishes a thru connection between all channels on group 1 of the capture port and the equivalent channels on a destination port.

HRESULT SetupOneToOneThru(

 IDirectMusicPort *pCapturePort,

 IDirectMusicPort *pRenderPort)

{

 HRESULT hr;

 IDirectMusicThru *pThru;

 hr = pCapturePort->QueryInterface(IID_IDirectMusicThru,

 (void**)&pThru);

 if (FAILED(hr))

 return hr;

 for (DWORD dwChannel = 0; dwChannel < 16; dwChannel++)

 {

 hr = pThru->ThruChannel(1, dwChannel,

 1, dwChannel, pRenderPort);

 if (FAILED(hr))

 break;

 }

 pThru->Release();

 return hr;

}

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

IDirectMusicTool

Tools are objects that implement the IDirectMusicTool interface. They are used inside graphs (see IDirectMusicGraph). When a message is sent using IDirectMusicPerformance::SendPMsg, the message flows through tools inside graphs. The tools can modify the message, make additional messages, remove messages, and so on.

This interface is of most interest to developers who want to create their own tools.

The methods of the IDirectMusicTool interface can be organized in the following groups:

Initialization�Init��Message management�Flush���GetMediaTypeArraySize���GetMediaTypes���GetMsgDeliveryType���ProcessPMsg��

All COM interfaces inherit the IUnknown interface methods. This interface supports the following three methods:

IUnknown�AddRef ���QueryInterface ���Release ��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

Overview of DirectMusic Data Flow, Message Creation and Delivery, DirectMusic Tools

IDirectMusicTool::Flush

The IDirectMusicTool::Flush method is called for each message in the queue when the performance stops. The tool can use the method to do whatever is necessary to flush the message. For instance, the output tool uses this method to ensure that any pending note-off messages are processed immediately.

HRESULT Flush(

 IDirectMusicPerformance* pPerf,

 DMUS_PMSG* pPMSG,

 REFERENCE_TIME rtTime

);

Parameters

pPerf

Address of the IDirectMusicPerformance interface.

pPMSG

Message to flush.

rtTime

Time at which to flush.

Return Values

Return values are determined by the implementation. If the method succeeds, the return value can be one of the following:

DMUS_S_REQUEUE��DMUS_S_FREE��S_OK��

If it fails, the method can return E_POINTER.

Remarks

The message will have DMUS_PMSGF_TOOL_FLUSH set in its dwFlags member. See DMUS_PMSG.

If the method returns DMUS_S_REQUEUE, the tool wants the message to be requeued. This allows the tool to put a new time stamp and parameters on the message and requeue it, or to requeue the message with a different delivery type.

If the return value is DMUS_S_FREE, the tool wants the message freed automatically and does not want to requeue the message.

If S_OK is returned, the tool does not want the message to be freed automatically. Perhaps the tool is holding onto the message for some reason, or has freed it itself.

Be sure not to create a circular reference to the performance represented by pPerf. For more information, see DirectMusic Tools.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicTool::GetMediaTypeArraySize

The IDirectMusicTool::GetMediaTypeArraySize method retrieves the size of the array that must be passed in to the IDirectMusicTool::GetMediaTypes method. A return value of 0 indicates that the tool handles all types, and it is unnecessary to call GetMediaTypes.

HRESULT GetMediaTypeArraySize(

 DWORD* pdwNumElements

);

Parameters

pdwNumElements

Address of a variable to receive the number of media types. If 0 is returned in this field, all types are supported.

Return Values

Return values are determined by the implementation. If the method succeeds, it returns S_OK. If it fails, the method can return E_POINTER.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicTool::GetMediaTypes

The IDirectMusicTool::GetMediaTypes method retrieves a list of the types of messages that this tool supports.

HRESULT GetMediaTypes(

 DWORD** padwMediaTypes,

 DWORD dwNumElements

);

Parameters

padwMediaTypes

Address of an array of DWORDs. The method fills this array with the media types supported by this tool. For media types, see DMUS_PMSGT_TYPES.

dwNumElements

Number of elements in the padwMediaTypes array. This value is equal to the number returned by the IDirectMusicTool::GetMediaTypeArraySize method. If dwNumElements is less than this number, the method cannot return all the message types that are supported. If it is greater than this number, the extra elements in the array should be set to 0.

Return Values

Return values are determined by the implementation. If the method succeeds, it returns S_OK, or S_FALSE if the method could not fill in all values because dwNumElements was too small. If it fails, the method can return one of the following error values:

E_POINTER��E_INVALIDARG��E_NOTIMPL��

Remarks

If the method returns E_NOTIMPL, the tool processes all media types.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicTool::GetMsgDeliveryType

The IDirectMusicTool::GetMsgDeliveryType method retrieves the tool's delivery type, which determines when messages are to be delivered to the tool.

HRESULT GetMsgDeliveryType(

 DWORD* pdwDeliveryType

);

Parameters

pdwDeliveryType

Address of a variable to receive the delivery type. The returned value must be DMUS_PMSGF_TOOL_IMMEDIATE, DMUS_PMSGF_TOOL_QUEUE, or DMUS_PMSGF_TOOL_ATTIME. An unrecognized value in *pdwDeliveryType is treated as DMUS_PMSGF_TOOL_IMMEDIATE by the graph.

Return Values

Return values are determined by the implementation. If the method succeeds, it returns S_OK. If it fails, the method can return E_POINTER.

Remarks

For an overview of the delivery mechanism, see Message Creation and Delivery.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicTool::Init

The IDirectMusicTool::Init method is called when the tool is inserted into the graph, giving the tool an opportunity to perform any necessary initialization.

HRESULT Init(

 IDirectMusicGraph* pGraph

);

Parameters

pGraph

Calling graph.

Return Values

Return values are determined by the implementation. If the method succeeds, it returns S_OK. If it fails, the method can return one of the following error values:

E_FAIL��E_NOTIMPL��

Remarks

Because a tool can be inserted into more than one graph, this method must be able to deal gracefully with multiple calls.

Be sure not to create a circular reference to the graph represented by pGraph. For more information, see DirectMusic Tools.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicGraph::InsertTool

IDirectMusicTool::ProcessPMsg

The IDirectMusicTool::ProcessPMsg method performs the main task of the tool. It is called from inside the performance's real-time thread for all messages that match the types specified by IDirectMusicTool::GetMediaTypes.

HRESULT ProcessPMsg(

 IDirectMusicPerformance* pPerf,

 DMUS_PMSG* pPMSG

);

Parameters

pPerf

Performance that is generating messages.

pPMSG

Message to process.

Return Values

Return values are determined by the implementation. If the method succeeds, the return value can be one of the following:

DMUS_S_REQUEUE��DMUS_S_FREE��S_OK��

If it fails, the method can return E_POINTER.

Remarks

If the method returns DMUS_S_REQUEUE, the tool wants the message to be requeued. This allows the tool to put a new time stamp and parameters on the message and requeue it, or to requeue the message with a different delivery type.

If the return value is DMUS_S_FREE, the tool wants the message freed automatically, and does not want to requeue the message.

If S_OK is returned, the tool does not want the message to be freed automatically. Perhaps the tool is holding onto the message for some reason, or has freed it itself.

Tools should not perform time-consuming activities because doing so can severely affect overall performance. Also be sure not to create a circular reference to the performance represented by pPerf. For more information, see DirectMusic Tools.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::SendPMsg, Messages, Message Creation and Delivery

IDirectMusicTrack

The IDirectMusicTrack interface represents a track object. Almost everything that has to do with the definition of a segment is stored in its tracks. The track mechanism allows segments to be infinitely extensible, and the segment does not need any knowledge of any of the music and audio technologies that it employs.

If you plan to install your own music playback mechanism in DirectMusic, you need to create a DirectMusicTrack object to represent it. Otherwise, the methods of this interface are typically not called directly from the application.

Note

When implementing methods of the IDirectMusicTrack interface, be sure not to hold onto references to objects passed in. For example, if IDirectMusicTrack::Init adds a reference to the IDirectMusicSegment interface that it receives as a parameter, ensure that this reference is released.

The IDirectMusicTrack interface has the following methods:

Initialization�Init ��Playback�EndPlay ���InitPlay ���Play ��Notification�AddNotificationType ���RemoveNotificationType ��Parameters�GetParam ���IsParamSupported ���SetParam ��Miscellaneous�Clone��

All COM interfaces inherit the IUnknown interface methods. This interface supports the following three methods:

IUnknown�AddRef ���QueryInterface ���Release ��

The DirectMusicTrack object also supports the IDirectMusicObject and IPersistStream interfaces for loading its data.

The following table shows which methods are supported by the standard track types. For a general description of the standard types, see Tracks.

Track�IDirectMusicTrack�methods�IPersistStream�methods��Band (CLSID_DirectMusicBandTrack)���AddNotificationType�No�IsDirty�Yes���Clone�Yes�GetSizeMax�No���EndPlay�Yes�Load�Yes���GetParam�No�Save�Yes���Init�Yes�����InitPlay�Yes�����IsParamSupported�Yes�����Play�Yes�����SetParam�Yes�����RemoveNotificationType�No����Chord (CLSID_DirectMusicChordTrack)���AddNotificationType�Yes�IsDirty�Yes���Clone�Yes�GetSizeMax�No���EndPlay�Yes�Load�Yes���GetParam�Yes�Save�Yes���Init�Yes�����InitPlay�Yes�����IsParamSupported�Yes�����Play�Yes�����SetParam�Yes�����RemoveNotificationType�Yes����Chord map (CLSID_DirectMusicChordMapTrack)���AddNotificationType�No�IsDirty�No���Clone�Yes�GetSizeMax�No���EndPlay�Yes*�Load�Yes���GetParam�Yes�Save�No���Init�Yes*�����InitPlay�Yes*�����IsParamSupported�Yes�����Play�Yes*�����SetParam�Yes�����RemoveNotificationType�No����Command (CLSID_DirectMusicCommandTrack)���AddNotificationType�Yes�IsDirty�Yes���Clone�Yes�GetSizeMax�No���EndPlay�Yes�Load�Yes���GetParam�Yes�Save�Yes���Init�Yes�����InitPlay�Yes�����IsParamSupported�Yes�����Play�Yes�����SetParam�Yes�����RemoveNotificationType�Yes����Motif (CLSID_DirectMusicMotifTrack)���AddNotificationType�Yes�IsDirty�No���Clone�Yes�GetSizeMax�No���EndPlay�Yes�Load�No���GetParam�No�Save�No���Init�Yes�����InitPlay�Yes�����IsParamSupported�Yes�����Play�Yes�����SetParam�Yes�����RemoveNotificationType�Yes����Mute (CLSID_DirectMusicMuteTrack)���AddNotificationType�No�IsDirty�Yes���Clone�Yes�GetSizeMax�No���EndPlay�Yes*�Load�Yes���GetParam�Yes�Save�Yes���Init�Yes*�����InitPlay�Yes*�����IsParamSupported�Yes�����Play�Yes*�����SetParam�Yes�����RemoveNotificationType�No����Sequence (CLSID_DirectMusicSeqTrack)���AddNotificationType�No�IsDirty�No���Clone�Yes�GetSizeMax�No���EndPlay�Yes�Load�Yes���GetParam�No�Save�No���Init�Yes�����InitPlay�Yes�����IsParamSupported�No�����Play�Yes�����SetParam�No�����RemoveNotificationType�No����Signpost (CLSID_DirectMusicSignPostTrack)���AddNotificationType�No�IsDirty�Yes���Clone�Yes�GetSizeMax�No���EndPlay�Yes*�Load�Yes���GetParam�No�Save�Yes���Init�Yes*�����InitPlay�Yes*�����IsParamSupported�No�����Play�Yes*�����SetParam�No�����RemoveNotificationType�No����Style (CLSID_DirectMusicStyleTrack)���AddNotificationType�Yes�IsDirty�No���Clone�Yes�GetSizeMax�No���EndPlay�Yes�Load�Yes���GetParam�Yes�Save�No���Init�Yes�����InitPlay�Yes�����IsParamSupported�Yes�����Play�Yes�����SetParam�Yes�����RemoveNotificationType�Yes����SysEx (CLSID_DirectMusicSysExTrack)���AddNotificationType�No�IsDirty�No���Clone�Yes�GetSizeMax�No���EndPlay�Yes�Load�Yes���GetParam�No�Save�No���Init�Yes�����InitPlay�Yes�����IsParamSupported�No�����Play�Yes�����SetParam�No�����RemoveNotificationType�No����Tempo (CLSID_DirectMusicTempoTrack)���AddNotificationType�No�IsDirty�No���Clone�Yes�GetSizeMax�No���EndPlay�Yes�Load�Yes���GetParam�Yes�Save�No���Init�Yes�����InitPlay�Yes�����IsParamSupported�Yes�����Play�Yes�����SetParam�Yes�����RemoveNotificationType�No����Time signature** (CLSID_DirectMusicTimeSigTrack)���AddNotificationType�Yes�IsDirty�No���Clone�Yes�GetSizeMax�No���EndPlay�Yes�Load�Yes���GetParam�Yes�Save�No���Init�Yes�����InitPlay�Yes�����IsParamSupported�Yes�����Play�Yes�����SetParam�Yes�����RemoveNotificationType�Yes����

Notes

* The method returns a value other than E_NOTIMPL but does not do anything else.

** The time-signature track exists in imported MIDI files and DirectMusic Producer segments specifically created with one. In most cases, the style track implements the time-signature track's functionality, so it is not necessary for a segment that contains a style track to contain a time-signature track, as well.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

Tracks, Setting and Retrieving Track Parameters

IDirectMusicTrack::AddNotificationType

The IDirectMusicTrack::AddNotificationType method enables event notification for a track. It is similar to and called from the IDirectMusicSegment::AddNotificationType method.

HRESULT AddNotificationType(

 REFGUID rguidNotificationType

);

Parameters

rguidNotificationType

Reference to (C++) or address of (C) the identifier of the notification type to add. For the defined types, see DMUS_NOTIFICATION_PMSG. Applications can also define their own types for custom tracks.

Return Values

If the method succeeds, the return value is S_OK, or S_FALSE if the track does not support the notification type.

If the track does not support notifications, the method returns E_NOTIMPL.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicTrack::RemoveNotificationType, Notification and Event Handling

IDirectMusicTrack::Clone

The IDirectMusicTrack::Clone method makes a copy of a track.

HRESULT Clone(

 MUSIC_TIME mtStart,

 MUSIC_TIME mtEnd,

 IDirectMusicTrack** ppTrack

);

Parameters

mtStart

Start of the part to clone. It should be 0 or greater and less than the length of the track.

mtEnd

End of the part to clone. It should be greater than mtStart and less than the length of the track.

ppTrack

Address of a variable to receive a pointer to the created track, if successful.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

E_FAIL��E_INVALIDARG��E_OUTOFMEMORY��E_POINTER��

Remarks

It is the caller's responsibility to call Release when finished with the track.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicTrack::EndPlay

The IDirectMusicTrack::EndPlay method is called when the object that originally called IDirectMusicTrack::InitPlay is destroyed.

HRESULT EndPlay(

 void * pStateData

);

Parameters

pStateData

State data returned from IDirectMusicTrack::InitPlay. This data should be freed in the EndPlay method.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicTrack::GetParam

The IDirectMusicTrack::GetParam method retrieves data from a track.

HRESULT GetParam(

 REFGUID rguidType,

 MUSIC_TIME mtTime,

 MUSIC_TIME* pmtNext,

 void* pParam

);

Parameters

rguidType

Reference to (C++) or address of (C) the identifier of the type of data to obtain. See Track Parameter Types.

mtTime

Time, in track time, from which to obtain the data.

pmtNext

Address of a variable to receive the track time (relative to the current time) until which the data is valid. If this returns a value of 0, either the data is always valid, or it is unknown when it might become invalid. If this information is not needed, pmtNext can be set to NULL.

pParam

Address of an allocated structure in which the data is to be returned. The structure must be of the appropriate kind and size for the data type identified by rguidType.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

DMUS_E_NOT_FOUND��DMUS_E_NOT_INIT��DMUS_E_TYPE_DISABLED��DMUS_E_GET_UNSUPPORTED��E_POINTER��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicTrack::SetParam, IDirectMusicTrack::IsParamSupported, IDirectMusicPerformance::GetParam, IDirectMusicSegment::GetParam, Music Parameters

IDirectMusicTrack::Init

The IDirectMusicTrack::Init method is called by a segment when a track is added and performs any necessary initialization.

HRESULT Init(

 IDirectMusicSegment* pSegment

);

Parameters

pSegment

Segment to which this track belongs.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

DMUS_E_NOT_INIT��E_OUTOFMEMORY��E_POINTER��

Remarks

If the track plays messages, it should call IDirectMusicSegment::SetPChannelsUsed in the Init method.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicTrack::InitPlay

The IDirectMusicTrack::InitPlay method is called when a track is ready to start playing. It returns a pointer to state data, which is sent in to IDirectMusicTrack::Play and IDirectMusicTrack::EndPlay.

HRESULT InitPlay(

 IDirectMusicSegmentState* pSegmentState,

 IDirectMusicPerformance* pPerformance,

 void** ppStateData,

 DWORD dwVirtualTrackID,

 DWORD dwFlags

);

Parameters

pSegmentState

Address of the calling IDirectMusicSegmentState interface.

pPerformance

Address of the calling IDirectMusicPerformance interface.

ppStateData

Address of a variable to receive a pointer to state information. The format and use of the data is specific to the track. The data should be created in the InitPlay method and freed in the IDirectMusicTrack::EndPlay method. The pointer is passed to the IDirectMusicTrack::Play method.

dwVirtualTrackID

Virtual track ID assigned to this track instance.

dwFlags

DMUS_SEGF_FLAGS that control the track's behavior. See Remarks.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

DMUS_E_NOT_INIT��E_OUTOFMEMORY��E_POINTER��

Remarks

The track must store the pSegmentState, pPerformance, or dwTrackID parameters because they are also sent in to IDirectMusicTrack::Play.

The dwFlags parameter passes the flags that were handed to the performance in the call to IDirectMusicPerformance::PlaySegment. The track determines how it should perform, based on the DMUS_SEGF_CONTROL and DMUS_SEGF_SECONDARY flags. For example, the tempo track automatically plays the tempo changes only if it is part of a primary segment or a secondary control segment (DMUS_SEGF_SECONDARY is not set, or DMUS_SEGF_CONTROL is set).

A track can return NULL in ppStateData.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicTrack::IsParamSupported

The IDirectMusicTrack::IsParamSupported method determines whether the track supports a given data type in the IDirectMusicTrack::GetParam and IDirectMusicTrack::SetParam methods.

HRESULT IsParamSupported(

 REFGUID rguidType

);

Parameters

rguidType

Reference to (C++) or address of (C) the identifier of the type of data. See Track Parameter Types.

Return Values

If the method succeeds and the type is supported, the return value is S_OK.

If it fails, the method can return one of the following error values:

DMUS_E_TYPE_DISABLED��DMUS_E_TYPE_UNSUPPORTED��E_POINTER��E_NOTIMPL��

Remarks

If a message type has been disabled by using one of the SetParam methods (see Disabling and Enabling Messages), the IDirectMusicTrack::IsParamSupported method returns DMUS_E_TYPE_DISABLED when passed the corresponding parameter type (either GUID_TempoParam or GUID_TimeSignature).

The method also returns DMUS_E_TYPE_DISABLED if passed GUID_DisableTempo when that message type has already been disabled, or if passed GUID_EnableTempo when that message type is currently enabled. The same is true for GUID_DisableTimeSig and GUID_EnableTimeSig.

The method returns DMUS_E_TYPE_UNSUPPORTED when the track does not support the message type referred to by a GUID_EnableTempo, GUID_EnableTimeSig, GUID_DisableTempo, or GUID_DisableTimeSig parameter type.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicTrack::GetParam, IDirectMusicTrack::SetParam, Music Parameters

IDirectMusicTrack::Play

The IDirectMusicTrack::Play method causes the track to play. It performs any work that the track must do when the segment is played, such as creating and sending messages.

HRESULT Play(

 void* pStateData,

 MUSIC_TIME mtStart,

 MUSIC_TIME mtEnd,

 MUSIC_TIME mtOffset

 DWORD dwFlags,

 IDirectMusicPerformance* pPerf,

 IDirectMusicSegmentState* pSegSt,

 DWORD dwVirtualID

);

Parameters

pStateData

State data from the IDirectMusicTrack::InitPlay method. The format and use of the data is specific to the track.

mtStart

Start time.

mtEnd

End time.

mtOffset

Offset to add to all messages sent to IDirectMusicPerformance::SendPMsg.

dwFlags

Flags that indicate the state of this call. See DMUS_TRACKF_FLAGS. A value of 0 indicates that this call to Play continues playback from the previous call.

pPerf

Performance used to allocate and send the message.

pSegSt

Segment state that this track belongs to. The IDirectMusicSegmentState::QueryInterface method can be called to obtain an IDirectMusicGraph interface—to call IDirectMusicGraph::StampPMsg, for instance.

dwVirtualID

Virtual identifier of the track. This value must be put in the dwVirtualTrackID member of any message (see DMUS_PMSG) that is sent by IDirectMusicPerformance::SendPMsg.

Return Values

If the method succeeds, the return value can be S_OK or DMUS_S_END.

If it fails, the method can return one of the following error values:

DMUS_E_NOT_INIT��E_POINTER��

Remarks

If the track is empty, the method returns DMUS_S_END.

Tracks generate messages in a medium-priority thread. You can call time-consuming functions, such as code to stream data from a file, from within a track's Play method. However, be sure to follow the guidelines for safe multithreading.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

IDirectMusicTrack::RemoveNotificationType

The IDirectMusicTrack::RemoveNotificationType method removes an event notification from a track. It is similar to and called from the IDirectMusicSegment::RemoveNotificationType method.

HRESULT RemoveNotificationType(

 REFGUID rguidNotificationType

);

Parameters

rguidNotificationType

Reference to (C++) or address of (C) the identifier of the notification type to remove. For the defined types, see DMUS_NOTIFICATION_PMSG.

Return Values

If the method succeeds, the return value is S_OK, or S_FALSE if the track does not support the notification type.

If the track does not support notifications, the method returns E_NOTIMPL.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicTrack::AddNotificationType, Notification and Event Handling

IDirectMusicTrack::SetParam

The IDirectMusicTrack::SetParam method sets data on a track.

HRESULT SetParam(

 REFGUID rguidType,

 MUSIC_TIME mtTime,

 void* pParam

);

Parameters

rguidType

Reference to (C++) or address of (C) the identifier of the type of data to set. See Track Parameter Types.

mtTime

Time, in track time, at which to set the data.

pParam

Address of a structure containing the data, or NULL if no data is required. The structure must be of the appropriate kind and size for the data type identified by rguidType.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the following error values:

DMUS_E_SET_UNSUPPORTED��DMUS_E_TYPE_DISABLED��E_OUTOFMEMORY��E_POINTER��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicTrack::GetParam, IDirectMusicTrack::IsParamSupported, IDirectMusicPerformance::SetParam, IDirectMusicSegment::SetParam, Setting and Retrieving Track Parameters

IKsControl

The IKsControl interface is used to get, set, or query the support of properties, events, and methods. This interface is part of the Windows Driver Model kernel streaming architecture, but is also used by DirectMusic to expose properties of DirectMusic ports. To retrieve this interface, call the IDirectMusicPort::QueryInterface method with IID_IKsControl in the riid parameter.

Routing of the property item request to the port varies, depending on the port implementation. No properties are supported by ports that represent DirectMusic emulation on top of the Win32 handle-based multimedia calls (midiOut and midiIn functions).

Property item requests to a port that represents a pluggable software synthesizer are answered totally in user mode. The topology of this type of port is a synthesizer (represented by an IDirectMusicSynth interface) connected to a sink node (an IDirectMusicSynthSink interface). The property request is given first to the synthesizer node, and then to the sink node if it is not recognized by the synthesizer.

The interface has the following methods. At present, only KsProperty is supported by DirectMusic.

IKsControl�KsProperty���KsEvent���KsMethod��

All COM interfaces inherit the IUnknown interface methods. This interface supports the following three methods:

IUnknown�AddRef ���QueryInterface ���Release ��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmksctrl.h.

See Also

Port Property Sets

IKsControl::KsProperty

The IKsControl::KsProperty method gets or sets the value of a property. For an overview, see Port Property Sets.

HRESULT KsProperty(

 PKSPROPERTY pProperty,

 ULONG ulPropertyLength,

 LPVOID pvPropertyData,

 ULONG ulDataLength,

 PULONG pulBytesReturned

);

Parameters

pProperty

Address of a KSPROPERTY structure that gives the property set, item, and operation to perform. If this property contains instance data, that data should reside in memory immediately following the structure.

ulPropertyLength

Length of the memory pointed to by pProperty, including any instance data.

pvPropertyData

For a set operation, the address of a memory buffer containing data representing the new value of the property. For a get operation, the address of a memory buffer big enough to hold the value of the property. For a basic support query, the address of a buffer at least a DWORD in size.

ulDataLength

Length of the buffer pointed to by pvPropertyData.

pulBytesReturned

On a KSPROPERTY_TYPE_GET or KSPROPERTY_TYPE_BASICSUPPORT call, address of a variable to receive the number of bytes returned in pvPropertyData by the port.

Return Values

If the method succeeds, it returns S_OK.

If it fails, the method can return one of the following error values:

E_FAIL��E_INVALIDARG��E_NOTIMPL��E_OUTOFMEMORY��E_POINTER��DMUS_E_UNKNOWN_PROPERTY��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmksctrl.h.

See Also

Port Property Sets

IReferenceClock

The IReferenceClock interface represents a system reference clock. The DirectMusic master clock and a port's latency clock implement this interface.

The interface has the following methods:

IReferenceClock�GetTime���AdviseTime���AdvisePeriodic���Unadvise��

All COM interfaces inherit the IUnknown interface methods. This interface supports the following three methods:

IUnknown�AddRef ���QueryInterface ���Release ��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

IDirectMusic::GetMasterClock, IDirectMusicPort::GetLatencyClock, Timing

IReferenceClock::AdvisePeriodic

The IReferenceClock::AdvisePeriodic method requests an asynchronous, periodic notification that a duration has elapsed.

HRESULT AdvisePeriodic(

 REFERENCE_TIME rtStartTime,

 REFERENCE_TIME rtPeriodTime,

 HSEMAPHORE hSemaphore,

 DWORD * pdwAdviseCookie

);

Parameters

rtStartTime

Time that the notification should begin.

rtPeriodTime

Period of time between notifications.

hSemaphore

Handle of a semaphore through which to advise.

pdwAdviseCookie

Address of a variable to receive the identifier of the request. This is used to identify this call to AdvisePeriodic in the future—for example, to cancel it.

Return Values

Return values are determined by the implementation. If the method succeeds, it returns S_OK.

If it fails, the method can return one of the following error values:

E_FAIL ��E_POINTER ��E_INVALIDARG ��E_NOTIMPL ��

Remarks

When the time indicated by rtStartTime is reached, the semaphore whose handle is set as hSemaphore is released. Thereafter, the semaphore is released repetitively with a period of rtPeriodTime.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

IReferenceClock::Unadvise

IReferenceClock::AdviseTime

The IReferenceClock::AdviseTime method requests an asynchronous notification that a time has elapsed.

HRESULT AdviseTime(

 REFERENCE_TIME rtBaseTime,

 REFERENCE_TIME rtStreamTime,

 HEVENT hEvent,

 DWORD * pdwAdviseCookie

);

Parameters

rtBaseTime

Base reference time.

rtStreamTime

Stream offset time.

hEvent

Handle to an event through which to advise.

pdwAdviseCookie

Address of a variable to receive the identifier of the request. This is used to identify this call to AdviseTime in the future—for example, to cancel it.

Return Values

Return values are determined by the implementation. If the method succeeds, it returns S_OK.

If it fails, the method can return one of the following error values:

E_FAIL ��E_POINTER ��E_INVALIDARG ��E_NOTIMPL ��

Remarks

When the time rtBaseTime plus rtStreamTime is reached, the event whose handle is hEvent is set. If the time has already passed, the event is set immediately.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

IReferenceClock::Unadvise

IReferenceClock::GetTime

The IReferenceClock::GetTime method retrieves the current time.

HRESULT GetTime(

 REFERENCE_TIME * pTime

);

Parameters

pTime

Address of a variable to receive the current time.

Return Values

Return values are determined by the implementation. If the method succeeds, it returns S_OK.

If it fails, the method can return one of the following error values:

E_FAIL ��E_POINTER ��E_INVALIDARG ��E_NOTIMPL ��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

IReferenceClock::Unadvise

The IReferenceClock::Unadvise method cancels a request for notification.

HRESULT Unadvise(

 DWORD dwAdviseCookie

);

Parameters

dwAdviseCookie

Identifier of the request that is to be canceled, as set in the IReferenceClock::AdviseTime or the IReferenceClock::AdvisePeriodic method.

Return Values

Return values are determined by the implementation. If the method succeeds, it returns S_OK.

If it fails, the method can return one of the following error values:

E_FAIL ��E_POINTER ��E_INVALIDARG ��E_NOTIMPL ��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

Messages

DirectMusic message structures are all based on the DMUS_PMSG structure. Because C does not support inheritance, the members of this structure are included in each derived structure as the DMUS_PMSG_PART macro.

For an overview of messages, see DirectMusic Messages.

This section contains information about the following structures used to contain message information:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_PMSG

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_CHANNEL_PRIORITY_PMSG

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_CURVE_PMSG

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_MIDI_PMSG

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_NOTE_PMSG

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_NOTIFICATION_PMSG

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_PATCH_PMSG

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_SYSEX_PMSG

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_TEMPO_PMSG

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_TIMESIG_PMSG

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_TRANSPOSE_PMSG

See Also

IDirectMusicPerformance::AllocPMsg, IDirectMusicPerformance::SendPMsg, IDirectMusicPerformance::FreePMsg, IDirectMusicTool::ProcessPMsg

DMUS_PMSG

The DMUS_PMSG structure contains information common to all DirectMusic messages. Because C does not support inheritance, the members of this structure are included in all message types (including DMUS_PMSG itself) by the inclusion of the DMUS_PMSG_PART macro, which expands to the syntax shown here.

typedef struct DMUS_PMSG {

 DWORD dwSize;

 REFERENCE_TIME rtTime;

 MUSIC_TIME mtTime;

 DWORD dwFlags;

 DWORD dwPChannel;

 DWORD dwVirtualTrackID;

 IDirectMusicTool* pTool;

 IDirectMusicGraph* pGraph;

 DWORD dwType;

 DWORD dwVoiceID;

 DWORD dwGroupID;

 IUnknown* punkUser;

} DMUS_PMSG;

dwSize

Size of the structure, in bytes. This member is initialized by IDirectMusicPerformance::AllocPMsg.

rtTime

Reference time at which the message is to be played, modified by dwFlags. Used only if DMUS_PMSGF_REFTIME is present in dwFlags.

mtTime

Music time at which the message is to be played, modified by dwFlags. Used only if DMUS_PMSGF_MUSICTIME is present in dwFlags.

dwFlags

Various bits (see DMUS_PMSGF_FLAGS and DMUS_TIME_RESOLVE_FLAGS). Must contain DMUS_PMSGF_REFTIME or DMUS_PMSGF_MUSICTIME.

dwPChannel

Performance channel (PChannel). The port, channel group, and MIDI channel can be derived from this value by using the IDirectMusicPerformance::PChannelInfo method. Set this value to 0 for messages that are not channel-specific, such as tempo messages.

dwVirtualTrackID

Identifier of the track. Set to 0 if the message is not being sent by a track.

pTool

Address of the tool interface. Can be set by using IDirectMusicGraph::StampPMsg, or can be NULL if the message is not to go to tools other than the output tool.

pGraph

Address of the tool graph interface. Can be set by using IDirectMusicGraph::StampPMsg, or can be NULL if the message is not to go to tools other than the output tool.

dwType

Message type (see DMUS_PMSGT_TYPES).

dwVoiceID

Reserved for future use. Should be set to 0.

dwGroupID

Identifier of the track group or groups that the message belongs to if the message is being generated by a track. (Tracks are assigned to groups in the IDirectMusicSegment::InsertTrack method.) For most purposes, this value can be 0xFFFFFFF.

punkUser

Address of an IUnknown interface supplied by the application. This pointer is always released when the message is freed. If the application wants to retain the object, it should call AddRef before the message is freed. If the message does not need a COM pointer, this value should be NULL.

Remarks

The DMUS_PMSG structure is used by itself for messages containing the following values in the dwType member:

DMUS_PMSGT_STOP

Sending a message of this type stops the performance at the specified time.

DMUS_PMSGT_DIRTY

When a control segment starts or ends, all tools in the segment and performance graphs receive a message of this type, indicating that if they cache data from GetParam calls, they must call GetParam again to refresh their data. Tools that want to receive this message type must indicate this through a call to IDirectMusicTool::GetMediaTypes. Tools in the performance graph receive one copy of the message for each segment in the performance. Such tools can safely ignore the extra messages with the same time stamp.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::SendPMsg

DMUS_CHANNEL_PRIORITY_PMSG

The DMUS_CHANNEL_PRIORITY_PMSG message structure contains data about a channel priority change.

typedef struct _DMUS_CHANNEL_PRIORITY_PMSG {

 DMUS_PMSG_PART

 DWORD dwChannelPriority;

} DMUS_CHANNEL_PRIORITY_PMSG;

DMUS_PMSG_PART

Macro for common message members. See DMUS_PMSG.

dwChannelPriority

Priority of the channel. For a list of defined values, see the Remarks for IDirectMusicPort::GetChannelPriority.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPort::SetChannelPriority, IDirectMusicPerformance::SendPMsg

DMUS_CURVE_PMSG

DMUS_CURVE_PMSG is a message structure that represents a curve (for example, a sequence of continuous controller events).

typedef struct DMUS_CURVE_PMSG {

 DMUS_PMSG_PART

 MUSIC_TIME mtDuration;

 MUSIC_TIME mtOriginalStart;

 MUSIC_TIME mtResetDuration;

 short nStartValue;

 short nEndValue;

 short nResetValue;

 WORD wMeasure;

 short nOffset;

 BYTE bBeat;

 BYTE bGrid;

 BYTE bType;

 BYTE bCurveShape;

 BYTE bCCData;

 BYTE bFlags;

} DMUS_CURVE_PMSG;

DMUS_PMSG_PART

Macro for common message members. See DMUS_PMSG.

mtDuration

Duration of the curve.

mtOriginalStart

Original start time. Must be set to either 0 when this message is created, or to the original start time of the curve.

mtResetDuration

How long after the curve is finished until the reset value is set. Ignored if DMUS_CURVE_RESET is not in bFlags.

nStartValue

Start value of the curve.

nEndValue

End value of the curve.

nResetValue

Reset value of the curve, set after mtResetDuration or upon a flush or invalidation. Ignored if DMUS_CURVE_RESET is not in bFlags.

wMeasure

Measure in which this curve occurs.

nOffset

Offset from the grid at which this curve occurs, in music time.

bBeat

Beat count (within a measure) at which this curve occurs.

bGrid

Grid offset from the beat at which this curve occurs.

bType

Type of curve. This can be one of the following values:

DMUS_CURVET_CCCURVE

Continuous controller curve (MIDI Control Change channel voice message; status byte &HBn, where n is the channel number).

DMUS_CURVET_MATCURVE

Monophonic aftertouch curve (MIDI Channel Pressure channel voice message; status byte &HDn).

DMUS_CURVET_PATCURVE

Polyphonic aftertouch curve (MIDI Poly Key Pressure channel voice message, status byte &HDn).

DMUS_CURVET_PBCURVE

Pitch-bend curve (MIDI Pitch Bend channel voice message; status byte &HEn).

bCurveShape

Shape of curve. This can be one of the following values:

DMUS_CURVES_EXP

Exponential curve shape.

DMUS_CURVES_INSTANT

Instant curve shape (beginning and end of curve happen at essentially the same time).

DMUS_CURVES_LINEAR

Linear curve shape.

DMUS_CURVES_LOG

Logarithmic curve shape.

DMUS_CURVES_SINE

Sine curve shape.

bCCData

CC number if this is a control change type.

bFlags

Set to DMUS_CURVE_RESET if nResetValue must be set when the time is reached or an invalidation occurs because of a transition. If 0, the curve stays permanently at the new value. All other bits are reserved.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::SendPMsg

DMUS_MIDI_PMSG

The DMUS_MIDI_PMSG structure contains data for a standard MIDI message not represented by another message type, such as a control change or pitch bend.

typedef struct DMUS_MIDI_PMSGG {

 DMUS_PMSG_PART

 BYTE bStatus;

 BYTE bByte1;

 BYTE bByte2;

 BYTE bPad[1];

} DMUS_MIDI_PMSG;

DMUS_PMSG_PART

Macro for common message members. See DMUS_PMSG.

bStatus

Standard MIDI status byte.

bByte1

First byte of the MIDI message. Ignored for MIDI messages that do not require it.

bByte2

Second byte of the MIDI message. Ignored for MIDI messages that do not require it.

bPad

Padding to a WORD boundary.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

MIDI Messages, IDirectMusicPerformance::SendPMsg

DMUS_NOTE_PMSG

The DMUS_NOTE_PMSG structure contains data for a music-note event.

typedef struct DMUS_NOTE_PMSG {

 DMUS_PMSG_PART

 MUSIC_TIME mtDuration;

 WORD wMusicValue;

 WORD wMeasure;

 short nOffset;

 BYTE bBeat;

 BYTE bGrid;

 BYTE bVelocity;

 BYTE bFlags;

 BYTE bTimeRange;

 BYTE bDurRange;

 BYTE bVelRange;

 BYTE bPlayModeFlags;

 BYTE bSubChordLevel;

 BYTE bMidiValue;

} DMUS_NOTE_PMSG;

DMUS_PMSG_PART

Macro for common message members. See DMUS_PMSG.

mtDuration

Duration of the note.

wMusicValue

Description of the note. In most play modes, this is a packed array of 4-bit values, as follows:

Octave

In the range from –2 through 14. The note is transposed up or down by the octave times 12.

Chord position

In the range from 0 through 15, although it should never be above 3. The first position in the chord is 0.

Scale position

In the range from 0 through 15. Typically it is only from 0 through 2, but it is possible to have a one-note chord and have everything above the chord be interpreted as a scale position.

Accidental

In the range from –8 through 7, but typically in the range from –2 through 2. This represents an offset that takes the note out of the scale.

In the fixed-play modes, the music value is a MIDI note value in the range from 0 through 127.

wMeasure

Measure in which this note occurs.

nOffset

Offset from the grid at which this note occurs, in music time.

bBeat

Beat (in measure) at which this note occurs.

bGrid

Grid offset from the beat at which this note occurs.

bVelocity

Note velocity.

bFlags

See DMUS_NOTEF_FLAGS.

bTimeRange

Range by which to randomize time.

bDurRange

Range by which to randomize duration.

bVelRange

Range by which to randomize velocity.

bPlayModeFlags

Play mode determining how the music value is related to the chord and subchord. For a list of values, see DMUS_PLAYMODE_FLAGS.

bSubChordLevel

Subchord level that the note uses. See DMUS_SUBCHORD.

bMidiValue

MIDI note value, converted from wMusicValue.

Remarks

When a note is to be played, the DMUS_NOTE_PMSG flows through the graph and any tools in the graph until it reaches the final MIDI output tool. When the tool recognizes that DMUS_NOTEF_NOTEON is set in the bFlags member, it sends a MIDI note-on message to the correct port (according to the dwPChannel member of the DMUS_PMSG part). It then clears the flag, adds mtDuration to the time stamp, and requeues the message so that the note is turned off at the appropriate time.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::SendPMsg, Music Values and MIDI Notes

DMUS_NOTIFICATION_PMSG

The DMUS_NOTIFICATION_PMSG structure is a DMUS_PMSG that represents a notification.

typedef struct DMUS_NOTIFICATION_PMSG {

 DMUS_PMSG_PART

 GUID guidNotificationType;

 DWORD dwNotificationOption;

 DWORD dwField1;

 DWORD dwField2;

} DMUS_NOTIFICATION_PMSG;

DMUS_PMSG_PART

Macro for common message members. See DMUS_PMSG.

guidNotificationType

Identifier of the notification type. The following types are defined:

GUID_NOTIFICATION_CHORD

Chord change.

GUID_NOTIFICATION_COMMAND

Command event.

GUID_NOTIFICATION_MEASUREANDBEAT

Measure and beat event.

GUID_NOTIFICATION_PERFORMANCE

Performance event, further defined in dwNotificationOption.

GUID_NOTIFICATION_SEGMENT

Segment event, further defined in dwNotificationOption.

dwNotificationOption

Identifier of the notification subtype.

If the notification type is GUID_NOTIFICATION_SEGMENT, this member can contain one of the following values:

DMUS_NOTIFICATION_SEGABORT

The segment was stopped by IDirectMusicPerformance::Stop.

DMUS_NOTIFICATION_SEGALMOSTEND

The segment has reached the end minus the prepare time.

DMUS_NOTIFICATION_SEGEND

The segment has ended.

DMUS_NOTIFICATION_SEGLOOP

The segment has looped.

DMUS_NOTIFICATION_SEGSTART

The segment has started.

If the notification type is GUID_NOTIFICATION_COMMAND, this member can contain one of the following values:

DMUS_NOTIFICATION_GROOVE

Groove change.

DMUS_NOTIFICATION_EMBELLISHMENT

Embellishment command (intro, fill, break, or end).

If the notification type is GUID_NOTIFICATION_PERFORMANCE, this member can contain one of the following values:

DMUS_NOTIFICATION_MUSICSTARTED

Playback has started.

DMUS_NOTIFICATION_MUSICSTOPPED

Playback has stopped.

If the notification type is GUID_NOTIFICATION_MEASUREANDBEAT, this member contains DMUS_NOTIFICATION_MEASUREBEAT. No other subtypes are defined.

If the notification type is GUID_NOTIFICATION_CHORD, this member contains DMUS_NOTIFICATION_CHORD. No other subtypes are defined.

dwField1

Extra data specific to the type of notification. For GUID_NOTIFICATION_MEASUREANDBEAT notifications, this member returns the beat number within the measure.

dwField2

Extra data specific to the type of notification. Reserved for future or application-defined use.

Remarks

For most notifications, the punkUser member (see DMUS_PMSG) contains the IUnknown pointer of the segment state. This is especially useful in the cases of chords and commands, in which you can query for the IDirectMusicSegmentState interface, call IDirectMusicSegmentState::GetSegment to get the IDirectMusicSegment pointer, and then call the IDirectMusicSegment::GetParam method to get the chord or command at the time given in the notification message's mtTime member.

For notifications of type GUID_NOTIFICATION_PERFORMANCE, the punkUser member is always NULL.

Applications can define their own notification message types and subtypes and use dwField1 and dwField2 for extra data. Such custom notification messages can be allocated and sent like any other message. Application-defined tracks can send messages of a particular type after the GUID (guidNotificationType) has been handed to IDirectMusicTrack::AddNotificationType.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

Notification and Event Handling, IDirectMusicPerformance::SendPMsg

DMUS_PATCH_PMSG

The DMUS_PATCH_PMSG structure contains data for a program-change message.

typedef struct DMUS_PATCH_PMSG {

 DMUS_PMSG_PART

 BYTE byInstrument;

 BYTE byMSB;

 BYTE byLSB;

 BYTE byPad[1];

} DMUS_PATCH_PMSG;

DMUS_PMSG_PART

Macro for common message members. See DMUS_PMSG.

byInstrument

Patch number of the instrument.

byMSB

Most significant byte of bank select.

byLSB

Least significant byte of bank select.

byPad

Padding to a WORD boundary. This value is ignored.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

DMUS_MIDI_PMSG, IDirectMusicPerformance::SendPMsg, MIDI Messages

DMUS_SYSEX_PMSG

The DMUS_SYSEX_PMSG structure is a DMUS_PMSG that represents a MIDI system-exclusive message.

typedef struct DMUS_SYSEX_PMSG {

 DMUS_PMSG_PART

 DWORD dwLen;

 BYTE abData[1];

} DMUS_SYSEX_PMSG;

DMUS_PMSG_PART

Macro for common message members. See DMUS_PMSG.

dwLen

Length of the data, in bytes.

abData

Array of data. For an example of how to allocate memory and copy data to this member, see the Remarks for IDirectMusicPerformance::SendPMsg.

Remarks

The data part of a system-exclusive message must begin with the System Exclusive identifier (0xF0) and end with EOX (0xF7).

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

DMUS_MIDI_PMSG, DMUS_PATCH_PMSG, MIDI Messages, IDirectMusicPerformance::SendPMsg

DMUS_TEMPO_PMSG

The DMUS_TEMPO_PMSG structure contains data for a message that controls the performance's tempo.

typedef struct DMUS_TEMPO_PMSG {

 DMUS_PMSG_PART

 double dblTempo;

} DMUS_TEMPO_PMSG;

DMUS_PMSG_PART

Macro for common message members. See DMUS_PMSG.

dblTempo

Tempo, in the range from DMUS_TEMPO_MIN through DMUS_TEMPO_MAX.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::SendPMsg

DMUS_TIMESIG_PMSG

The DMUS_TIMESIG_PMSG structure contains data for a message that controls the time signature of the performance.

typedef struct _DMUS_TIMESIG_PMSG {

 DMUS_PMSG_PART

 BYTE bBeatsPerMeasure;

 BYTE bBeat;

 WORD wGridsPerBeat;

} DMUS_TIMESIG_PMSG;

DMUS_PMSG_PART

Macro for common message members. See DMUS_PMSG.

bBeatsPerMeasure

Beats per measure (top of the time signature).

bBeat

Note that receives the beat (bottom of the time signature), where 1 is a whole note, 2 is a half note, 4 is a quarter note, and so on. Zero is a 256th note.

wGridsPerBeat

Grids (subdivisions) per beat. This value determines the timing resolution for certain music events—for example, segments cued with the DMUS_SEGF_GRID flag (see DMUS_SEGF_FLAGS).

Remarks

Time-signature messages are generated by the time-signature track and the style track. In general, a segment contains one or the other, but not both. A segment representing a MIDI file has a time-signature track, but most segments authored with a tool such as DirectMusic Producer contain time-signature information in the style track.

By default, only the primary segment sends time-signature messages. For information on how to change this behavior, see Disabling and Enabling Messages.

The time signature is used by the performance to resolve time to measure, beat, and grid boundaries in all methods in which the time can be adjusted by DMUS_SEGF_FLAGS or DMUS_TIME_RESOLVE_FLAGS. The time-signature and style tracks also use the time signature to generate notifications on measure and beat boundaries. See DMUS_NOTIFICATION_PMSG.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::SendPMsg, DMUS_TIMESIGNATURE

DMUS_TRANSPOSE_PMSG

The DMUS_TRANSPOSE_PMSG structure contains data for a message that controls a transposition.

typedef struct _DMUS_TRANSPOSE_PMSG {

 DMUS_PMSG_PART

 short nTranspose;

} DMUS_TRANSPOSE_PMSG;

DMUS_PMSG_PART

Macro for common message members. See DMUS_PMSG.

nTranspose

Number of semitones by which to transpose. This can be a negative value.

Remarks

If the transposition of a note puts it outside the standard MIDI range from 0 through 127, it does not play.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::SendPMsg

Structures

This section contains reference information for the following run-time structures used in DirectMusic:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_BUFFERDESC

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_CHORD_KEY

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_CHORD_PARAM

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_CLOCKINFO

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_COMMAND_PARAM

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_COMMAND_PARAM2

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_EVENTHEADER

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_MUTE_PARAM

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_NOTERANGE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_OBJECTDESC

�symbol 183 \f "Symbol" \s 11 \h �	DMUS_PORTCAPS

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_PORTPARAMS

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_RHYTHM_PARAM

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_SUBCHORD

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_SYNTHSTATS

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_TEMPO_PARAM

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_TIMESIGNATURE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_VERSION

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_WAVES_REVERB_PARAMS

�SYMBOL 183 \f "Symbol" \s 11 \h �	KSPROPERTY

Special categories of structures are contained in the following sections:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Messages

�SYMBOL 183 \f "Symbol" \s 11 \h �	File Structures

�SYMBOL 183 \f "Symbol" \s 11 \h �	DLS Structures

Note

The memory for all DirectX structures must be initialized to 0 before use. In addition, all structures that contain a dwSize member must set the member to the size of the structure, in bytes, before use. The following DirectDraw example performs these tasks on a common structure, DDCAPS:

DDCAPS ddcaps; // Can't use this yet.

ZeroMemory(&ddcaps, sizeof(ddcaps));

ddcaps.dwSize = sizeof(ddcaps);

// Now the structure can be used.

.

.

DMUS_BUFFERDESC

The DMUS_BUFFERDESC structure is used to describe a buffer for the IDirectMusic::CreateMusicBuffer method.

typedef struct _DMUS_BUFFERDESC {

 DWORD dwSize;

 DWORD dwFlags;

 GUID guidBufferFormat;

 DWORD cbBuffer;

} DMUS_BUFFERDESC, *LPDMUS_BUFFERDESC;

Members

dwSize

Size of this structure, in bytes. This member must be initialized before the structure is used.

dwFlags

No flags are defined.

guidBufferFormat

Identifier of the KS format of the buffer. The value GUID_NULL represents KSDATAFORMAT_SUBTYPE_DIRECTMUSIC.

If guidBufferFormat represents a KS format other than KSDATAFORMAT_SUBTYPE_DIRECTMUSIC, the application must verify that the port playing back the data understands the specified format; if not, the buffer is ignored. To find out if the port supports a specific KS format, use the IKsControl::KsProperty method.

cbBuffer

Minimum size of the buffer, in bytes. The amount of memory allocated can be slightly higher because the system pads the buffer to a multiple of 4 bytes. The buffer must be at least 32 bytes to accommodate a single MIDI channel message, and at least 28 bytes plus the size of the data to accommodate a system-exclusive message or other unstructured data.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

DMUS_EVENTHEADER, IDirectMusicBuffer::PackStructured, IDirectMusicBuffer::PackUnstructured

DMUS_CHORD_KEY

The DMUS_CHORD_KEY structure is used to describe a chord in the IDirectMusicPerformance::MIDIToMusic and IDirectMusicPerformance::MusicToMIDI methods.

typedef struct _DMUS_CHORD_KEY {

 WCHAR wszName[16];

 WORD wMeasure;

 BYTE bBeat;

 BYTE bSubChordCount;

 DMUS_SUBCHORD SubChordList[DMUS_MAXSUBCHORD];

 DWORD dwScale;

 BYTE bKey;

} DMUS_CHORD_KEY;

Members

wszName

Name of the chord.

wMeasure

Measure that the chord falls on.

bBeat

Beat that the chord falls on.

bSubChordCount

Number of chords in the chord's list of subchords.

SubChordList

Array of DMUS_SUBCHORD structures, describing the components that make up the chord.

dwScale

Scale underlying the entire chord.

bKey

Key underlying the entire chord.

Remarks

This structure is also defined as a DMUS_CHORD_PARAM structure for use in setting and retrieving the GUID_ChordParam track parameter.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::GetParam, IDirectMusicPerformance::SetParam, IDirectMusicSegment::GetParam, IDirectMusicSegment::SetParam, IDirectMusicTrack::GetParam, IDirectMusicTrack::SetParam, Music Parameters

DMUS_CHORD_PARAM

The DMUS_CHORD_PARAM structure is used as the pParam parameter in calls to the various GetParam and SetParam methods when the track is a chord track and rguidType is GUID_ChordParam.

typedef DMUS_CHORD_KEY DMUS_CHORD_PARAM;

See DMUS_CHORD_KEY.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

See Also

IDirectMusicPerformance::GetParam, IDirectMusicPerformance::SetParam, IDirectMusicSegment::GetParam, IDirectMusicSegment::SetParam, IDirectMusicTrack::GetParam, IDirectMusicTrack::SetParam, Music Parameters

DMUS_CLOCKINFO

The DMUS_CLOCKINFO structure reports information about a clock enumerated by using the IDirectMusic::EnumMasterClock method.

typedef struct _DMUS_CLOCKINFO{

 DWORD dwSize;

 DMUS_CLOCKTYPE ctType;

 GUID guidClock;

 WCHAR wszDescription[DMUS_MAX_DESCRIPTION];

} DMUS_CLOCKINFO, *LPDMUS_CLOCKINFO;

Members

dwSize

Size of the structure, in bytes This member must be initialized to sizeof(DMUS_CLOCKINFO) before the structure is passed to a method.

ctType

Member of the DMUS_CLOCKTYPE enumeration specifying the type of clock.

guidClock

Identifier of the clock. This value can be passed to the IDirectMusic::SetMasterClock method to set the master clock for DirectMusic.

wszDescription

Description of the clock.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

DMUS_COMMAND_PARAM

The DMUS_COMMAND_PARAM structure is used as the pParam parameter in calls to various GetParam and SetParam methods when the track is a command track and the rguidType parameter is GUID_CommandParam.

typedef struct {

 BYTE bCommand;

 BYTE bGrooveLevel;

 BYTE bGrooveRange;

} DMUS_COMMAND_PARAM;

Members

bCommand

Command type. See DMUS_COMMANDT_TYPES.

bGrooveLevel

Groove level of the command. The groove level is a value in the range from 1 through 100.

bGrooveRange

Amount by which the groove level can be randomized. For instance, if the groove level is 35 and the range is 4, the actual groove level could be anywhere from 33 through 37. Not currently implemented.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

See Also

IDirectMusicPerformance::GetParam, IDirectMusicPerformance::SetParam, IDirectMusicSegment::GetParam, IDirectMusicSegment::SetParam, IDirectMusicTrack::GetParam, IDirectMusicTrack::SetParam

DMUS_COMMAND_PARAM2

The DMUS_COMMAND_PARAM2 structure is used as the pParam parameter in calls to various GetParam and SetParam methods when the track is a command track and the rguidType parameter is GUID_CommandParam2.

typedef struct {

 MUSIC_TIME mtTime;

 BYTE bCommand;

 BYTE bGrooveLevel;

 BYTE bGrooveRange;

} DMUS_COMMAND_PARAM2;

Members

mtTime

Time of the command.

bCommand

Command type. See DMUS_COMMANDT_TYPES.

bGrooveLevel

Groove level of the command. The groove level is a value in the range from 1 through 100.

bGrooveRange

Amount by which the groove level can be randomized. For instance, if the groove level is 35 and the range is 4, the groove level could be anywhere from 33 through 37. Not currently implemented.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

See Also

IDirectMusicPerformance::GetParam, IDirectMusicPerformance::SetParam, IDirectMusicSegment::GetParam, IDirectMusicSegment::SetParam, IDirectMusicTrack::GetParam, IDirectMusicTrack::SetParam

DMUS_EVENTHEADER

The DMUS_EVENTHEADER structure precedes and describes an event in a port buffer.

typedef struct _DMUS_EVENTHEADER {

 DWORD cbEvent;

 DWORD dwChannelGroup;

 REFERENCE_TIME rtDelta;

 DWORD dwFlags;

} DMUS_EVENTHEADER, *LPDMUS_EVENTHEADER;

Members

cbEvent

Number of bytes in the event.

dwChannelGroup

Group to which the event belongs.

rtDelta

Offset from the start time of the buffer.

dwFlags

Set to DMUS_EVENT_STRUCTURED if the event is parsable MIDI data.

Remarks

The Pshpack4.h header file is included before the declaration of this structure to turn off automatic alignment of structures so that the data immediately follows the header. (For more information, see the comments in Pshpack4.h.) Poppack.h is then included to turn alignment back on, and the entire structure (header plus event) is padded to an 8-byte boundary.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusbuff.h.

See Also

IDirectMusicBuffer::GetNextEvent, IDirectMusicBuffer::PackStructured, IDirectMusicBuffer::PackUnstructured

DMUS_NOTERANGE

The DMUS_NOTERANGE structure specifies a range of notes that an instrument must respond to. An array of these structures is passed to the IDirectMusicPerformance::DownloadInstrument and IDirectMusicPort::DownloadInstrument methods to specify what notes the instrument should respond to and, therefore, what instrument regions need to be downloaded.

typedef struct _DMUS_NOTERANGE {

 DWORD dwLowNote;

 DWORD dwHighNote;

} DMUS_NOTERANGE, *LPDMUS_NOTERANGE;

Members

dwLowNote

Low note for this range of MIDI notes to which the instrument must respond.

dwHighNote

High note for this range of MIDI notes to which the instrument must respond.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmdls.h.

DMUS_MUTE_PARAM

The DMUS_MUTE_PARAM structure is used as the pParam parameter in calls to the various GetParam and SetParam methods when the track is a mute track and rguidType is GUID_MuteParam.

typedef struct _DMUS_MUTE_PARAM {

 DWORD dwPChannel;

 DWORD dwPChannelMap;

 BOOL fMute;

} DMUS_MUTE_PARAM;

Members

dwPChannel

Performance channel to mute or remap. If the structure is being passed to GetParam, this member must be initialized.

dwPChannelMap

Channel to which dwPChannel is being mapped. This member is ignored if fMute is TRUE.

fMute

TRUE if dwPChannel is being muted.

Remarks

If you wanted all the notes on PChannel 3 to play on PChannel 9 instead, you would set dwPChannel to 3 and dwPChannelMap to 9 before passing the structure to one of the SetParam methods. If you wanted to mute the notes on PChannel 8, you would set dwPChannel to 8 and dwPChannelMap to 0xFFFFFFFF.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

See Also

IDirectMusicPerformance::GetParam, IDirectMusicPerformance::SetParam, IDirectMusicSegment::GetParam, IDirectMusicSegment::SetParam, IDirectMusicTrack::GetParam, IDirectMusicTrack::SetParam

DMUS_OBJECTDESC

The DMUS_OBJECTDESC structure is used to describe a DirectMusic object. It is passed to the IDirectMusicLoader::GetObject method to identify the object that the loader should retrieve from storage. Information about an object is retrieved in this structure by the IDirectMusicLoader::EnumObject and IDirectMusicObject::GetDescriptor methods.

typedef struct _DMUS_OBJECTDESC {

 DWORD dwSize;

 DWORD dwValidData;

 GUID guidObject;

 GUID guidClass;

 FILETIME ftDate;

 DMUS_VERSION vVersion;

 WCHAR wszName[DMUS_MAX_NAME];

 WCHAR wszCategory[DMUS_MAX_CATEGORY];

 WCHAR wszFileName[DMUS_MAX_FILENAME];

 LONGLONG llMemLength;

 PBYTE pbMemData;

} DMUS_OBJECTDESC, *LPDMUS_OBJECTDESC;

Members

dwSize

Size of the structure, in bytes. This member must be initialized to sizeof(DMUS_OBJECTDESC) before the structure is passed to any method.

dwValidData

Flags describing which members are valid and giving further information about some members. The following values are defined:

DMUS_OBJ_OBJECT

The guidObject member is valid.

DMUS_OBJ_CLASS

The guidClass member is valid.

DMUS_OBJ_NAME

The wszName member is valid.

DMUS_OBJ_CATEGORY

The wszCategory member is valid.

DMUS_OBJ_FILENAME

The wszFileName member is valid.

DMUS_OBJ_FULLPATH

The wszFileName member contains the full path. If this flag is set, the loader assumes that wszFileName is valid even if DMUS_OBJ_FILENAME has not been set.

DMUS_OBJ_MEMORY

The object is in memory, and llMemLength and pbMemData are valid.

DMUS_OBJ_URL

The wszFileName member contains a URL. (URLs are not currently supported by the DirectMusic loader.)

DMUS_OBJ_VERSION

The vVersion member is valid.

DMUS_OBJ_DATE

The ftDate member is valid.

DMUS_OBJ_LOADED

The object is currently loaded in memory.

guidObject

Unique identifier for this object.

guidClass

Unique identifier for the class of object. All the standard objects have defined identifiers consisting of "CLSID_" plus the name of the object. For example, a segment object is identified as CLSID_DirectMusicSegment. See the defines in the Dmusici.h header file.

ftDate

Date that the object was last edited.

vVersion

DMUS_VERSION structure containing version information.

wszName

Name of the object.

wszCategory

Category for the object.

wszFileName

File path. If DMUS_OBJ_FULLPATH is set, this is the full path; otherwise, it is the file name.

llMemLength

Size of data in memory.

pbMemData

Data in memory.

Remarks

At least one of wszName, guidObject, and wszFileName must be filled with valid data to retrieve the object by using the IDirectMusicLoader::GetObject method.

The name and category strings use 16-bit characters in the WCHAR format, not 8-bit ANSI chars. Be sure to convert as appropriate. You can use the C-library mbstowcs functionto convert from multibyte to Unicode and the wcstombs functionto convert from Unicode back to multibyte.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

DirectMusic Loader

DMUS_PORTCAPS

The DMUS_PORTCAPS structure receives information about a port enumerated by a call to the IDirectMusic::EnumPort method. The structure is also used to return information through the IDirectMusicPort::GetCaps method.

typedef struct _DMUS_PORTCAPS {

 DWORD dwSize;

 DWORD dwFlags;

 GUID guidPort;

 DWORD dwClass;

 DWORD dwType;

 DWORD dwMemorySize;

 DWORD dwMaxChannelGroups;

 DWORD dwMaxVoices;

 DWORD dwMaxAudioChannels;

 DWORD dwEffectFlags;

 WCHAR wszDescription[DMUS_MAX_DESCRIPTION];

} DMUS_PORTCAPS, *LPDMUS_PORTCAPS;

Members

dwSize

Size of the structure, in bytes. This member must be initialized to sizeof(DMUS_PORTCAPS) before the structure is passed to any method.

dwFlags

Flags describing various capabilities of the port. This field can contain one or more of the following values:

DMUS_PC_DIRECTSOUND

The port supports streaming wave data to DirectSound.

DMUS_PC_DLS

The port supports DLS Level 1 sample collections.

DMUS_PC_DLS2

The port supports DLS Level 2 sample collections.

DMUS_PC_EXTERNAL

The port connects to devices outside the host—for example, devices connected over an external MIDI port such as the MPU-401.

DMUS_PC_GMINHARDWARE

The synthesizer has its own GM instrument set, so GM instruments do not need to be downloaded.

DMUS_PC_GSINHARDWARE

This port contains the Roland GS sound set in hardware.

DMUS_PC_MEMORYSIZEFIXED

Memory available for DLS instruments cannot be adjusted.

DMUS_PC_SHAREABLE

More than one port can be created that uses the same range of channel groups on the device. Unless this bit is set, the port can be opened only in exclusive mode. In exclusive mode, an attempt to create a port fails unless free channel groups are available to assign to the create request.

DMUS_PC_SOFTWARESYNTH

The port is a software synthesizer.

DMUS_PC_XGINHARDWARE

The port contains the Yamaha XG extensions in hardware.

guidPort

Identifier of the port. This value can be passed to the IDirectMusic::CreatePort method to get an IDirectMusicPort interface for the port.

dwClass

Class of this port. The following classes are defined:

DMUS_PC_INPUTCLASS

Input port.

DMUS_PC_OUTPUTCLASS

Output port.

dwType

Type of this port. The following types are defined:

DMUS_PORT_WINMM_DRIVER

Windows multimedia driver.

DMUS_PORT_USER_MODE_SYNTH

User-mode synthesizer.

DMUS_PORT_KERNEL_MODE

WDM driver.

dwMemorySize

Amount of memory available to store DLS instruments. If the port is using system memory and the amount is therefore limited only by the available system memory, this field contains DMUS_PC_SYSTEMMEMORY.

dwMaxChannelGroups

Maximum number of channel groups supported by this port. A channel group is a set of 16 MIDI channels.

dwMaxVoices

Maximum number of voices that can be allocated when this port is opened. The value can be –1 if the driver does not support returning this parameter.

dwMaxAudioChannels

Maximum number of audio channels that can be rendered by the port. The value can be –1 if the driver does not support returning this parameter.

dwEffectFlags

Flags indicating what audio effects are available on the port.

The following flags are defined:

DMUS_EFFECT_NONE

No effects are supported.

DMUS_EFFECT_REVERB

The port supports reverb.

DMUS_EFFECT_CHORUS

The port supports chorus.

wszDescription

Description of the port. This can be a system-generated name, such as L"MPU-401 Output Port [330]", or a user-specified friendly name, such as L"Port w/ External SC-55".

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

DMUS_PORTPARAMS

The DMUS_PORTPARAMS structure contains parameters for the opening of a DirectMusic port. These parameters are passed in when the IDirectMusic::CreatePort method is called.

typedef struct _DMUS_PORTPARAMS {

 DWORD dwSize;

 DWORD dwValidParams;

 DWORD dwVoices;

 DWORD dwChannelGroups;

 DWORD dwAudioChannels;

 DWORD dwSampleRate;

 DWORD dwEffectFlags;

 DWORD fShare;

} DMUS_PORTPARAMS, *LPDMUS_PORTPARAMS;

Members

dwSize

Size of the structure, in bytes. This member must be initialized to sizeof(DMUS_PORTPARAMS) before the structure is passed to a method.

dwValidParams

Specifies which port parameters in this structure have been filled in. Setting the flag for a particular parameter means that you want to have this parameter set on the method call or want to override the default value when the port is created. The following flags have been defined:

DMUS_PORTPARAMS_VOICES�DMUS_PORTPARAMS_CHANNELGROUPS�DMUS_PORTPARAMS_AUDIOCHANNELS�DMUS_PORTPARAMS_SAMPLERATE�DMUS_PORTPARAMS_EFFECTS�DMUS_PORTPARAMS_SHARE

dwVoices

Number of voices required on this port. This is not an absolute maximum; the port can create additional temporary voices to enable smooth transitions when lower-priority voices have to be dropped.

dwChannelGroups

Number of channel groups to be allocated on this port. Must be less than or equal to the number of channel groups specified in the DMUS_PORTCAPS structure returned by the IDirectMusic::EnumPort and IDirectMusicPort::GetCaps methods.

dwAudioChannels

Desired number of output channels.

dwSampleRate

Desired sample rate, in hertz.

dwEffectFlags

Flags indicating which special effects are desired. The following flags are defined:

DMUS_EFFECT_NONE�DMUS_EFFECT_REVERB�DMUS_EFFECT_CHORUS

fShare

If TRUE, all ports use the channel groups assigned to this port. If FALSE, the port is opened in exclusive mode, and the use of the same channel groups by other ports is forbidden.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

See Also

DMUS_PORTCAPS

DMUS_RHYTHM_PARAM

The DMUS_RHYTHM_PARAM structure is used as the pParam parameter in calls to the various GetParam methods when the track is a chord track and rguidType is GUID_RhythmParam.

typedef struct {

 DMUS_TIMESIGNATURE TimeSig;

 DWORD dwRhythmPattern;

} DMUS_RHYTHM_PARAM;

Members

TimeSig

DMUS_TIMESIGNATURE structure containing the time signature of the rhythm parameter. This structure must be initialized before the DMUS_RHYTHM_PARAM structure is passed to GetParam.

dwRhythmPattern

Rhythm pattern for a sequence of chords. Each bit represents a beat in one or more measures, with 1 signifying a chord on the beat and 0 signifying no chord.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

See Also

IDirectMusicPerformance::GetParam, IDirectMusicPerformance::SetParam, IDirectMusicSegment::GetParam, IDirectMusicSegment::SetParam, IDirectMusicTrack::GetParam, IDirectMusicTrack::SetParam

DMUS_SUBCHORD

The DMUS_SUBCHORD structure is used in the SubChordList member of a DMUS_CHORD_PARAM structure.

typedef struct {

 DWORD dwChordPattern;

 DWORD dwScalePattern;

 DWORD dwInversionPoints;

 DWORD dwLevels;

 BYTE bChordRoot;

 BYTE bScaleRoot;

} DMUS_SUBCHORD;

Members

dwChordPattern

Notes in the subchord. Each of the lower 24 bits represents a semitone, starting with the root at the least significant bit, and the bit is set if the note is in the chord.

dwScalePattern

Notes in the scale. Each of the lower 24 bits represents a semitone, starting with the root at the least significant bit, and the bit is set if the note is in the scale.

dwInversionPoints

Points in the scale at which inversions can occur. Bits that are off signify that the notes in the interval cannot be inverted. Thus, the pattern 100001111111 indicates that inversions are allowed anywhere except between the fifth and seventh degrees of a major scale.

dwLevels

Bit field showing which levels are supported by this subchord. Each part in a style is assigned a level, and this chord is used only for parts whose levels are contained in this member.

bChordRoot

Root of the subchord, in which 0 is the bottom C in the range and 23 is the top B.

bScaleRoot

Root of the scale, in which 0 is the bottom C in the range and 23 is the top B.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

DMUS_SYNTHSTATS

The DMUS_SYNTHSTATS structure is used by the IDirectMusicPort::GetRunningStats method to return the current running status of a synthesizer.

typedef struct DMUS_SYNTHSTATS {

 DWORD dwSize;

 DWORD dwValidStats;

 DWORD dwVoices;

 DWORD dwTotalCPU;

 DWORD dwCPUPerVoice;

 DWORD dwLostNotes;

 DWORD dwFreeMemory;

 long lPeakVolume;

} DMUS_SYNTHSTATS, *LPDMUS_SYNTHSTATS;

Members

dwSize

Size of the structure, in bytes. This member must be initialized to sizeof(DMUS_SYNTHSTATS) before the structure is passed to a method.

dwValidStats

Flags that specify which fields in this structure have been filled in by the synthesizer. The following flags have been defined:

DMUS_SYNTHSTATS_VOICES�DMUS_SYNTHSTATS_TOTAL_CPU�DMUS_SYNTHSTATS_CPU_PER_VOICE�DMUS_SYNTHSTATS_FREE_MEMORY�DMUS_SYNTHSTATS_LOST_NOTES�DMUS_SYNTHSTATS_PEAK_VOLUME

dwVoices

Average number of voices playing.

dwTotalCPU

Total percentage of the CPU being consumed, multiplied by 100.

dwCPUPerVoice

Percentage of the CPU being consumed per voice, multiplied by 100.

dwLostNotes

Number of notes lost. Notes can be dropped because of voice-stealing or because too much of the CPU is being consumed.

dwFreeMemory

Amount of memory currently available to store DLS instruments. If the synthesizer is using system memory and the amount is therefore limited only by the available system memory, this value is set to DMUS_SYNTHSTATS_SYSTEMMEMORY.

lPeakVolume

Peak volume, measured in hundredths of decibels.

Remarks

All the running status parameters, with the exception of dwFreeMemory, are refreshed every second. For example, dwLostNotes provides the total number of notes lost over a one-second period.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

DMUS_TEMPO_PARAM

The DMUS_TEMPO_PARAM structure is used as the pParam parameter in calls to the various GetParam and SetParam methods when the track is a tempo track and rguidType is GUID_TempoParam.

typedef struct _DMUS_TEMPO_PARAM {

 MUSIC_TIME mtTime;

 double dblTempo;

} DMUS_TEMPO_PARAM;

Members

mtTime

Time for which the tempo was retrieved. (This member is not used in SetParam methods, which use their mtTime parameter instead.)

dblTempo

The tempo, in the range from DMUS_TEMPO_MIN through DMUS_TEMPO_MAX.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

See Also

IDirectMusicPerformance::GetParam, IDirectMusicPerformance::SetParam, IDirectMusicSegment::GetParam, IDirectMusicSegment::SetParam, IDirectMusicTrack::GetParam, IDirectMusicTrack::SetParam

DMUS_TIMESIGNATURE

The DMUS_TIMESIGNATURE structure is passed to the IDirectMusicStyle::GetTimeSignature method to retrieve information about a style's time signature. It is also used in the DMUS_RHYTHM_PARAM structure and in the various GetParam methods when the rguidType parameter is GUID_TimeSignature and the track is a time signature or style track.

typedef struct _DMUS_TIMESIGNATURE {

 MUSIC_TIME mtTime;

 BYTE bBeatsPerMeasure;

 BYTE bBeat;

 WORD wGridsPerBeat;

} DMUS_TIMESIGNATURE;

Members

mtTime

Music time at which this time signature occurs.

bBeatsPerMeasure

Top of time signature.

bBeat

Bottom of time signature.

wGridsPerBeat

Grids (subdivisions) per beat. This value determines the timing resolution for certain music events—for example, segments cued with the DMUS_SEGF_GRID flag (see DMUS_SEGF_FLAGS).

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::GetParam, IDirectMusicPerformance::SetParam, IDirectMusicSegment::GetParam, IDirectMusicSegment::SetParam, IDirectMusicTrack::GetParam, IDirectMusicTrack::SetParam, DMUS_TIMESIG_PMSG

DMUS_VERSION

The DMUS_VERSION structure contains version information for an object described in the DMUS_OBJECTDESC structure.

typedef struct _DMUS_VERSION {

 DWORD dwVersionMS;

 DWORD dwVersionLS;

} DMUS_VERSION, FAR *LPDMUS_VERSION;

Members

dwVersionMS

Most significant DWORD of the version number.

dwVersionLS

Least significant DWORD of the version number.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

DMUS_WAVES_REVERB_PARAMS

The DMUS_WAVES_REVERB_PARAMS structure contains information about reverberation effects.

typedef struct _DMUS_WAVES_REVERB_PARAMS {

 float fInGain;

 float fReverbMix;

 float fReverbTime;

 float fHighFreqRTRatio;

} DMUS_WAVES_REVERB_PARAMS;

Members

fInGain

Input gain, in decibels (to avoid output overflows). The default value is 0.

fReverbMix

Reverb mix, in decibels. A value of 0 means 100 percent wet reverb (no direct signal). Negative values gives less wet signal. The coefficients are calculated so that the overall output level stays approximately constant, regardless of the amount of reverb mix. The default value is –10.0.

fReverbTime

Reverb decay time, in milliseconds. The default value is 1000.

fHighFreqRTRatio

Ratio of the high frequencies to the global reverb time. Unless very bright reverbs are wanted, this should be set to a value less than 1. For example, if fReverbTime is 1000 ms and dHighFreqRTRatio is 0.1, the decay time for high frequencies is 100 ms. The default value is 0.001.

Remarks

The TrueVerb reverberation technology from Waves is licensed to Microsoft as the SimpleVerb implementation for use in the Microsoft Software Synthesizer.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

KSPROPERTY

The KSPROPERTY structure is passed to the IKsControl::KsProperty method to identify a property and operation.

KSPROPERTY is defined as a KSIDENTIFIER structure, which is declared as follows:

typedef struct {

 union {

 struct {

 GUID Set;

 ULONG Id;

 ULONG Flags;

 };

 LONGLONG Alignment;

 };

} KSIDENTIFIER, *PKSIDENTIFIER;

Members

Set

Identifier of the property set. The following property-set GUIDs are predefined by DirectMusic:

GUID_DMUS_PROP_DLS1

Item 0 is a Boolean indicating whether or not this port supports downloading DLS samples.

GUID_DMUS_PROP_Effects

Item 0 contains DMUS_EFFECT_NONE or one or more effects flags (see the dwEffectFlags member of DMUS_PORTCAPS). This property is used to set or retrieve the current state of the effects.

GUID_DMUS_PROP_GM_Hardware

Item 0 is a Boolean indicating whether or not this port supports GM in hardware.

GUID_DMUS_PROP_GS_Capable

Item 0 is a Boolean indicating whether or not this port supports the minimum requirements for Roland GS extensions.

GUID_DMUS_PROP_GS_Hardware

Item 0 is a Boolean indicating whether or not this port supports Roland GS extensions in hardware.

GUID_DMUS_PROP_LegacyCaps

Item 0 is the MIDIINCAPS or MIDIOUTCAPS structure that describes the underlying Windows multimedia device implementing this port. A MIDIINCAPS structure is returned if dwClass is DMUS_PC_INPUTCLASS in this port's capabilities structure. Otherwise, a MIDIOUTCAPS structure is returned.

GUID_DMUS_PROP_MemorySize

Item 0 is a Boolean indicating how many bytes of sample RAM are available on this device.

GUID_DMUS_PROP_SynthSink_DSOUND

Item 0 is a Boolean indicating whether or not this port supports DirectSound.

GUID_DMUS_PROP_SynthSink_WAVE

Item 0 is a Boolean indicating whether or not this port supports wave output using the waveOut functions.

GUID_DMUS_PROP_Volume

Item 1 (DMUS_ITEM_Volume) is a LONG in the range from DMUS_VOLUME_MAX through DMUS_VOLUME_MIN. This is the signed value, in hundredths of a decibel, which is added to the gain of all voices after all DLS articulation has been performed. By default, when a port is added to the performance, this property is set to the master volume. For master volume, see Setting and Retrieving Global Parameters.

GUID_DMUS_PROP_WavesReverb

Item 0 is a DMUS_WAVES_REVERB_PARAMS structure containing reverb parameters.

GUID_DMUS_PROP_WriteLatency

Item 0 is the write latency of the user-mode synthesizer (the dwType member of the DMUS_PORTCAPS structure is DMUS_PORT_USER_MODE_SYNTH) that streams its output to DirectSound. The write latency is the delay between when the synthesizer creates a buffer of sound and when it is heard. By adjusting this value, an application can fine-tune the synthesizer for minimum latency without sound breakup. On some computers, in particular ones without hardware support for DirectSound, the initial latency is much larger than on others, so the value should always be read first, and then adjusted with a relative value. The write latency can have different values for each port instance. This property must be set each time the port is activated.

GUID_DMUS_PROP_WritePeriod

Item 0 is the write period, in milliseconds, of the user-mode synthesizer (the dwType member of the DMUS_PORTCAPS structure is DMUS_PORT_USER_MODE_SYNTH) that streams its output to DirectSound. The write period controls how frequently the synthesizer sink allows the synthesizer to mix. By reducing this value, the application can reduce the overall latency of the synthesizer. However, values under 10 milliseconds increase the CPU load. The write period has the same value for all port instances that use the standard DirectSound sink. This property must be set each time the port is activated.

GUID_DMUS_PROP_XG_Capable

Item 0 is a Boolean indicating whether or not this port supports the minimum requirements for Yamaha XG extensions.

GUID_DMUS_PROP_XG_Hardware

Item 0 is a Boolean indicating whether or not this port supports Yamaha XG extensions in hardware.

Id

Item within the property set.

Flags

One of the following flags to specify the operation:

KSPROPERTY_TYPE_GET

To retrieve the given property item's value.

KSPROPERTY_TYPE_SET

To set the given property item's value.

KSPROPERTY_TYPE_BASICSUPPORT

To determine the type of support available for the property set. The data returned by IKsControl::KsProperty in *pvPropertyData is a DWORD containing one or both of KSPROPERTY_TYPE_GET and KSPROPERTY_TYPE_SET, indicating which operations are possible.

Alignment

Not used in DirectMusic.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmksctrl.h.

See Also

Port Property Sets

File Structures

This section contains reference information for data structures used in DirectMusic files. Most applications do not need to know about these structures because each standard DirectMusic object handles the loading of its own data through its IPersistStream interface. The structures are chiefly of interest for music-authoring applications that need to save data in a format compatible with DirectMusic.

The following structures are used in DirectMusic files:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_BAND_ITEM_HEADER

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_BAND_TRACK_HEADER

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_CHORD

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_CHORDENTRY

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_CHORDMAP

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_CHORDMAP_SIGNPOST

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_CHORDMAP_SUBCHORD

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_COMMAND

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_CURVE_ITEM

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_INSTRUMENT

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_MOTIFSETTINGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_MUTE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_NEXTCHORD

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_PARTREF

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_PATTERN

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_REFERENCE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_SEGMENT_HEADER

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_SEQ_ITEM

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_SIGNPOST

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_STYLE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_STYLECURVE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_STYLENOTE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_STYLEPART

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_SUBCHORD

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_SYSEX_ITEM

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_TEMPO_ITEM

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_TIMESIG

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_TIMESIGNATURE_ITEM

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_TOOL_HEADER

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_TRACK_HEADER

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_IO_VERSION

See Also

DirectMusic File Format

DMUS_IO_BAND_ITEM_HEADER

The DMUS_IO_BAND_ITEM_HEADER structure contains information about a band change. It is used in the Band Track Form.

typedef struct _DMUS_IO_BAND_ITEM_HEADER {

 MUSIC_TIME lBandTime;

} DMUS_IO_BAND_ITEM_HEADER;

lBandTime

Time of the band change.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

DMUS_IO_BAND_TRACK_HEADER

The DMUS_IO_BAND_TRACK_HEADER structure contains information about the default behavior of a band track. It is used in the Band Track Form.

typedef struct _DMUS_IO_BAND_TRACK_HEADER {

 BOOL bAutoDownload;

} DMUS_IO_BAND_TRACK_HEADER;

bAutoDownload

Flag for automatic downloading of instruments when a segment is played.

Remarks

For more information on automatic downloading, see Using Bands.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

DMUS_IO_CHORD

The DMUS_IO_CHORD structure contains information about a chord change. It is used in the Chord Track List.

typedef struct _DMUS_IO_CHORD {

 WCHAR wszName[16];

 MUSIC_TIME mtTime;

 WORD wMeasure;

 BYTE bBeat;

} DMUS_IO_CHORD;

wszName

Name of the chord.

mtTime

Time of the chord.

wMeasure

Measure that the chord falls on.

bBeat

Beat that the chord falls on.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

DMUS_IO_CHORDENTRY

The DMUS_IO_CHORDENTRY structure contains information about a chord entry. It is used in the Chord-map Form.

typedef struct _DMUS_IO_CHORDENTRY {

 DWORD dwFlags;

 WORD wConnectionID;

} DMUS_IO_CHORDENTRY;

dwFlags

Flag indicating whether the chord is a starting chord (bit 2 set) or an ending chord (bit 3 set) in the chord graph.

wConnectionID

Replaces the run-time pointer to this. Each chord entry is tagged with a unique connection identifier.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

DMUS_IO_CHORDMAP

The DMUS_IO_CHORDMAP structure contains information about a chord map. It is used in the Chord-map Form.

typedef struct _DMUS_IO_CHORDMAP {

 WCHAR wszLoadName[20];

 DWORD dwScalePattern;

 DWORD dwFlags;

} DMUS_IO_CHORDMAP;

wszLoadName

Name of the chord map, used in the object description when the chord map is loaded.

dwScalePattern

Scale associated with the chord map. Each of the lower 24 bits represents a semitone, starting with the root at the least significant bit, and the bit is set if the note is in the scale.

dwFlags

Reserved for future use.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

DMUS_IO_CHORDMAP_SIGNPOST

The DMUS_IO_CHORDMAP_SIGNPOST structure contains information about a signpost chord in a chord map. It is used in the Chord-map Form.

typedef struct _DMUS_IO_CHORDMAP_SIGNPOST {

 DWORD dwChords;

 DWORD dwFlags;

} DMUS_IO_CHORDMAP_SIGNPOST;

dwChords

Types of signpost supported by this chord. The values are used to match against the same values as they appear in templates. Composing from template consists of (among other things) looking for these values in the template and finding actual chords in the chord map that match these values. The following flags are defined:

DMUS_SIGNPOSTF_A�DMUS_SIGNPOSTF_B�DMUS_SIGNPOSTF_C�DMUS_SIGNPOSTF_D�DMUS_SIGNPOSTF_E�DMUS_SIGNPOSTF_F�DMUS_SIGNPOSTF_LETTER�DMUS_SIGNPOSTF_1�DMUS_SIGNPOSTF_2�DMUS_SIGNPOSTF_3�DMUS_SIGNPOSTF_4�DMUS_SIGNPOSTF_5�DMUS_SIGNPOSTF_6�DMUS_SIGNPOSTF_7�DMUS_SIGNPOSTF_ROOT�DMUS_SIGNPOSTF_CADENCE

dwFlags

Flags defining whether this chord is to be preceded by cadence chords. Signpost chords can have up to two cadence chords. This value can be SPOST_CADENCE1 (first cadence), SPOST_CADENCE2 (second cadence), or a combination of these two flags.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

See Also

DMUS_IO_SIGNPOST

DMUS_IO_CHORDMAP_SUBCHORD

The DMUS_IO_CHORDMAP_SUBCHORD structure contains information about a subchord. It is used in the Chord-map Form.

typedef struct _DMUS_IO_CHORDMAP_SUBCHORD {

 DWORD dwChordPattern;

 DWORD dwScalePattern;

 DWORD dwInvertPattern;

 BYTE bChordRoot;

 BYTE bScaleRoot;

 WORD wCFlags;

 DWORD dwLevels;

} DMUS_IO_CHORDMAP_SUBCHORD;

dwChordPattern

Notes in the subchord. Each of the lower 24 bits represents a semitone, starting with the root at the least significant bit, and the bit is set if the note is in the chord.

dwScalePattern

Notes in the scale. Each of the lower 24 bits represents a semitone, starting with the root at the least significant bit, and the bit is set if the note is in the scale.

dwInvertPattern

Points in the scale at which inversions can occur. Bits that are off signify that the notes in the interval cannot be inverted. Thus, the pattern 100001111111 indicates that inversions are allowed anywhere except between the fifth and seventh degrees of a major scale.

bChordRoot

Root of the subchord, where 0 is the bottom C in the range and 23 is the top B.

bScaleRoot

Root of the scale, where 0 is the bottom C in the range and 23 is the top B.

wCFlags

Reserved for future use.

dwLevels

Bit field showing which levels are supported by this subchord. Each part in a style is assigned a level, and this chord is used only for parts whose levels are contained in this member.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

See Also

DMUS_SUBCHORD

DMUS_IO_COMMAND

The DMUS_IO_COMMAND structure contains information about a command event. It is used in the Command Track Chunk.

typedef struct _DMUS_IO_COMMAND {

 MUSIC_TIME mtTime;

 WORD wMeasure;

 BYTE bBeat;

 BYTE bCommand;

 BYTE bGrooveLevel;

 BYTE bGrooveRange;

} DMUS_IO_COMMAND;

mtTime

Time of the command.

wMeasure

Measure that the command falls on.

bBeat

Beat that the command falls on.

bCommand

Command type. See DMUS_COMMANDT_TYPES.

bGrooveLevel

Groove level, or 0 if the command is not a groove command.

bGrooveRange

Amount by which the groove level can be randomized. For instance, if the groove level is 35 and the range is 4, the actual groove level could be anywhere from 33 through 37.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

DMUS_IO_CURVE_ITEM

The DMUS_IO_CURVE_ITEM structure contains information about a curve event in a track. It is used in the Sequence Track List.

typedef struct _DMUS_IO_CURVE_ITEM {

 MUSIC_TIME mtStart;

 MUSIC_TIME mtDuration;

 MUSIC_TIME mtResetDuration;

 DWORD dwPChannel;

 short nOffset;

 short nStartValue;

 short nEndValue;

 short nResetValue;

 BYTE bType;

 BYTE bCurveShape;

 BYTE bCCData;

 BYTE bFlags;

} DMUS_IO_CURVE_ITEM;

mtStart

Start time of the curve.

mtDuration

Duration of the curve.

mtResetDuration

Time after the curve is finished until the reset value is set.

dwPChannel

Performance channel for the event.

nOffset

Offset from the grid boundary at which the curve occurs, in music time. MIDI curves are associated with the closest grid when loaded, so this value can be positive or negative.

nStartValue

Start value.

nEndValue

End value.

nResetValue

Reset value, set after mtResetDuration or upon a flush or invalidation.

bType

Type of curve. The following types are defined:

DMUS_CURVET_CCCURVE

Continuous controller curve (MIDI Control Change channel voice message; status byte &HBn, where n is the channel number).

DMUS_CURVET_MATCURVE

Monophonic aftertouch curve (MIDI Channel Pressure channel voice message; status byte &HDn).

DMUS_CURVET_PATCURVE

Polyphonic aftertouch curve (MIDI Poly Key Pressure channel voice message, status byte &HDn).

DMUS_CURVET_PBCURVE

Pitch-bend curve (MIDI Pitch Bend channel voice message; status byte &HEn).

bCurveShape

Shape of curve. The following shapes are defined:

DMUS_CURVES_EXP

Exponential curve shape.

DMUS_CURVES_INSTANT

Instant curve shape (beginning and end of curve happen at essentially the same time).

DMUS_CURVES_LINEAR

Linear curve shape.

DMUS_CURVES_LOG

Logarithmic curve shape.

DMUS_CURVES_SINE

Sine curve shape.

bCCData

CC number if this is a control change type.

bFlags

Set to DMUS_CURVE_RESET if the nResetValue must be set when the time is reached or an invalidation occurs because of a transition. If 0, the curve stays permanently at the new value. All other bits are reserved.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

See Also

DMUS_IO_SEQ_ITEM

DMUS_IO_INSTRUMENT

The DMUS_IO_INSTRUMENT structure contains information about an instrument. It is used in the Band Form.

typedef struct _DMUS_IO_INSTRUMENT {

 DWORD dwPatch;

 DWORD dwAssignPatch;

 DWORD dwNoteRanges[4];

 DWORD dwPChannel;

 DWORD dwFlags;

 BYTE bPan;

 BYTE bVolume;

 short nTranspose;

 DWORD dwChannelPriority;

} DMUS_IO_INSTRUMENT;

dwPatch

MSB, LSB, and program change to define instrument.

dwAssignPatch

MSB, LSB, and program change to assign to instrument when downloading.

dwNoteRanges

128 bits; one for each MIDI note that the instrument must be able to play.

dwPChannel

Performance channel that the instrument plays on.

dwFlags

Control flags. The following values are defined:

DMUS_IO_INST_ASSIGN_PATCH

The dwAssignPatch member is valid.

DMUS_IO_INST_BANKSELECT

The dwPatch member contains a valid bank select, both MSB and LSB.

DMUS_IO_INST_CHANNEL_PRIORITY

The dwChannelPriority member is valid.

DMUS_IO_INST_GM

Instrument is from the General MIDI collection.

DMUS_IO_INST_GS

Instrument is from the Roland GS collection.

DMUS_IO_INST_NOTERANGES

The dwNoteRanges member is valid.

DMUS_IO_INST_PAN

The bPan member is valid.

DMUS_IO_INST_PATCH

The dwPatch member is valid.

DMUS_IO_INST_TRANSPOSE

The nTranspose member is valid.

DMUS_IO_INST_USE_DEFAULT_GM_SET

The default General MIDI instrument set should be downloaded to the port, even if the port has GM in hardware. If a MIDI file with the XG or GS reset system-exclusive message is parsed, the bank-select message is sent, whether or not GUID_StandardMIDIFile was commanded on the band. In other words, GUID_StandardMIDIFile is effective only for pure GM files.

DMUS_IO_INST_VOLUME

The bVolume member is valid.

DMUS_IO_INST_XG

Instrument is from the Yamaha XG collection.

bPan

Pan for the instrument.

bVolume

Volume for the instrument.

nTranspose

Number of semitones to transpose notes.

dwChannelPriority

Channel priority. For a list of defined values, see IDirectMusicPort::GetChannelPriority.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

DMUS_IO_MOTIFSETTINGS

The DMUS_IO_MOTIFSETTINGS structure contains information about a motif. It is used in the Style Form.

typedef struct _DMUS_IO_MOTIFSETTINGS {

 DWORD dwRepeats;

 MUSIC_TIME mtPlayStart;

 MUSIC_TIME mtLoopStart;

 MUSIC_TIME mtLoopEnd;

 DWORD dwResolution;

} DMUS_IO_MOTIFSETTINGS;

dwRepeats

Number of repetitions.

mtPlayStart

Start of playback, normally 0.

mtLoopStart

Start of looping portion, normally 0.

mtLoopEnd

End of looping portion.

dwResolution

Default resolution. See DMUS_TIME_RESOLVE_FLAGS.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

See Also

IDirectMusicSegment::SetLoopPoints

DMUS_IO_MUTE

The DMUS_IO_MUTE structure contains information about a mute event on a channel. It is used in the Mute Track Chunk.

typedef struct _DMUS_IO_MUTE {

 MUSIC_TIME mtTime;

 DWORD dwPChannel;

 DWORD dwPChannelMap;

} DMUS_IO_MUTE;

mtTime

Time of the event.

dwPChannel

Performance channel to mute or remap.

dwPChannelMap

Channel to which dwPChannel is being mapped, or 0xFFFFFFFF if dwPChannel is to be muted.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

See Also

DMUS_MUTE_PARAM

DMUS_IO_NEXTCHORD

The DMUS_IO_NEXTCHORD stucture contains information about the next chord in a chord graph. It is used in the Chord-map Form.

typedef struct _DMUS_IO_NEXTCHORD {

 DWORD dwFlags;

 WORD nWeight;

 WORD wMinBeats;

 WORD wMaxBeats;

 WORD wConnectionID;

} DMUS_IO_NEXTCHORD;

dwFlags

Reserved for future use.

nWeight

Likelihood (in the range from 1 through 100) that this link is followed when traversing the chord graph.

wMinBeats

Smallest number of beats that this chord is allowed to play in a composed segment.

wMaxBeats

Largest number of beats that this chord is allowed to play in a composed segment.

wConnectionID

Refers to the wConnectionID member of a DMUS_IO_CHORDENTRY structure.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

DMUS_IO_PARTREF

The DMUS_IO_PARTREF structure contains information about a part reference. It is used in the Style Form.

typedef struct _DMUS_IO_PARTREF {

 GUID guidPartID;

 WORD wLogicalPartID;

 BYTE bVariationLockID;

 BYTE bSubChordLevel;

 BYTE bPriority;

 BYTE bRandomVariation;

} DMUS_IO_PARTREF;

guidPartID

Identifier of the part.

wLogicalPartID

Identifier corresponding to a particular MIDI channel on a port.

bVariationLockID

Parts with the same value in this member always play the same variation.

bSubChordLevel

Subchord level that this part wants. See Remarks.

bPriority

Priority of the part. For information on priorities, see Channels.

bRandomVariation

When set, matching variations play in random order. When clear, matching variations play sequentially.

Remarks

The bSubChordLevel member contains a zero-based index value. At run time, 1 is shifted left by this value to yield a 1-bit value for comparison with the dwLevels member of a DMUS_SUBCHORD structure. Thus, a part with a bSubChordLevel of 0 would be mapped to any subchord that contained 1 in dwLevels.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

DMUS_IO_PATTERN

The DMUS_IO_PATTERN structure contains information about a pattern. It is used in the Style Form.

typedef struct _DMUS_IO_PATTERN {

 DMUS_IO_TIMESIG timeSig;

 BYTE bGrooveBottom;

 BYTE bGrooveTop;

 WORD wEmbellishment;

 WORD wNbrMeasures;

} DMUS_IO_PATTERN;

timeSig

DMUS_IO_TIMESIG structure containing a time signature to override the style's default time signature.

bGrooveBottom

Bottom of the groove range.

bGrooveTop

Top of the groove range.

wEmbellishment

Type of embellishment. See DMUS_COMMANDT_TYPES.

wNbrMeasures

Length of the pattern in measures.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

DMUS_IO_REFERENCE

The DMUS_IO_REFERENCE structure contains information about a reference to another object that might be stored in another file. It is used in the reference list chunk. See Common Chunks.

typedef struct _DMUS_IO_REFERENCE {

 GUID guidClassID;

 DWORD dwValidData;

} DMUS_IO_REFERENCE;

guidClassID

Class identifier.

dwValidData

Flags to indicate which data chunks for the reference are present. For a list of values, see the corresponding member of DMUS_OBJECTDESC.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

DMUS_IO_SEGMENT_HEADER

The DMUS_IO_SEGMENT_HEADER structure contains information about a segment. It is used in the Segment Form.

typedef struct _DMUS_IO_SEGMENT_HEADER {

 DWORD dwRepeats;

 MUSIC_TIME mtLength;

 MUSIC_TIME mtPlayStart;

 MUSIC_TIME mtLoopStart;

 MUSIC_TIME mtLoopEnd;

 DWORD dwResolution;

} DMUS_IO_SEGMENT_HEADER;

dwRepeats

Number of repetitions.

mtLength

Length of the segment.

mtPlayStart

Start of playback, normally 0.

mtLoopStart

Start of the looping portion, normally 0.

mtLoopEnd

End of the looping portion.

dwResolution

Default resolution. See DMUS_TIME_RESOLVE_FLAGS.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

See Also

DMUS_IO_MOTIFSETTINGS, IDirectMusicSegment::SetLoopPoints.

DMUS_IO_SEQ_ITEM

The DMUS_IO_SEQ_ITEM structure contains information about an item of data in a sequence track. It is used in the Sequence Track List.

typedef struct _DMUS_IO_SEQ_ITEM {

 MUSIC_TIME mtTime;

 MUSIC_TIME mtDuration;

 DWORD dwPChannel;

 short nOffset

 BYTE bStatus;

 BYTE bByte1;

 BYTE bByte2;

} DMUS_IO_SEQ_ITEM;

mtTime

Time of the event.

mtDuration

Duration for which the event is valid.

dwPChannel

Performance channel for the event.

nOffset

Offset from the grid boundary at which the note is played, in music time. MIDI notes are associated with the closest grid when loaded, so this value can be positive or negative.

bStatus

MIDI event type. Equivalent to the MIDI status byte, but without channel information.

bByte1

First byte of the MIDI data.

bByte2

Second byte of the MIDI data.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

See Also

DMUS_IO_CURVE_ITEM, MIDI Messages

DMUS_IO_SIGNPOST

The DMUS_IO_SIGNPOST structure contains information about a signpost in a signpost track to associate it with signpost chords in a chord map. It is used in the Signpost Track Chunk.

typedef struct _DMUS_IO_SIGNPOST {

 MUSIC_TIME mtTime;

 DWORD dwChords;

 WORD wMeasure;

} DMUS_IO_SIGNPOST;

mtTime

Time of the signpost.

dwChords

Types of signpost chords allowed to be associated with this signpost. The values are used to match against the same values as they appear in templates. Composing from a template consists of (among other things) looking for these values in the template and finding actual chords in the chord map that match these values. The following flags are defined:

DMUS_SIGNPOSTF_A�DMUS_SIGNPOSTF_B�DMUS_SIGNPOSTF_C�DMUS_SIGNPOSTF_D�DMUS_SIGNPOSTF_E�DMUS_SIGNPOSTF_F�DMUS_SIGNPOSTF_LETTER�DMUS_SIGNPOSTF_1�DMUS_SIGNPOSTF_2�DMUS_SIGNPOSTF_3�DMUS_SIGNPOSTF_4�DMUS_SIGNPOSTF_5�DMUS_SIGNPOSTF_6�DMUS_SIGNPOSTF_7�DMUS_SIGNPOSTF_ROOT�DMUS_SIGNPOSTF_CADENCE

wMeasure

Measure on which the signpost falls.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

See Also

DMUS_IO_CHORDMAP_SIGNPOST

DMUS_IO_STYLE

The DMUS_IO_STYLE structure contains information about the time signature and tempo of a style. It is used in the Style Form.

typedef struct _DMUS_IO_STYLE {

 DMUS_IO_TIMESIG timeSig;

 double dblTempo;

} DMUS_IO_STYLE;

timeSig

DMUS_IO_TIMESIG structure containing the default time signature for the style.

dblTempo

Tempo of the style.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

DMUS_IO_STYLECURVE

The DMUS_IO_STYLECURVE structure contains information about a curve in a style. It is used in the Style Form.

typedef struct _DMUS_IO_STYLECURVE {

 MUSIC_TIME mtGridStart;

 DWORD dwVariation;

 MUSIC_TIME mtDuration;

 MUSIC_TIME mtResetDuration;

 short nTimeOffset;

 short nStartValue;

 short nEndValue;

 short nResetValue;

 BYTE bEventType;

 BYTE bCurveShape;

 BYTE bCCData;

 BYTE bFlags;

} DMUS_IO_STYLECURVE;

mtGridStart

Start time of the grid in which the curve occurs.

dwVariation

Variations that this curve belongs to. Each bit corresponds to one of 32 variations.

mtDuration

Duration of the curve.

mtResetDuration

How long after the curve is finished until the reset value is set.

nTimeOffset

Offset from mtGridStart at which the curve occurs.

nStartValue

Start value.

nEndValue

End value.

nResetValue

Reset value, set after mtResetDuration or upon a flush or invalidation.

bEventType

Type of curve. See DMUS_IO_CURVE_ITEM.

bCurveShape

Shape of curve. See DMUS_IO_CURVE_ITEM.

bCCData

CC number if this is a control change type.

bFlags

Set to DMUS_CURVE_RESET if the nResetValue must be set when the time is reached or an invalidation occurs because of a transition. If 0, the curve stays permanently at the new value. All other bits are reserved.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

See Also

DMUS_CURVE_PMSG, DMUS_IO_CURVE_ITEM

DMUS_IO_STYLENOTE

The DMUS_IO_STYLENOTE structure contains information about a note in a style. It is used in the Style Form.

typedef struct _DMUS_IO_STYLENOTE {

 MUSIC_TIME mtGridStart;

 DWORD dwVariation;

 MUSIC_TIME mtDuration;

 short nTimeOffset;

 WORD wMusicValue;

 BYTE bVelocity;

 BYTE bTimeRange;

 BYTE bDurRange;

 BYTE bVelRange;

 BYTE bInversionID;

 BYTE bPlayModeFlags;

} DMUS_IO_STYLENOTE;

mtGridStart

When the note occurs.

dwVariation

Variations that this note belongs to. Each bit corresponds to one of 32 variations.

mtDuration

Duration of the note.

nTimeOffset

Offset from mtGridStart.

wMusicValue

Position in the scale.

bVelocity

Note velocity.

bTimeRange

Range within which to randomize start time.

bDurRange

Range within which to randomize duration.

bVelRange;

Range within which to randomize velocity.

bInversionID

Identifier of inversion group to which this note belongs.

bPlayModeFlags

Flags to override the play mode of the part. For a list of values, see DMUS_PLAYMODE_FLAGS.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

DMUS_IO_STYLEPART

The DMUS_IO_STYLEPART structure contains information about a musical part. It is used in the Style Form.

typedef struct _DMUS_IO_STYLEPART {

 DMUS_IO_TIMESIG timeSig;

 DWORD dwVariationChoices[32];

 GUID guidPartID;

 WORD wNbrMeasures;

 BYTE bPlayModeFlags;

 BYTE bInvertUpper;

 BYTE bInvertLower;

} DMUS_IO_STYLEPART;

timeSig

DMUS_IO_TIMESIG structure containing a time signature to override the style's default time signature.

dwVariationChoices

Each WORD corresponds to one of 32 possible variations. The flags set in each WORD indicate which types of chord are supported by that variation (see Remarks). The following flags are defined:

DMUS_VARIATIONF_MAJOR

Seven positions in the scale for major chords.

DMUS_VARIATIONF_MINOR

Seven positions in the scale for minor chords.

DMUS_VARIATIONF_OTHER

Seven positions in the scale for other chords.

DMUS_VARIATIONF_ROOT_SCALE

Handles chord roots in the scale.

DMUS_VARIATIONF_ROOT_FLAT

Handles flat chord roots (based on scale notes).

DMUS_VARIATIONF_ROOT_SHARP

Handles sharp chord roots (based on scale notes).

DMUS_VARIATIONF_TYPE_TRIAD

Handles simple chords for triads.

DMUS_VARIATIONF_TYPE_6AND7

Handles simple chords for 6 and 7.

DMUS_VARIATIONF_TYPE_COMPLEX

Handles complex chords.

DMUS_VARIATIONF_DEST_TO1

Handles transitions to the 1 chord.

DMUS_VARIATIONF_DEST_TO5

Handles transitions to the 5 chord.

DMUS_VARIATIONF_MODES�DMUS_VARIATIONF_IMA25_MODE�DMUS_VARIATIONF_DMUS_MODE

One of these flags is set to indicate the mode. For DirectMusic, this value should always be DMUS_VARIATIONF_DMUS_MODE.

guidPartID

Unique identifier of the part.

wNbrMeasures

Length of the part, in measures.

bPlayModeFlags

Flags to define the play mode. For a list of values, see DMUS_PLAYMODE_FLAGS.

bInvertUpper

Upper limit of inversion.

bInvertLower

Lower limit of inversion.

Remarks

The flags in dwVariationChoices determine the types of chords supported by a given variation in DirectMusic mode. The first seven flags (bits 1 through 7) are set if the variation supports major chords rooted in scale positions. For example, if bits 1, 2, and 4 are set, the variation supports major chords rooted in the tonic, second, and fourth scale positions. The next seven flags serve the same purpose, but for minor chords, and the following seven flags serve the same purpose for chords that are not major or minor (for example, SUS 4 chords). Bits 22, 23, and 24 are set if the variation supports chords rooted in the scale, chords rooted sharp of scale tones, and chords rooted flat of scale tones, respectively. For example, to support a C# minor chord in the scale of C major, bits 8 (for tonic minor) and 24 (for sharp) must be set. Bits 25, 26, and 27 handle chords that are triads, sixth or seventh chords, and chords with extensions, respectively. Bits 28 and 29 handle chords that are followed by tonic and dominant chords, respectively.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

DMUS_IO_SUBCHORD

The DMUS_IO_SUBCHORD structure contains information about a subchord. It is used in the Chord Track List.

typedef struct _DMUS_IO_SUBCHORD {

 DWORD dwChordPattern;

 DWORD dwScalePattern;

 DWORD dwInversionPoints;

 DWORD dwLevels;

 BYTE bChordRoot;

 BYTE bScaleRoot;

} DMUS_IO_SUBCHORD;

dwChordPattern

Notes in the subchord. Each of the lower 24 bits represents a semitone, starting with the root at the least significant bit, and the bit is set if the note is in the chord.

dwScalePattern

Notes in the scale. Each of the lower 24 bits represents a semitone, starting with the root at the least significant bit, and the bit is set if the note is in the scale.

dwInversionPoints

Points in the scale at which inversions can occur. Bits that are off signify that the notes in the interval cannot be inverted. Thus, the pattern 100001111111 indicates that inversions are allowed anywhere except between the fifth and seventh degrees of a major scale.

dwLevels

Which levels are supported by this subchord. Certain instruments can be assigned different levels (such as to play only the lower subchords of a chord), and this value is a way of mapping subchords to those levels.

bChordRoot

Root of the subchord, where 0 is the bottom C in the range and 23 is the top B.

bScaleRoot

Root of the scale, where 0 is the bottom C in the range and 23 is the top B.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

See Also

DMUS_SUBCHORD

DMUS_IO_SYSEX_ITEM

The DMUS_IO_SYSEX_ITEM structure contains information about a system-exclusive MIDI message. It is used in the Sysex Track Chunk.

typedef struct _DMUS_IO_SYSEX_ITEM {

 MUSIC_TIME mtTime;

 DWORD dwPChannel;

 DWORD dwSysExLength;

} DMUS_IO_SYSEX_ITEM;

mtTime

Time of the message.

dwPChannel

Performance channel of the event.

dwSysExLength

Length of the data, in bytes.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

See Also

MIDI System Messages

DMUS_IO_TEMPO_ITEM

The DMUS_IO_TEMPO_ITEM structure contains information about a tempo change in a track. It is used in the Tempo Track Chunk.

typedef struct _DMUS_IO_TEMPO_ITEM {

 MUSIC_TIME mtTime;

 double dblTempo;

} DMUS_IO_TEMPO_ITEM;

mtTime

Time of the tempo change.

dblTempo

Tempo, in beats per minute.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

DMUS_IO_TIMESIG

The DMUS_IO_TIMESIG structure contains information about the time signature of a segment. It is used in the DMUS_IO_STYLE, DMUS_IO_VERSION, and DMUS_IO_PATTERN structures.

typedef struct _DMUS_IO_TIMESIG {

 BYTE bBeatsPerMeasure;

 BYTE bBeat;

 WORD wGridsPerBeat;

} DMUS_IO_TIMESIG;

bBeatsPerMeasure

Beats per measure (top of time signature).

bBeat

Note that receives the beat (bottom of the time signature), where 1 is a whole note, 2 is a half note, 4 is a quarter note, and so on. Zero is a 256th note.

wGridsPerBeat

Grids (subdivisions) per beat.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

See Also

DMUS_IO_TIMESIGNATURE_ITEM

DMUS_IO_TIMESIGNATURE_ITEM

The DMUS_IO_TIMESIGNATURE_ITEM structure contains information about a time signature change. It is used in the Time Signature Track Chunk.

typedef struct _DMUS_IO_TIMESIGNATURE_ITEM {

 MUSIC_TIME mtTime;

 BYTE bBeatsPerMeasure;

 BYTE bBeat;

 WORD wGridsPerBeat;

} DMUS_IO_TIMESIGNATURE_ITEM;

mtTime

Time of the event.

bBeatsPerMeasure

Beats per measure (top of time signature).

bBeat

Note that receives the beat (bottom of the time signature), where 1 is a whole note, 2 is a half note, 4 is a quarter note, and so on. Zero is a 256th note.

wGridsPerBeat

Grids (subdivisions) per beat.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

See Also

DMUS_IO_TIMESIG, DMUS_TIMESIG_PMSG

DMUS_IO_TOOL_HEADER

The DMUS_IO_TOOL_HEADER structure contains information about a tool. It is used in the Tool Form.

typedef struct _DMUS_IO_TOOL_HEADER {

 GUID guidClassID;

 long lIndex;

 DWORD cPChannels;

 FOURCC ckid;

 FOURCC fccType;

 DWORD dwPChannels[1];

} DMUS_IO_TOOL_HEADER;

guidClassID

Class identifier of the tool.

lIndex

Position in the graph.

cPChannels

Number of items in the dwPChannels array.

ckid

Identifier of tool's data chunk. If this value is 0, it is assumed that the chunk is of type LIST, so fccType is valid and must be nonzero.

fccType

List type. If this value is 0, ckid is valid and must be nonzero.

dwPChannels

Array of performance channels for which the tool is valid.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

See Also

IDirectMusicGraph::InsertTool

DMUS_IO_TRACK_HEADER

The DMUS_IO_TRACK_HEADER structure contains information about a track. It is used in the Track Form.

typedef struct _DMUS_IO_TRACK_HEADER {

 GUID guidClassID;

 DWORD dwPosition;

 DWORD dwGroup;

 FOURCC ckid;

 FOURCC fccType;

} DMUS_IO_TRACK_HEADER;

guidClassID

Class identifier of the track.

dwPosition

Position in the track list.

dwGroup

Group bits for the track.

ckid

Identifier of the track's data chunk. If this value is 0, it is assumed that the chunk is of type LIST, so fccType is valid and must be nonzero.

fccType

List type. If this value is 0, ckid is valid and must be nonzero.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

See Also

IDirectMusicSegment::GetTrackGroup, IDirectMusicSegment::InsertTrack, Track Form

DMUS_IO_VERSION

The DMUS_IO_VERSION structure contains the version number of the data. It is used in the version subchunk of various chunks. See Common Chunks.

typedef struct _DMUS_IO_VERSION {

 DWORD dwVersionMS;

 DWORD dwVersionLS;

} DMUS_IO_VERSION;

dwVersionMS

High-order 32 bits of the version number.

dwVersionLS

Low-order 32 bits of the version number.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicf.h.

DLS Structures

This section contains reference information for structures used with downloadable sounds. Most applications do not need to use these structures because DirectMusic handles the details of loading DLS collections and downloading instruments to the synthesizer. They are of interest chiefly for applications that edit DLS.

For an overview of using DLS data, see Low-Level DLS.

For more information on DLS data formats, see the specification from the MIDI Manufacturers Association.

The following structures are included in this section:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_ARTICPARAMS

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_ARTICULATION

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_ARTICULATION2

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_COPYRIGHT

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_DOWNLOADINFO

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_EXTENSIONCHUNK

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_INSTRUMENT

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_LFOPARAMS

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_MSCPARAMS

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_OFFSETTABLE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_PEGPARAMS

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_REGION

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_VEGPARAMS

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_WAVE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_WAVEDATA

DMUS_ARTICPARAMS

The DMUS_ARTICPARAMS structure describes parameters for a DLS articulation chunk. All parameters for articulation are stored in one chunk, which is composed of a series of structures that define each functional area of the articulation. If an instrument or region uses articulation, it references this chunk by index from the DMUS_ARTICULATION chunk.

typedef struct {

 DMUS_LFOPARAMS LFO;

 DMUS_VEGPARAMS VolEG;

 DMUS_PEGPARAMS PitchEG;

 DMUS_MSCPARAMS Misc;

} DMUS_ARTICPARAMS;

LFO

DMUS_LFOPARAMS structure containing parameters for a low-frequency oscillator.

VolEG

DMUS_VEGPARAMS structure containing parameters for a volume-envelope generator.

PitchEG

DMUS_PEGPARAMS structure containing parameters for a pitch-envelope generator.

Misc

DMUS_MSCPARAMS structure containing the initial pan position.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmdls.h.

DMUS_ARTICULATION

The DMUS_ARTICULATION structure describes a DLS instrument articulation chunk. This chunk connects all available DLS articulation data in one list. For example, it might have a DLS Level 1 chunk and a manufacturer's proprietary articulation chunk. The DLS chunk is referenced by ulArt1Idx, whereas all additional articulation chunks are referenced by the list that starts with ulFirstExtCkIdx.

typedef struct {

 ULONG ulArt1Idx;

 ULONG ulFirstExtCkIdx;

} DMUS_ARTICULATION;

ulArt1Idx

Index, in the DMUS_OFFSETTABLE structure, of the DLS articulation chunk. If 0, there is no DLS articulation.

ulFirstExtCkIdx

Index of the first third-party extension chunk. If 0, there are no third-party extension chunks associated with the articulation.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmdls.h.

See Also

DMUS_ARTICULATION2

DMUS_ARTICULATION2

The DMUS_ARTICULATION2 structure describes a DLS instrument-articulation chunk. It is used when the format is defined as DMUS_DOWNLOADINFO_INSTRUMENT2 (declared in the Dmdls.h header file). The DLS level 1 chunk is referenced by ulArt1Idx, and all additional articulation chunks are referenced by the list that starts with ulFirstExtCkIdx. DLS level 2 articulation chunks also use ulNextArtIdx.

typedef struct {

 ULONG ulArt1Idx;

 ULONG ulFirstExtCkIdx;

 ULONG ulNextArtIdx;

} DMUS_ARTICULATION;

ulArt1Idx

Index, in the DMUS_OFFSETTABLE structure, of the DLS articulation chunk. If 0, there is no DLS level 1 or 2 articulation.

ulFirstExtCkIdx

Index of the first third-party extension chunk. If 0, there are no third-party extension chunks associated with the articulation. DLS level 2 chunks can also be placed here.

ulNextArtIdx

Additional articulation chunks to better support DLS level 2 articulations

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmdls.h.

See Also

DMUS_ARTICULATION

DMUS_COPYRIGHT

The DMUS_COPYRIGHT structure describes an optional copyright chunk in DLS data.

typedef struct {

 ULONG cbSize;

 BYTE byCopyright[];

} DMUS_COPYRIGHT;

cbSize

Size of data.

byCopyright[]

Copyright data.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmdls.h.

DMUS_DOWNLOADINFO

The DMUS_DOWNLOADINFO structure is used as a header for DLS data to be downloaded to a port. It defines the size and functionality of the download and is always followed by a DMUS_OFFSETTABLE chunk.

typedef struct _DMUS_DOWNLOADINFO {

 DWORD dwDLType;

 DWORD dwDLId;

 DWORD dwNumOffsetTableEntries;

 DWORD cbSize;

} DMUS_DOWNLOADINFO;

dwDLType

Type of data being downloaded. The following types are defined:

DMUS_DOWNLOADINFO_INSTRUMENT

Instrument definition, starting with the DMUS_INSTRUMENT structure

DMUS_DOWNLOADINFO_WAVE

PCM wave data, starting with the DMUS_WAVE structure.

dwDLId

Unique 32-bit identifier for the object. See Remarks.

dwNumOffsetTableEntries

Number of entries in the DMUS_OFFSETTABLE structure that follows.

cbSize

Total size of DMUS_DOWNLOADINFO, DMUS_OFFSETTABLE, and the actual data chunk

Remarks

The identifier in dwDLId is used to connect objects and is obtained by using the IDirectMusicPortDownload::GetDLId method. Primarily it connects the regions in an instrument to wave chunks. For example, if a wave download is given a dwDLId of 3, an instrument chunk downloads with the value 3 placed in the WaveLink.ulTableIndex member of one of its DMUS_REGION structures. This indicates that the region is connected to the wave chunk.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmdls.h.

See Also

Low-Level DLS

DMUS_EXTENSIONCHUNK

The DMUS_EXTENSIONCHUNK structure describes a DLS extension chunk. All extensions to the DLS file format that are unknown to DirectMusic are downloaded in this variable-size chunk.

typedef struct {

 ULONG cbSize;

 ULONG ulNextExtCkIdx;

 FOURCC ExtCkID;

 BYTE byExtCk[];

} DMUS_EXTENSIONCHUNK;

cbSize

Size of chunk.

ulNextExtCkIdx

Index, in the DMUS_OFFSETTABLE structure, of the next extension chunk. If 0, there are no more third-party extension chunks

ExtCkID

Chunk identifier.

byExtCk[]

Data.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmdls.h.

DMUS_INSTRUMENT

The DMUS_INSTRUMENT structure contains an instrument definition in a DLS download chunk.

typedef struct {

 ULONG ulPatch;

 ULONG ulFirstRegionIdx;

 ULONG ulGlobalArtIdx;

 ULONG ulFirstExtCkIdx;

 ULONG ulCopyrightIdx;

 ULONG ulFlags;

} DMUS_INSTRUMENT;

ulPatch

Patch number of instrument.

ulFirstRegionIdx

Index of first region chunk (see DMUS_REGION) within the instrument. There should always be a region, but for compatibility with future synthesizer architectures, it is acceptable to have 0 in this member.

ulGlobalArtIdx

Index, in the DMUS_OFFSETTABLE structure, of the global articulation chunk (see DMUS_ARTICULATION) for the instrument. If 0, the instrument does not have global articulation.

ulFirstExtCkIdx

Index, in the DMUS_OFFSETTABLE structure, of the first extension chunk (see DMUS_EXTENSIONCHUNK) within the instrument. This is used to add new chunks that DirectMusic is unaware of. If 0, no third-party extension chunks associated with the instrument.

ulCopyrightIdx

Index, in the DMUS_OFFSETTABLE structure, of an optional copyright chunk (see DMUS_COPYRIGHT). If 0, no copyright information is associated with the instrument.

ulFlags

Additional flags for the instrument. The following flag is defined:

DMUS_INSTRUMENT_GM_INSTRUMENT

The instrument is a standard General MIDI instrument. In the case of patch overlap, GM instruments always have lower priority than other DLS instruments. For example, if a GM instrument is downloaded with patch 0 and a non-GM instrument is also downloaded at patch 0, the non-GM instrument is always selected for playback.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmdls.h.

DMUS_LFOPARAMS

The DMUS_LFOPARAMS structure defines the low-frequency oscillator for a DLS articulation chunk. It is used in the DMUS_ARTICPARAMS structure.

typedef struct {

 PCENT pcFrequency;

 TCENT tcDelay;

 GCENT gcVolumeScale;

 PCENT pcPitchScale;

 GCENT gcMWToVolume;

 PCENT pcMWToPitch;

} DMUS_LFOPARAMS;

pcFrequency

Frequency, in pitch units. See Remarks.

tcDelay

Initial delay, in time cents. See Remarks.

gcVolumeScale

Scaling of output to control tremolo, in attenuation units. See Remarks.

pcPitchScale

Scaling of LFO output to control vibrato, in pitch units. See Remarks.

gcMWToVolume

Modulation wheel range to control tremolo, in attenuation units. See Remarks.

pcMWToPitch

Modulation wheel range to control tremolo, in attenuation units. See Remarks.

Remarks

The DLS Level 1 specification defines time cents, pitch cents, and attenuation as 32-bit logarithmic values. See the specification from the MIDI Manufacturers Association for details.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmdls.h.

See Also

DMUS_ARTICPARAMS

DMUS_MSCPARAMS

The DMUS_MSCPARAMS structure defines the pan for a DLS articulation chunk. It is used in the DMUS_ARTICPARAMS structure.

typedef struct {

 PERCENT ptDefaultPan;

} DMUS_MSCPARAMS;

ptDefaultPan

Default pan, ranging from –50 through 50 percent, in units of 0.1 percent shifted left by 16.

Remarks

PERCENT is defined as long. For more information about pan values, see the DLS specification from the MIDI Manufacturers Association.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmdls.h.

See Also

DMUS_ARTICPARAMS

DMUS_OFFSETTABLE

The DMUS_OFFSETTABLE structure is used in the header of DLS instrument data being downloaded to a port.

typedef struct _DMUS_OFFSETTABLE {

 ULONG ulOffsetTable[DMUS_DEFAULT_SIZE_OFFSETTABLE];

} DMUS_OFFSETTABLE;

ulOffsetTable

Array of byte offsets into the data.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmdls.h.

See Also

Low-Level DLS

DMUS_PEGPARAMS

The DMUS_PEGPARAMS structure defines the pitch envelope for a DLS articulation chunk. It is used in the DMUS_ARTICPARAMS structure.

typedef struct {

 TCENT tcAttack;

 TCENT tcDecay;

 PERCENT ptSustain;

 TCENT tcRelease;

 TCENT tcVel2Attack;

 TCENT tcKey2Decay;

 PCENT pcRange;

} DMUS_PEGPARAMS;

tcAttack

Attack time, in time cents. See Remarks.

tcDecay

Decay time, in time cents. See Remarks.

ptSustain

Sustain, in hundredths of a percent shifted left by 16.

tcRelease

Release time, in time cents. See Remarks.

tcVel2Attack

Velocity to attack, in time cents. See Remarks.

tcKey2Decay

Key to decay, in time cents. See Remarks.

pcRange

Envelope range, in pitch units. See Remarks.

Remarks

The DLS Level 1 specification defines time cents and pitch cents as 32-bit logarithmic values. See the specification from the MIDI Manufacturers Association for details about the values in this structure.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmdls.h.

See Also

DMUS_ARTICPARAMS

DMUS_REGION

The DMUS_REGION structure defines a region for a DLS download. One or more regions can be embedded in an instrument buffer and referenced by the instrument header chunk, DMUS_INSTRUMENT.

typedef struct {

 RGNRANGE RangeKey;

 RGNRANGE RangeVelocity;

 USHORT fusOptions;

 USHORT usKeyGroup;

 ULONG ulRegionArtIdx;

 ULONG ulNextRegionIdx;

 ULONG ulFirstExtCkIdx;

 WAVELINK WaveLink;

 WSMPL WSMP;

 WLOOP WLOOP[1];

} DMUS_REGION;

RangeKey

Key range for this region.

RangeVelocity

Velocity range for this region.

fusOptions

Options for the synthesis of this region. The following flag is defined:

F_RGN_OPTION_SELFNONEXCLUSIVE

If a second note-on for the same note is received by the synthesis engine, the second note is played, as well as the first. This option is off by default so that the synthesis engine forces a note-off of the first note.

usKeyGroup

Key group for a drum instrument. Key group values allow multiple regions within a drum instrument to belong to the same group. If a synthesis engine is instructed to play a note with a key group setting and any other notes are currently playing with this same key group, the synthesis engine turns off all notes with the same key group value as soon as possible. Currently, key groups from 1 through 15 are legal, and 0 indicates no key group.

ulRegionArtIdx

Index, in the DMUS_OFFSETTABLE structure, of the global articulation chunk for the region. If 0, the region does not have an articulation and relies on the instrument's global articulation.

ulNextRegionIdx

Index, in the DMUS_OFFSETTABLE structure, of the next region in the region list. If 0, there are no more regions.

ulFirstExtCkIdx

Index, in the DMUS_OFFSETTABLE structure, of the third-party extension chunk list. If 0, no extension chunks are associated with the region.

WaveLink

Standard DLS structure (declared in the Dls1.h header file) for managing a link from the region to a wave. The ulTableIndex member of the WAVELINK structure contains the download identifier of the associated wave buffer. (For more information, see DMUS_DOWNLOADINFO and Low-Level DLS.)

WSMP

Standard DLS structure (declared in Dls1.h) for managing the playback of the wave. If the cSampleLoops member is 1, the following WLOOP structure carries the loop start and end points.

WLOOP[]

Standard DLS structure (declared in Dls1.h) for describing a loop.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmdls.h.

DMUS_VEGPARAMS

The DMUS_VEGPARAMS structure defines a volume envelope for a DLS articulation chunk.

typedef struct {

 TCENT tcAttack;

 TCENT tcDecay;

 PERCENT ptSustain;

 TCENT tcRelease;

 TCENT tcVel2Attack;

 TCENT tcKey2Decay;

} DMUS_VEGPARAMS;

tcAttack

Attack time, in time cents. See Remarks.

tcDecay

Decay time, in time cents. See Remarks.

ptSustain

Sustain, in hundredths of a percent and shifted left by 16.

tcRelease

Release time, in time cents. See Remarks.

tcVel2Attack

Velocity to attack, in time cents. See Remarks.

tcKey2Decay

Key to decay, in time cents. See Remarks.

Remarks

The DLS Level 1 specification defines time cents as a 32-bit logarithmic value. See the specification from the MIDI Manufacturers Association for details about the values in this structure.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmdls.h.

See Also

DMUS_ARTICPARAMS

DMUS_WAVE

The DMUS_WAVE structure defines a wave chunk for a DLS download.

typedef struct {

 ULONG ulFirstExtCkIdx;

 ULONG ulCopyrightIdx;

 ULONG ulWaveDataIdx;

 WAVEFORMATEX WaveformatEx;

} DMUS_WAVE;

ulFirstExtCkIdx

Index, in the DMUS_OFFSETTABLE structure, of third-party extension chunks. If 0, no extension chunks are associated with the wave.

ulCopyrightIdx

Index, in the DMUS_OFFSETTABLE structure, of copyright chunks. If 0, no copyright information is associated with the wave.

ulWaveDataIdx

Index, in the DMUS_OFFSETTABLE structure, of wave data. See DMUS_WAVEDATA.

WaveformatEx

Wave format of the chunk.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmdls.h.

DMUS_WAVEDATA

The DMUS_WAVEDATA structure comprises a data chunk for a DLS wave download. The nature of the wave data is defined by the WAVEFORMATEX chunk, embedded in the DMUS_WAVE structure.

typedef struct {

 ULONG cbSize;

 BYTE byData[];

} DMUS_WAVEDATA;

cbSize

Size of data.

byData[]

PCM wave data.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmdls.h.

Enumerated Types

This section contains references for the following enumerated types:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_CLOCKTYPE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_COMMANDT_TYPES

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_COMPOSEF_FLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_NOTEF_FLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_PLAYMODE_FLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_PMSGF_FLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_PMSGT_TYPES

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_SEGF_FLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_SHAPET_TYPES

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_TIME_RESOLVE_FLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_TRACKF_FLAGS

DMUS_CLOCKTYPE

The members of the DMUS_CLOCKTYPE enumeration are used in the ctType member of the DMUS_CLOCKINFO structure.

typedef enum {

 DMUS_CLOCK_SYSTEM = 0,

 DMUS_CLOCK_WAVE = 1

} DMUS_CLOCKTYPE;

DMUS_CLOCK_SYSTEM

Clock is the system clock.

DMUS_CLOCK_WAVE

Clock is on a wave-playback device.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusicc.h.

DMUS_COMMANDT_TYPES

The members of the DMUS_COMMANDT_TYPES enumeration are used in the wCommand parameter of the IDirectMusicComposer::AutoTransition and IDirectMusicComposer::ComposeTransition methods and in the bCommand member of the DMUS_COMMAND_PARAM structure.

enum enumDMUS_COMMANDT_TYPES {

 DMUS_COMMANDT_GROOVE = 0,

 DMUS_COMMANDT_FILL = 1,

 DMUS_COMMANDT_INTRO = 2,

 DMUS_COMMANDT_BREAK = 3,

 DMUS_COMMANDT_END = 4,

 DMUS_COMMANDT_ENDANDINTRO = 5

} DMUS_COMMANDT_TYPES;

DMUS_COMMANDT_GROOVE

The command is a groove command.

DMUS_COMMANDT_FILL

The command is a fill.

DMUS_COMMANDT_INTRO

The command is an introduction.

DMUS_COMMANDT_BREAK

The command is a break.

DMUS_COMMANDT_END

The command is an ending.

DMUS_COMMANDT_ENDANDINTRO

The command is an ending and an introduction.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

DMUS_COMPOSEF_FLAGS

The DMUS_COMPOSEF_FLAGS are used in the dwFlags parameter of the IDirectMusicComposer::ComposeTransition and IDirectMusicComposer::AutoTransition methods.

typedef enum enumDMUS_COMPOSEF_FLAGS {

 DMUS_COMPOSEF_NONE = 0,

 DMUS_COMPOSEF_ALIGN = 0x1,

 DMUS_COMPOSEF_OVERLAP = 0x2,

 DMUS_COMPOSEF_IMMEDIATE = 0x4,

 DMUS_COMPOSEF_GRID = 0x8,

 DMUS_COMPOSEF_BEAT = 0x10,

 DMUS_COMPOSEF_MEASURE = 0x20,

 DMUS_COMPOSEF_AFTERPREPARETIME = 0x40,

 DMUS_COMPOSEF_MODULATE = 0x1000,

 DMUS_COMPOSEF_LONG = 0x2000

} DMUS_COMPOSEF_FLAGS;

DMUS_COMPOSEF_NONE

No flags. By default, the transition starts on a measure boundary.

DMUS_COMPOSEF_ALIGN

Align transition to the time signature of the currently playing segment. This flag is not currently implemented.

DMUS_COMPOSEF_OVERLAP

Overlap the transition into pToSeg. This flag is not currently implemented.

DMUS_COMPOSEF_IMMEDIATE

AutoTransition only. Start transition on a music or a reference-time boundary.

DMUS_COMPOSEF_GRID

AutoTransition only. Start transition on a grid boundary.

DMUS_COMPOSEF_BEAT

AutoTransition only. Start transition on a beat boundary.

DMUS_COMPOSEF_MEASURE

AutoTransition only. Start transition on a measure boundary.

DMUS_COMPOSEF_AFTERPREPARETIME

AutoTransition only. Use the DMUS_SEGF_AFTERPREPARETIME flag when cuing the transition.

DMUS_COMPOSEF_MODULATE

Compose a transition that modulates smoothly from pFromSeg to pToSeg, using the chord of pToSeg.

DMUS_COMPOSEF_LONG

Composes a long transition. If this flag is not set, the length of the transition is at most one measure unless the wCommand parameter of ComposeTransition or AutoTransition specifies an ending and the style contains an ending of greater than one measure. If this flag is set, the length of the transition increases by one measure.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

DMUS_SEGF_FLAGS

DMUS_NOTEF_FLAGS

The DMUS_NOTEF_FLAGS are used in the bFlags member of the DMUS_NOTE_PMSG structure.

typedef enum enumDMUS_NOTEF_FLAGS {

 DMUS_NOTEF_NOTEON = 1,

} DMUS_NOTEF_FLAGS;

DMUS_NOTEF_NOTEON

Set if this is a MIDI note-on; clear if it is a MIDI note-off. When a DMUS_NOTE_PMSG is first sent by the IDirectMusicPerformance::SendPMsg method, this flag should be set.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

DMUS_PLAYMODE_FLAGS

The DMUS_PLAYMODE_FLAGS are used in various structures for the basic play modes. The play mode determines how a music value is transposed to a MIDI note.

typedef enum enumDMUS_PLAYMODE_FLAGS {

 DMUS_PLAYMODE_KEY_ROOT = 1,

 DMUS_PLAYMODE_CHORD_ROOT = 2,

 DMUS_PLAYMODE_SCALE_INTERVALS = 4,

 DMUS_PLAYMODE_CHORD_INTERVALS = 8,

 DMUS_PLAYMODE_NONE = 16,

} DMUS_PLAYMODE_FLAGS;

DMUS_PLAYMODE_KEY_ROOT

Transpose over the key root.

DMUS_PLAYMODE_CHORD_ROOT

Transpose over the chord root.

DMUS_PLAYMODE_SCALE_INTERVALS

Use scale intervals from a scale pattern.

DMUS_PLAYMODE_CHORD_INTERVALS

Use chord intervals from a chord pattern.

DMUS_PLAYMODE_NONE

No mode. Indicates that the parent part's mode should be used.

Remarks

The following defined values represent combinations of play mode flags:

DMUS_PLAYMODE_ALWAYSPLAY

Combination of DMUS_PLAYMODE_SCALE_INTERVALS, DMUS_PLAYMODE_CHORD_INTERVALS, and DMUS_PLAYMODE_CHORD_ROOT. If it is desirable to play a note that is above the top of the chord, this mode finds a position for the note by using intervals from the scale. Essentially, this mode is a combination of the normal and melodic playback modes, in which a failure in normal mode causes a second try in melodic mode.

DMUS_PLAYMODE_FIXED

Interpret the music value as a MIDI value. This is defined as 0 and signifies the absence of other flags. This flag is used for drums, sound effects, and sequenced notes that should not be transposed by the chord or scale.

DMUS_PLAYMODE_FIXEDTOCHORD

Same as DMUS_PLAYMODE_CHORD_ROOT. The music value is a fixed MIDI value, but it is transposed over the chord root.

DMUS_PLAYMODE_FIXEDTOKEY

Same as DMUS_PLAYMODE_KEY_ROOT. The music value is a fixed MIDI value, but it is transposed over the key root.

DMUS_PLAYMODE_MELODIC

Combination of DMUS_PLAYMODE_CHORD_ROOT and DMUS_PLAYMODE_SCALE_INTERVALS. The chord root is used, but the notes only track the intervals in the scale. The key root and chord intervals are ignored. This is useful for melodic lines that play relative to the chord root.

DMUS_PLAYMODE_NORMALCHORD

Combination of DMUS_PLAYMODE_CHORD_ROOT and DMUS_PLAYMODE_CHORD_INTERVALS. This is the prevalent playback mode. The notes track the intervals in the chord, which is based on the chord root. If there is a scale component to the music value, the additional intervals are pulled from the scale and added. If the chord does not have an interval to match the chord component of the music value, the note is silent.

DMUS_PLAYMODE_PEDALPOINT

Combination of DMUS_PLAYMODE_KEY_ROOT and DMUS_PLAYMODE_SCALE_INTERVALS. The key root is used, and the notes only track the intervals in the scale. The chord root and intervals are ignored. This is useful for melodic lines that play relative to the key root.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::MIDIToMusic, IDirectMusicPerformance::MusicToMIDI, DMUS_NOTE_PMSG, DMUS_IO_STYLENOTE, DMUS_IO_STYLEPART, Music Values and MIDI Notes

DMUS_PMSGF_FLAGS

The members of the DMUS_PMSGF_FLAGS enumeration are used in the dwFlags member of the DMUS_PMSG structure.

enum enumDMUS_PMSGF_FLAGS {

 DMUS_PMSGF_REFTIME = 1,

 DMUS_PMSGF_MUSICTIME = 2,

 DMUS_PMSGF_TOOL_IMMEDIATE = 4,

 DMUS_PMSGF_TOOL_QUEUE = 8,

 DMUS_PMSGF_TOOL_ATTIME = 16,

 DMUS_PMSGF_TOOL_FLUSH = 32

} DMUS_PMSGF_FLAGS;

DMUS_PMSGF_REFTIME

The rtTime member is valid.

DMUS_PMSGF_MUSICTIME

The mtTime member is valid.

DMUS_PMSGF_TOOL_IMMEDIATE

Message should be processed immediately, regardless of its time stamp.

DMUS_PMSGF_TOOL_QUEUE

Message should be processed just before its time stamp, allowing for port latency.

DMUS_PMSGF_TOOL_ATTIME

Message should be processed at the time stamp.

DMUS_PMSGF_TOOL_FLUSH

Message is being flushed.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::SendPMsg, IDirectMusicTool::GetMsgDeliveryType

DMUS_PMSGT_TYPES

The members of the DMUS_PMSGT_TYPES enumeration are used in the dwType member of the DMUS_PMSG structure to identify the type of message.

typedef enum enumDMUS_PMSGT_TYPES {

 DMUS_PMSGT_MIDI = 0,

 DMUS_PMSGT_NOTE = 1,

 DMUS_PMSGT_SYSEX = 2,

 DMUS_PMSGT_NOTIFICATION = 3,

 DMUS_PMSGT_TEMPO = 4,

 DMUS_PMSGT_CURVE = 5,

 DMUS_PMSGT_TIMESIG = 6,

 DMUS_PMSGT_PATCH = 7,

 DMUS_PMSGT_TRANSPOSE = 8,

 DMUS_PMSGT_CHANNEL_PRIORITY = 9,

 DMUS_PMSGT_STOP = 10,

 DMUS_PMSGT_DIRTY = 11,

 DMUS_PMSGT_USER = 255

} DMUS_PMSGT_TYPES;

DMUS_PMSGT_MIDI

MIDI channel message. See DMUS_MIDI_PMSG.

DMUS_PMSGT_NOTE

Music note. See DMUS_NOTE_PMSG.

DMUS_PMSGT_SYSEX

MIDI system-exclusive message. See DMUS_SYSEX_PMSG.

DMUS_PMSGT_NOTIFICATION

Notification message. See DMUS_NOTIFICATION_PMSG.

DMUS_PMSGT_TEMPO

Tempo message. See DMUS_TEMPO_PMSG.

DMUS_PMSGT_CURVE

Control change and pitch-bend curve. See DMUS_CURVE_PMSG.

DMUS_PMSGT_TIMESIG

Time signature. See DMUS_TIMESIG_PMSG.

DMUS_PMSGT_PATCH

Patch change. See DMUS_PATCH_PMSG.

DMUS_PMSGT_TRANSPOSE

Transposition. See DMUS_TRANSPOSE_PMSG.

DMUS_PMSGT_CHANNEL_PRIORITY

Channel priority change. See DMUS_CHANNEL_PRIORITY_PMSG.

DMUS_PMSGT_STOP

Stop message. See DMUS_PMSG.

DMUS_PMSGT_DIRTY

A control segment has started or ended. See DMUS_PMSG.

DMUS_PMSGT_USER

User-defined message.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

DMUS_SEGF_FLAGS

The members of the DMUS_SEGF_FLAGS enumeration are passed to various methods of IDirectMusicPerformance to control the timing and other aspects of actions on a segment.

typedef enum enumDMUS_SEGF_FLAGS {

 DMUS_SEGF_REFTIME = 64,

 DMUS_SEGF_SECONDARY = 128,

 DMUS_SEGF_QUEUE = 256,

 DMUS_SEGF_CONTROL = 512

 DMUS_SEGF_AFTERPREPARETIME = 1<<10,

 DMUS_SEGF_GRID = 1<<11,

 DMUS_SEGF_BEAT = 1<<12,

 DMUS_SEGF_MEASURE = 1<<13,

 DMUS_SEGF_DEFAULT = 1<<14,

 DMUS_SEGF_NOINVALIDATE = 1<<15,

} DMUS_SEGF_FLAGS;

DMUS_SEGF_REFTIME

Time parameter is in reference time.

DMUS_SEGF_SECONDARY

Secondary segment.

DMUS_SEGF_QUEUE

Put at the end of the primary segment queue (primary segment only).

DMUS_SEGF_CONTROL

Play as a control segment (secondary segments only). See Remarks.

DMUS_SEGF_AFTERPREPARETIME

Play after the prepare time. See IDirectMusicPerformance::GetPrepareTime.

DMUS_SEGF_GRID

Play on a grid boundary.

DMUS_SEGF_BEAT

Play on a beat boundary.

DMUS_SEGF_MEASURE

Play on a measure boundary.

DMUS_SEGF_DEFAULT

Use the segment's default boundary.

DMUS_SEGF_NOINVALIDATE

Setting this flag in IDirectMusicPerformance::PlaySegment for a primary or control segment causes the new segment not to cause an invalidation. Without this flag, an invalidation occurs, cutting off and resetting any currently playing curve or note. This flag should be combined with DMUS_SEGF_AFTERPREPARETIME so that notes in the new segment do not play over notes played by the old segment.

Remarks

Normally the primary segment is the control segment. The DMUS_SEGF_CONTROL flag can be used to make a secondary segment the control segment. There should be only one control segment at a time. (It is possible to create multiple control segments, but there is no guarantee of which one is actually used by DirectMusic as the control segment.) When a track calls GetParam on another track, it does so on the control segment. By default, only the control segment sends tempo messages.

If the DMUS_SEGF_CONTROL flag is set, DMUS_SEGF_SECONDARY is assumed.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

See Also

IDirectMusicPerformance::Invalidate, IDirectMusicPerformance::PlaySegment, IDirectMusicPerformance::Stop, IDirectMusicSegment::GetDefaultResolution, IDirectMusicSegment::SetDefaultResolution, DMUS_TIME_RESOLVE_FLAGS

DMUS_SHAPET_TYPES

The members of the DMUS_SHAPET_TYPES enumeration are used in the wShape parameter of the IDirectMusicComposer::ComposeSegmentFromShape and IDirectMusicComposer::ComposeTemplateFromShape methods to specify the desired pattern of the groove level.

typedef enum enumDMUS_SHAPET_TYPES {

 DMUS_SHAPET_FALLING = 0,

 DMUS_SHAPET_LEVEL = 1,

 DMUS_SHAPET_LOOPABLE = 2,

 DMUS_SHAPET_LOUD = 3,

 DMUS_SHAPET_QUIET = 4,

 DMUS_SHAPET_PEAKING = 5,

 DMUS_SHAPET_RANDOM = 6,

 DMUS_SHAPET_RISING = 7,

 DMUS_SHAPET_SONG = 8

} DMUS_SHAPET_TYPES;

DMUS_SHAPET_FALLING

Groove level falls.

DMUS_SHAPET_LEVEL

Groove level remains even.

DMUS_SHAPET_LOOPABLE

Segment is arranged to loop back to the beginning.

DMUS_SHAPET_LOUD

Groove level is high.

DMUS_SHAPET_QUIET

Groove level is low.

DMUS_SHAPET_PEAKING

Groove level rises to a peak, then falls.

DMUS_SHAPET_RANDOM

Groove level is random.

DMUS_SHAPET_RISING

Groove level rises.

DMUS_SHAPET_SONG

Segment is in a song form. Several phrases of 6 to 8 bars are composed and put together to give a verse-chorus effect, with variations in groove level.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

DMUS_TIME_RESOLVE_FLAGS

The member of the DMUS_TIME_RESOLVE_FLAGS enumeration are used in the dwFlags member of the DMUS_PMSG structure and in the dwTimeResolveFlags parameter of the IDirectMusicPerformance::GetResolvedTime method.

typedef enum enumDMUS_TIME_RESOLVE_FLAGS {

 DMUS_TIME_RESOLVE_AFTERPREPARETIME = 1<<10,

 DMUS_TIME_RESOLVE_GRID = 1<<11,

 DMUS_TIME_RESOLVE_BEAT = 1<<12,

 DMUS_TIME_RESOLVE_MEASURE = 1<<13

} DMUS_TIME_RESOLVE_FLAGS;

DMUS_TIME_RESOLVE_AFTERPREPARETIME

Resolve to a time after the prepare time.

DMUS_TIME_RESOLVE_GRID

Resolve to a time on a grid boundary.

DMUS_TIME_RESOLVE_BEAT

Resolve to a time on a beat boundary.

DMUS_TIME_RESOLVE_MEASURE

Resolve to a time on a measure boundary.

Remarks

These flags can be used interchangeably with the corresponding DMUS_SEGF_FLAGS.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

DMUS_TRACKF_FLAGS

The DMUS_TRACKF_FLAGS values are used in the dwFlags parameter of the IDirectMusicTrack::Play method.

typedef enum enumDMUS_TRACKF_FLAGS {

 DMUS_TRACKF_SEEK = 1,

 DMUS_TRACKF_LOOP = 2,

 DMUS_TRACKF_START = 4,

 DMUS_TRACKF_FLUSH = 8,

 DMUS_TRACKF_DIRTY = 16

} DMUS_TRACKF_FLAGS;

DMUS_TRACKF_SEEK

IDirectMusicTrack::Play was called in response to seeking, meaning that the mtStart parameter is not necessarily the same as the mtEnd of the previous call.

DMUS_TRACKF_LOOP

Play was called in response to a loop.

DMUS_TRACKF_START

This is the first call to IDirectMusicTrack::Play. DMUS_TRACKF_SEEK can also be set if the track is not playing from the beginning.

DMUS_TRACKF_FLUSH

Play was called in response to a flush or invalidation that requires the track to replay something that it played previously. In this case, DMUS_TRACKF_SEEK is set, as well.

DMUS_TRACKF_DIRTY

A control segment has begun or ended. Tracks that normally wait until mtNext to call IDirectMusicTrack::GetParam should make the call right away, instead of waiting, because their data might now be invalid. For more information on setting control segments, see DMUS_SEGF_FLAGS.

Remarks

When Play is called in response to a repeat, DMUS_TRACKF_LOOP and DMUS_TRACKF_SEEK are set.

Tracks must support seeking to support invalidation.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dmusici.h.

Return Values

The following are the values typically returned by DirectMusic interface methods. For a list of the error codes that each method can return, see the individual method descriptions. These lists are not necessarily comprehensive.

DMUS_E_ALL_TOOLS_FAILED

The graph object was unable to load all tools from the IStream object data, perhaps because of errors in the stream or because the tools are incorrectly registered on the client.

DMUS_E_ALL_TRACKS_FAILED

The segment object was unable to load all tracks from the IStream object data, perhaps because of errors in the stream or because the tracks are incorrectly registered on the client.

DMUS_E_ALREADY_ACTIVATED

The port has been activated, and the parameter cannot be changed.

DMUS_E_ALREADY_DOWNLOADED

The buffer has already been downloaded.

DMUS_E_ALREADY_EXISTS

The tool is already contained in the graph. You must create a new instance.

DMUS_E_ALREADY_INITED

The object has already been initialized.

DMUS_E_ALREADY_LOADED

A DLS collection is already open.

DMUS_E_ALREADY_SENT

The message has already been sent.

DMUS_E_ALREADYCLOSED

The port is not open.

DMUS_E_ALREADYOPEN

The port was already opened.

DMUS_E_BADARTICULATION

Invalid articulation chunk in DLS collection.

DMUS_E_BADINSTRUMENT

Invalid instrument chunk in DLS collection.

DMUS_E_BADOFFSETTABLE

The offset table has errors.

DMUS_E_BADWAVE

Corrupt wave header.

DMUS_E_BADWAVELINK

The wave-link chunk in DLS collection points to invalid wave.

DMUS_E_BUFFER_EMPTY

There is no data in the buffer.

DMUS_E_BUFFER_FULL

The specified number of bytes exceeds the maximum buffer size.

DMUS_E_BUFFERNOTAVAILABLE

The buffer is not available for download.

DMUS_E_BUFFERNOTSET

No buffer was prepared for the data.

DMUS_E_CANNOT_CONVERT

The requested conversion between music and MIDI values could not be made. This usually occurs when the provided DMUS_CHORD_KEY structure has an invalid chord or scale pattern.

DMUS_E_CANNOT_FREE

The message could not be freed, either because it was not allocated or because it has already been freed.

DMUS_E_CANNOT_OPEN_PORT

The default system port could not be opened.

DMUS_E_CANNOTREAD

An error occurred when trying to read from the IStream object.

DMUS_E_CANNOTSEEK

The IStream object does not support Seek.

DMUS_E_CANNOTWRITE

The IStream object does not support Write.

DMUS_E_CHUNKNOTFOUND

A chunk with the specified header could not be found.

DMUS_E_DESCEND_CHUNK_FAIL

An attempt to descend into a chunk failed.

DMUS_E_DEVICE_IN_USE

The device is already in use (possibly by a non-DirectMusic client) and cannot be opened again.

DMUS_E_DMUSIC_RELEASED

The operation cannot be performed because the final instance of the DirectMusic object was released. Ports cannot be used after final release of the DirectMusic object.

DMUS_E_DRIVER_FAILED

An unexpected error was returned from a device driver, indicating possible failure of the driver or hardware.

DMUS_E_DSOUND_ALREADY_SET

A DirectSound object has already been set.

DMUS_E_DSOUND_NOT_SET

The port could not be created because no DirectSound object has been specified.

DMUS_E_GET_UNSUPPORTED

Getting the parameter is not supported.

DMUS_E_INSUFFICIENTBUFFER

The buffer is not large enough for the requested operation.

DMUS_E_INVALID_BAND

The file does not contain a valid band.

DMUS_E_INVALID_DOWNLOADID

An invalid download identifier was used in the process of creating a download buffer.

DMUS_E_INVALID_EVENT

The event either is not a valid MIDI message or makes use of running status and cannot be packed into the buffer.

DMUS_E_INVALID_TOOL_HDR

The IStream object's data contains an invalid tool header and, therefore, cannot be read by the graph object.

DMUS_E_INVALID_TRACK_HDR

The IStream object's data contains an invalid track header and, therefore, cannot be read by the segment object.

DMUS_E_INVALIDBUFFER

An invalid DirectSound buffer was handed to a port.

DMUS_E_INVALIDFILE

Not a valid file.

DMUS_E_INVALIDOFFSET

Wave chunks in the DLS collection file are at incorrect offsets.

DMUS_E_INVALIDPATCH

No instrument in the collection matches the patch number.

DMUS_E_INVALIDPOS

Error reading wave data from a DLS collection. Indicates bad file.

DMUS_E_LOADER_BADPATH

The file path is invalid.

DMUS_E_LOADER_FAILEDCREATE

The object could not be found or created.

DMUS_E_LOADER_FAILEDOPEN

File open failed because the file does not exist or is locked.

DMUS_E_LOADER_FORMATNOTSUPPORTED

The object cannot be loaded because the data format is not supported.

DMUS_E_LOADER_NOCLASSID

No class ID was supplied in DMUS_OBJECTDESC.

DMUS_E_LOADER_NOFILENAME

No file name was supplied in DMUS_OBJECTDESC.

DMUS_E_LOADER_OBJECTNOTFOUND

The object was not found.

DMUS_E_NO_MASTER_CLOCK

There is no master clock in the performance. Be sure to call the IDirectMusicPerformance::Init method.

DMUS_E_NOARTICULATION

Articulation missing from an instrument in the DLS collection.

DMUS_E_NOSYNTHSINK

No sink is connected to the synthesizer.

DMUS_E_NOT_DOWNLOADED_TO_PORT

The object cannot be unloaded because it is not present on the port.

DMUS_E_NOT_FOUND

The requested item is not contained by the object.

DMUS_E_NOT_INIT

A required object is not initialized or failed to initialize.

DMUS_E_NOTADLSCOL

The object being loaded is not a valid DLS collection.

DMUS_E_NOTMONO

The wave chunk has more than one interleaved channel. DLS format requires mono.

DMUS_E_NOTPCM

Wave data is not in PCM format.

DMUS_E_OUT_OF_RANGE

The requested time is outside the range of the segment.

DMUS_E_PORT_NOT_CAPTURE

Not a capture port.

DMUS_E_PORT_NOT_RENDER

Not an output port.

DMUS_E_PORTS_OPEN

The requested operation cannot be performed while there are instantiated ports in any process in the system.

DMUS_E_SEGMENT_INIT_FAILED

Segment initialization failed, probably because of a critical memory situation.

DMUS_E_SET_UNSUPPORTED

Setting the parameter is not supported.

DMUS_E_SYNTHACTIVE

The synthesizer has been activated, and the parameter cannot be changed.

DMUS_E_SYNTHINACTIVE

The synthesizer has not been activated and cannot process data.

DMUS_E_SYNTHNOTCONFIGURED

The synthesizer is not properly configured or opened.

DMUS_E_TIME_PAST

The time requested is in the past.

DMUS_E_TOOL_HDR_NOT_FIRST_CK

The IStream object's data does not have a tool header as the first chunk and, therefore, cannot be read by the graph object.

DMUS_E_TRACK_HDR_NOT_FIRST_CK

The IStream object's data does not have a track header as the first chunk and, therefore, cannot be read by the segment object.

DMUS_E_TRACK_NOT_FOUND

There is no track of the requested type.

DMUS_E_TYPE_DISABLED

A track parameter is unavailable because it has been disabled.

DMUS_E_TYPE_UNSUPPORTED

Parameter is unsupported on this track.

DMUS_E_UNKNOWNDOWNLOAD

The synthesizer does not support this type of download.

DMUS_E_UNKNOWN_PROPERTY

The property set or item is not implemented by this port.

DMUS_E_UNSUPPORTED_STREAM

The IStream object does not contain data supported by the loading object.

DMUS_E_WAVEFORMATNOTSUPPORTED

Invalid buffer format was handed to the synthesizer sink.

DMUS_S_DOWN_OCTAVE

The note has been lowered by one or more octaves to fit within the range of MIDI values.

DMUS_S_END

The operation succeeded and reached the end of the data.

DMUS_S_FREE

The allocated memory should be freed.

DMUS_S_LAST_TOOL

There are no more tools in the graph.

DMUS_S_NOBUFFERCONTROL

Although the audio output from the port is routed to the same device as the given DirectSound buffer, buffer controls such as pan and volume do not affect the output.

DMUS_S_OVER_CHORD

No MIDI values have been calculated because the music value has the note at a position higher than the top note of the chord.

DMUS_S_PARTIALDOWNLOAD

Some instruments could not be downloaded to the port.

DMUS_S_PARTIALLOAD

The object could only load partially. This can happen if some components, such as embedded tracks and tools, are not registered properly.

DMUS_S_REQUEUE

The message should be passed to the next tool.

DMUS_S_STRING_TRUNCATED

The method succeeded, but the returned string had to be truncated.

DMUS_S_UP_OCTAVE

The note has been raised by one or more octaves to fit within the range of MIDI values.

E_FAIL

The method did not succeed.

E_INVALIDARG

Invalid argument. Often, this error results from failing to initialize the dwSize member of a structure before passing it to the method.

E_NOAGGREGATION

Aggregation is not supported. The LPUNKNOWN parameter should be set to NULL.

E_NOINTERFACE

No object interface is available.

E_NOTIMPL

The method is not implemented. This value might be returned if a driver does not support a feature necessary for the operation.

E_OUTOFMEMORY

Insufficient memory to complete the task.

E_POINTER

An invalid pointer (usually NULL) was passed as a parameter.

REGDB_E_CLASSNOTREG

The object class is not registered.

S_FALSE

The method succeeded, but there was nothing to do.

S_OK

The operation was completed successfully.

DirectMusic Visual Basic Reference

This section contains reference information for the API elements of Microsoft® DirectMusic® for Microsoft® Visual Basic®. Reference material is divided into the following categories:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Classes

�SYMBOL 183 \f "Symbol" \s 11 \h �	Types

�SYMBOL 183 \f "Symbol" \s 11 \h �	Enumerations

�SYMBOL 183 \f "Symbol" \s 11 \h �	Error Codes

Classes

This section contains references for methods of the following DirectMusic classes:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusicBand

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusicChordMap

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusicCollection

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusicComposer

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusicLoader

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusicPerformance

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusicSegment

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusicSegmentState

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusicStyle

DirectMusicBand

An object of the DirectMusicBand class represents a band, which is used to set the instrument choices and mixer settings for a set of performance channels.

Bands can be stored directly in their own files or embedded in a style. The DirectMusicBand object is obtained by using one of the following methods:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusicLoader.LoadBand

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusicLoader.LoadBandFromResource

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusicStyle.GetDefaultBand

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusicStyle.GetBand

The DirectMusicBand class has the following methods:

Segment creation�CreateSegment��Instrument data�Download���Unload��

DirectMusicBand.CreateSegment

The DirectMusicBand.CreateSegment method creates a DirectMusicSegment object that can be used to perform the volume, pan, transposition, and patch change commands in the band dynamically, using the DirectMusicPerformance.PlaySegment method.

object.CreateSegment() As DirectMusicSegment

Parameters

object

Object expression that resolves to a DirectMusicBand object.

Return Values

If the method succeeds, it returns a DirectMusicSegment object.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_FAIL��DMUS_E_OUTOFMEMORY��

DirectMusicBand.Download

The DirectMusicBandDirectDownload method downloads the DLS data for instruments in the band to a performance object. Once a band has been downloaded, the instruments in the band can be selected, either individually with program change MIDI messages, or all at once by playing a band segment created through a call to the DirectMusicBand.CreateSegment method.

object.Download(performance As DirectMusicPerformance)

Parameters

object

Object expression that resolves to a DirectMusicBand object.

performance

Performance in which the band is to perform. The performance manages the mapping of channels to DirectMusic ports.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_NOT_INIT��DMUS_E_OUTOFMEMORY��

Remarks

Because a downloaded band uses synthesizer resources, it should be unloaded when no longer needed by using the DirectMusicBand.Unload method.

In the current version of DirectMusic, this method may succeed even though the port does not support DLS.

If DMUS_E_NOT_INIT is raised, it usually means that the performance was not properly connected up to an initialized port. Since this is a complete failure, there is no need to call DirectMusicBand.Unload later.

If the download only partially succeeds, no error is raised but some instruments might not play. The following are some common causes of a partial download:

�SYMBOL 183 \f "Symbol" \s 11 \h �	The band has instruments on PChannels that are on channel groups not allocated on the port.

�SYMBOL 183 \f "Symbol" \s 11 \h �	The band has instruments in a DLS format incompatible with the synthesizer they are being downloaded to.

DirectMusicBand.Unload

The DirectMusicBand.Unload method unloads the DLS data for instruments in the band previously downloaded by DirectMusicBand.Download.

object.Unload(performance As DirectMusicPerformance)

Parameters

object

Object expression that resolves to a DirectMusicBand object.

performance

Performance from which to unload instruments.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

DirectMusicChordMap

An object of the DirectMusicChordMap class represents a chord map. Chord maps provide the composer (represented by the DirectMusicComposer object) with the information that it needs to create chord progressions for segments that it composes. A chord map can also be applied to an existing segment to change the chords.

The class has no public methods. An instance of it is obtained by using the DirectMusicPerformance.GetChordmap method.

See Also

DirectMusicComposer.AutoTransition, DirectMusicComposer.ChangeChordMap, DirectMusicComposer.ComposeSegmentFromShape, DirectMusicComposer.ComposeSegmentFromTemplate, DirectMusicComposer.ComposeTransition, DirectMusicPerformance.GetChordmap

DirectMusicCollection

An object of the DirectMusicCollection class manages an instance of a DLS file.

The class has no public methods. An instance of it is obtained by using the DirectMusicLoader.LoadCollection or the DirectMusicLoader.LoadCollectionFromResource method, and is associated with a segment by a call to DirectMusicSegment.ConnectToCollection.

DirectMusicComposer

Applications use the methods of the DirectMusicComposer class to compose segments and transitions from compositional elements, and to change the chord map of an existing segment.

A DirectMusicComposer object is obtained by using the DirectX7.DirectMusicComposerCreate method.

The methods of the DirectMusicComposer class can be organized into the following groups.

Changing chord maps�ChangeChordMap��Composing ordinary segments �ComposeSegmentFromShape���ComposeSegmentFromTemplate��Composing template segments�ComposeTemplateFromShape ��Composing transition segments�AutoTransition���ComposeTransition��

DirectMusicComposer.AutoTransition

The DirectMusicComposer.AutoTransition method composes a transition from inside a performance's primary segment (or from silence) to another segment, and then cues the transition and the second segment to play.

object.AutoTransition(_

 performance As DirectMusicPerformance, _

 toSeg As DirectMusicSegment, _

 lCommand As Long, _

 lFlags As Long, _

 chordmap As DirectMusicChordMap) _

 As DirectMusicSegment

Parameters

object

Object expression that resolves to a DirectMusicComposer object.

performance

Performance in which to do the transition.

toSeg

Segment to which the transition should smoothly flow. See Remarks.

lCommand

Embellishment to use when composing the transition. See CONST_DMUS_COMMANDT_TYPES. If this value is DMUS_COMMANDT_ENDANDINTRO, the method composes a segment containing both an ending to the primary segment and an introduction to toSeg.

lFlags

Composition options. See CONST_DMUS_COMPOSEF_FLAGS.

chordmap

DirectMusicChordmap to be used when composing the transition.

Return Values

If the method succeeds, it returns a DirectMusicSegment object, unless no style is available for the composition of the transitional segment. See Remarks.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

Remarks

The value in toSeg can be Nothing, as long as lFlags does not include DMUS_COMPOSEF_MODULATE. If toSeg is Nothing or a segment that contain no style track, intro embellishments are not valid. If there is no currently playing segment or it contain no style track, then fill, break, end, and groove embellishments are not valid.

It is possible for both the currently playing segment and toSeg to be Nothing or segments that contain no style tracks (such as segments based on MIDI files). If so, all embellishments are invalid, and no transition occurs between the currently playing segment and toSeg. The method returns Nothing, but it succeeds and cues the segment represented by toSeg.

The value in chordmap can be Nothing. If so, an attempt is made to obtain a chord map from a chord-map track, first from toSeg, and then from the performance's primary segment. If neither of these segments contains a chord-map track, the chord occurring at the current time in the primary segment is used as the chord in the transition.

DirectMusicComposer.ChangeChordMap

The DirectMusicComposer.ChangeChordMap method modifies the chords and scale pattern of an existing segment to reflect a new chord map.

object.ChangeChordMap(segment As DirectMusicSegment, _

 trackScale As Boolean, _

 chordmap As DirectMusicChordMap)

Parameters

object

Object expression that resolves to a DirectMusicComposer object.

segment

Segment in which to change the chord map.

trackScale

If True, the method transposes all the chords to be relative to the root of the new chord map's scale, rather than leaving their roots as they were.

chordmap

New chord map for the segment.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

Remarks

The method can be called while the segment is playing.

DirectMusicComposer.ComposeSegmentFromShape

The DirectMusicComposer.ComposeSegmentFromShape method creates an original segment from a style and a chord map, based on a predefined shape. The shape represents the way chords and embellishments occur over time across the segment.

object.ComposeSegmentFromShape(style As DirectMusicStyle, _

 numberOfMeasures As Integer, _

 shape As Integer, _

 activity As Integer, _

 bIntro As Boolean, _

 bEnd As Boolean, _

 chordmap As DirectMusicChordMap) As DirectMusicSegment

Parameters

object

Object expression that resolves to a DirectMusicComposer object.

style

Style from which to compose the segment.

numberOfMeasures

Length, in measures, of the segment to be composed.

shape

Shape of the segment to be composed, based on changes in the groove level. Possible values are of the CONST_DMUS_SHAPET_TYPES enumeration.

activity

Rate of harmonic motion. Valid values are from 0 through 3. Lower values mean more chord changes.

bIntro

True if an introduction is to be composed for the segment, False otherwise.

bEnd

True if an ending is to be composed for the segment, False otherwise.

chordmap

DirectMusicChordmap from which to create the segment.

Return Values

If the method succeeds, it returns a DirectMusicSegment object.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

See Also

DirectMusicComposer.ComposeSegmentFromTemplate, DirectMusicComposer.ComposeTemplateFromShape

DirectMusicComposer.ComposeSegmentFromTemplate

The DirectMusicComposer.ComposeSegmentFromTemplate method creates an original segment from a style, a chord map, and a template.

object.ComposeSegmentFromTemplate(_

 style As DirectMusicStyle, _

 templateSeg As DirectMusicSegment, _

 activity As Integer, _

 chordmap As DirectMusicChordMap)

 As DirectMusicSegment

Parameters

object

Object expression that resolves to a DirectMusicComposer object.

style

DirectMusicStyle object from which to create the segment.

templateSeg

DirectMusicSegment object representing the template from which to create the segment.

activity

Rate of harmonic motion. Valid values are from 0 through 3. Lower values mean more chord changes.

chordmap

DirectMusicChordmap object representing the chord map from which to create the segment.

Return Values

If the method succeeds, it returns a DirectMusicSegment object.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_INVALIDARG��

Remarks

If style is not Nothing, it is used in composing the segment; if it is Nothing, a style is retrieved from the template specified in templateSeg. Similarly, if chordmap is not Nothing, it is used in composing the segment; if it is Nothing, a chord map is retrieved from the template.

If style is Nothing and there is no style track in the template, or chordmap is Nothing and there is no chord-map track, the method returns DMUS_E_INVALIDARG.

The length of the segment is equal to the length of the template passed in.

See Also

DirectMusicComposer.ComposeSegmentFromShape, DirectMusicComposer.ComposeTemplateFromShape

DirectMusicComposer.ComposeTemplateFromShape

The DirectMusicComposer.ComposeTemplateFromShape method creates a new template segment, based on a predefined shape.

object.ComposeTemplateFromShape(numMeasures As Integer, _

 shape As Integer, _

 bIntro As Boolean, _

 bEnd As Boolean, _

 endLength As Integer) As DirectMusicSegment

Parameters

object

Object expression that resolves to a DirectMusicComposer object.

numMeasures

Length, in measures, of the segment to be composed. This value must be greater than 0.

shape

Shape of the segment to be composed, based on groove levels. Possible values are of the CONST_DMUS_SHAPET_TYPES enumeration.

bIntro

True if an introduction is to be composed for the segment, False otherwise.

bEnd

True if an ending is to be composed for the segment, False otherwise.

endLength

Length in measures of the ending, if one is to be composed. If bEnd is True, this value must be greater than 0 and equal to or less than the number of measures available (that is, not used in the introduction). See also Remarks.

Return Values

If the method succeeds, it returns a DirectMusicSegment object.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_INVALIDARG��DMUS_E_OUTOFMEMORY��

Remarks

The value of endLength should not be greater than the length of the longest ending available in any style likely to be associated with this template through the DirectMusicComposer.ComposeSegmentFromTemplate method. The ending starts playing at endLength measures before the end of the segment. If the ending is less than endLength measures long, the music then reverts to the regular groove.

See Also

DirectMusicComposer.ComposeSegmentFromShape, DirectMusicComposer.ComposeSegmentFromTemplate

DirectMusicComposer.ComposeTransition

The DirectMusicComposer.ComposeTransition method composes a transition from a measure inside one segment to another.

object.ComposeTransition(fromSeg As DirectMusicSegment, _

 toSeg As DirectMusicSegment, _

 mtTime As Long, _

 lCommand As Long, _

 lFlags As Long, _

 chordmap As DirectMusicChordMap) _

 As DirectMusicSegment

Parameters

object

Object expression that resolves to a DirectMusicComposer object.

fromSeg

DirectMusicSegment object representing the segment from which to compose the transition.

toSeg

Segment to which the transition should smoothly flow. Can be Nothing if lFlags does not include DMUS_COMPOSEF_MODULATE.

mtTime

Time in fromSeg from which to compose the transition.

lCommand

Embellishment to use when composing the transition. See CONST_DMUS_COMMANDT_TYPES. If this value is DMUS_COMMANDT_ENDANDINTRO, the method composes a segment containing both an ending to fromSeg and an introduction to toSeg.

lFlags

Composition options. This parameter can contain one or more of the CONST_DMUS_COMPOSEF_FLAGS enumeration.

chordmap

DirectMusicChordmap object representing the chord map to be used when composing the transition. See Remarks.

Return Values

If the method succeeds, it returns a DirectMusicSegment object.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_INVALIDARG��DMUS_E_OUTOFMEMORY��

Remarks

The value in chordmap can be Nothing. If so, an attempt is made to obtain a chord map from a chord-map track, first from toSeg, and then from fromSeg. If neither of these segments contains a chord-map track, the chord occurring at mtTime in fromSeg is used as the chord in the transition.

The composer looks for a tempo, first in fromSeg, and then in toSeg. If neither of those segments contains a tempo track, the tempo for the transition segment is taken from the style.

See Also

DirectMusicComposer.AutoTransition

DirectMusicLoader

The DirectMusicLoader object is used for finding and loading objects that represent musical and instrument data.

The object is obtained by using the DirectX7.DirectMusicLoaderCreate method.

Objects referred to by other objects are loaded automatically. For example, a style may contain references to bands and collections in other files, and these are loaded, if possible, when the DirectMusicLoader.LoadStyle method is called.

The methods of DirectMusicLoader can be organized into the following groups:

Loading�LoadBand���LoadBandFromResource���LoadChordMap���LoadChordMapFromResource���LoadCollection���LoadCollectionFromResource���LoadSegment���LoadSegmentFromResource���LoadStyle���LoadStyleFromResource��Searching�SetSearchDirectory��

DirectMusicLoader.LoadBand

The DirectMusicLoader.LoadBand method loads a band from a file.

object.LoadBand(filename As String) As DirectMusicBand

Parameters

object

Object expression that resolves to a DirectMusicLoader object.

filename

Name of the file containing the band. If the file is not in the current directory or in the directory set by DirectMusicLoader.SetSearchDirectory, the full path must be given.

Return Values

If the method succeeds, it returns a DirectMusicBand object.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_FAIL��DMUS_E_INVALIDARG��DMUS_E_OUTOFMEMORY��DMUS_E_INVALID_BAND��DMUS_E_LOADER_FAILEDOPEN��DMUS_E_LOADER_FAILEDCREATE��DMUS_E_LOADER_FORMATNOTSUPPORTED��

See Also

DirectMusicLoader.LoadBandFromResource

DirectMusicLoader.LoadBandFromResource

The DirectMusicLoader.LoadBandFromResource method loads a band from a resource.

object.LoadBandFromResource(moduleName As String, _

 resourceName As String) As DirectMusicBand

Parameters

object

Object expression that resolves to a DirectMusicLoader object.

moduleName

Name of the module containing the resource.

resourceName

Identifier of the resource containing the band. The resource must be of type "DMBAND".

Return Values

If the method succeeds, it returns a DirectMusicBand object.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_FAIL��DMUS_E_INVALIDARG��DMUS_E_OUTOFMEMORY��DMUS_E_INVALID_BAND��DMUS_E_LOADER_FAILEDCREATE��DMUS_E_LOADER_FORMATNOTSUPPORTED��

See Also

DirectMusicLoader.LoadBand

DirectMusicLoader.LoadChordMap

The DirectMusicLoader.LoadChordMap method loads a chord map from a file.

object.LoadChordMap(filename As String) _

 As DirectMusicChordMap

Parameters

object

Object expression that resolves to a DirectMusicLoader object.

filename

Name of the file containing the chord map. If the file is not in the current directory or in the directory set by DirectMusicLoader.SetSearchDirectory, the full path must be given.

Return Values

If the method succeeds, it returns a DirectMusicChordMap object.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_FAIL��DMUS_E_INVALIDARG��DMUS_E_OUTOFMEMORY��DMUS_E_LOADER_FAILEDOPEN��DMUS_E_LOADER_FAILEDCREATE��DMUS_E_LOADER_FORMATNOTSUPPORTED��

See Also

DirectMusicLoader.LoadChordMapFromResource

DirectMusicLoader.LoadChordMapFromResource

The DirectMusicLoader.LoadChordMapFromResource method loads a chord map from a resource.

object.LoadChordMapFromResource(_

 moduleName As String, _

 resourceName As String) As DirectMusicChordMap

Parameters

object

Object expression that resolves to a DirectMusicLoader object.

moduleName

Name of the module containing the resource.

resourceName

Identifier of the resource containing the chord map. The resource must be of type "DMCHORD".

Return Values

If the method succeeds, it returns a DirectMusicChordMap object.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_FAIL��DMUS_E_INVALIDARG��DMUS_E_OUTOFMEMORY��DMUS_E_LOADER_FAILEDOPEN��DMUS_E_LOADER_FAILEDCREATE��DMUS_E_LOADER_FORMATNOTSUPPORTED��

See Also

DirectMusicLoader.LoadChordMap

DirectMusicLoader.LoadCollection

The DirectMusicLoader.LoadCollection method loads a DLS collection from a file.

object.LoadCollection(filename As String) _

 As DirectMusicCollection

Parameters

object

Object expression that resolves to a DirectMusicLoader object.

filename

Name of the file containing the DLS collection. If the file is not in the current directory or in the directory set by DirectMusicLoader.SetSearchDirectory, the full path must be given.

Return Values

If the method succeeds, it returns a DirectMusicCollection object.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_FAIL��DMUS_E_INVALIDARG��DMUS_E_OUTOFMEMORY��DMUS_E_LOADER_FAILEDOPEN��DMUS_E_LOADER_FAILEDCREATE��DMUS_E_LOADER_FORMATNOTSUPPORTED�� DMUS_E_NOTADLSCOL��

See Also

DirectMusicLoader.LoadCollectionFromResource

DirectMusicLoader.LoadCollectionFromResource

The DirectMusicLoader.LoadCollectionFromResource method loads a DLS collection from a resource.

object.LoadCollectionFromResource(_

 moduleName As String, _

 resourceName As String) As DirectMusicCollection

Parameters

object

Object expression that resolves to a DirectMusicLoader object.

moduleName

Name of the module containing the resource.

resourceName

Identifier of the resource containing the collection. The resource must be of type "DMCOLL".

Return Values

If the method succeeds, it returns a DirectMusicCollection object.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_FAIL��DMUS_E_INVALIDARG��DMUS_E_OUTOFMEMORY��DMUS_E_LOADER_FAILEDOPEN��DMUS_E_LOADER_FAILEDCREATE��DMUS_E_LOADER_FORMATNOTSUPPORTED��DMUS_E_NOTADLSCOL��

See Also

DirectMusicLoader.LoadCollection

DirectMusicLoader.LoadSegment

The DirectMusicLoader.LoadSegment method loads a segment from a file.

object.LoadSegment(filename As String) As DirectMusicSegment

Parameters

object

Object expression that resolves to a DirectMusicLoader object.

filename

Name of the file containing the segment. If the file is not in the current directory or in the directory set by DirectMusicLoader.SetSearchDirectory, the full path must be given.

Return Values

If the method succeeds, it returns a DirectMusicSegment object.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_FAIL��DMUS_E_INVALIDARG��DMUS_E_OUTOFMEMORY��DMUS_E_LOADER_FAILEDOPEN��DMUS_E_LOADER_FAILEDCREATE��DMUS_E_LOADER_FORMATNOTSUPPORTED��

See Also

DirectMusicLoader.LoadSegmentFromResource

DirectMusicLoader.LoadSegmentFromResource

The DirectMusicLoader.LoadSegmentFromResource method loads a segment from a resource.

object.LoadSegmentFromResource(_

 moduleName As String, _

 resourceName As String) As DirectMusicSegment

Parameters

object

Object expression that resolves to a DirectMusicLoader object.

moduleName

Name of the module containing the resource. The resource must be of type "DMSEG".

resourceName

Identifier of the resource containing the segment.

Return Values

If the method succeeds, it returns a DirectMusicSegment object.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_FAIL��DMUS_E_INVALIDARG��DMUS_E_OUTOFMEMORY��DMUS_E_LOADER_FAILEDOPEN��DMUS_E_LOADER_FAILEDCREATE��DMUS_E_LOADER_FORMATNOTSUPPORTED��DMUS_E_UNSUPPORTED_STREAM��

See Also

DirectMusicLoader.LoadSegment

DirectMusicLoader.LoadStyle

The DirectMusicLoader.LoadStyle method loads a style object from a file.

object.LoadStyle(filename As String) As DirectMusicStyle

Parameters

object

Object expression that resolves to a DirectMusicLoader object.

filename

Name of the file containing the style object. If the file is not in the current directory or in the directory set by DirectMusicLoader.SetSearchDirectory, the full path must be given.

Return Values

If the method succeeds, it returns a DirectMusicStyle object.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_FAIL��DMUS_E_INVALIDARG��DMUS_E_OUTOFMEMORY��DMUS_E_LOADER_FAILEDOPEN��DMUS_E_LOADER_FAILEDCREATE��DMUS_E_LOADER_FORMATNOTSUPPORTED��

See Also

DirectMusicLoader.LoadStyleFromResource

DirectMusicLoader.LoadStyleFromResource

The DirectMusicLoader.LoadStyleFromResource method loads a style object from a resource.

object.LoadStyleFromResource(_

 moduleName As String, _

 resourceName As String) As DirectMusicStyle

Parameters

object

Object expression that resolves to a DirectMusicLoader object.

moduleName

Name of the module containing the resource.

resourceName

Identifier of the resource containing the style object. The resource must be of type "DMSTYLE".

Return Values

If the method succeeds, it returns a DirectMusicStyle object.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_FAIL��DMUS_E_INVALIDARG��DMUS_E_OUTOFMEMORY��DMUS_E_LOADER_FAILEDOPEN��DMUS_E_LOADER_FAILEDCREATE��DMUS_E_LOADER_FORMATNOTSUPPORTED��

See Also

DirectMusicLoader.LoadStyle

DirectMusicLoader.SetSearchDirectory

The DirectMusicLoader.SetSearchDirectory method sets the directory to be searched by the DirectMusicLoader.LoadBand, DirectMusicLoader.LoadChordmap, DirectMusicLoader.LoadCollection, DirectMusicLoader.LoadSegment, and DirectMusicLoader.LoadStyle methods when a fully qualified path is not supplied.

object.SetSearchDirectory(dir As String)

Parameters

object

Object expression that resolves to a DirectMusicLoader object.

dir

Directory to search.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_OUTOFMEMORY��DMUS_E_LOADER_BADPATH��

Remarks

Once a search path is set, the loader does not need a full path every time it is given an object to load by file name. This allows objects that refer to other objects to find them by file name without knowing the full path.

DirectMusicPerformance

An object of the DirectMusicPerformance class is the overall manager of music playback. It maps performance channels to a port, plays segments, dispatches messages, requests and receives event notifications, and sets and retrieves music parameters. It also has several methods for getting information about timing and for converting time and music values from one system to another.

If an application wants to have two or more complete sets of music playing at the same time, it can do so by creating more than one performance object. Separate performances obey separate tempo maps and play completely asynchronously, whereas all segments within one performance play in lock step.

The DirectMusicPerformance object is obtained by using the DirectX7.DirectMusicPerformanceCreate method.

The methods of the DirectMusicPerformance class can be organized into the following groups:

Messages�SendCurvePMSG���SendMIDIPMSG���SendNotePMSG���SendPatchPMSG���SendTempoPMSG���SendTimeSigPMSG���SendTransposePMSG��Notification�AddNotificationType���GetNotificationPMSG���RemoveNotificationType���SetNotificationHandle��Parameters�GetChordmap���GetCommand���GetGrooveLevel���GetMasterAutoDownload���GetMasterGrooveLevel���GetMasterTempo���GetMasterVolume���GetStyle���GetTempo���GetTimeSig���Reset���SetMasterAutoDownload���SetMasterGrooveLevel���SetMasterTempo���SetMasterVolume��Ports�GetPortCaps���GetPortCount���GetPortName���SetPort��Segments�GetSegmentState���IsPlaying���PlaySegment���Stop��Timing�AdjustTime���ClockToMusicTime���GetBumperLength���GetClockTime���GetLatencyTime���GetMusicTime���GetPrepareTime���GetQueueTime���GetResolvedTime���MusicToClockTime���SetBumperLength���SetPrepareTime��Miscellaneous�CloseDown���Init���Invalidate��

DirectMusicPerformance.AddNotificationType

The DirectMusicPerformance.AddNotificationType method causes the performance to generate notification messages whenever events of the requested type occur.

object.AddNotificationType(_

 type As CONST_DMUS_NOTIFICATION_TYPE)

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

type

Type of event for which notification messages are to be sent. For possible values, see CONST_DMUS_NOTIFICATION_TYPE.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_INVALIDARG��DMUS_E_OUTOFMEMORY��

See Also

DirectMusicPerformance.RemoveNotificationType

DirectMusicPerformance.AdjustTime

The DirectMusicPerformance.AdjustTime method adjusts the internal performance time forward or backward. This is mostly used to compensate for drift when synchronizing to another source.

object.AdjustTime(rtAmount As Long)

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

rtAmount

Amount of time, in clock time units, to add or subtract. This can be a number in the range from –1000 through 1000 (–1 second through +1 second).

Error Codes

If the method fails, it raises an error, and Err.Number can be set to DMUS_E_INVALIDARG.

Remarks

The adjusted time is used internally by DirectMusic. It is not reflected in the time retrieved by the DirectMusicPerformance.GetClockTime method.

DirectMusicPerformance.ClockToMusicTime

The DirectMusicPerformance.ClockToMusicTime method converts clock time to music time. Clock time is an absolute time. Music time is relative to the tempo of the performance.

object.ClockToMusicTime(ctTime As Long) As Long

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

ctTime

Time to convert, in clock time units.

Return Values

If the method succeeds, it returns the equivalent music time.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to DMUS_E_NO_MASTER_CLOCK.

Remarks

If a master tempo has been set for the performance, it is taken into account when converting to music time.

Because music time is less precise than clock time, rounding off occurs.

See Also

DirectMusicPerformance.MusicToClockTime, Clock Time vs. Music Time

DirectMusicPerformance.CloseDown

The DirectMusicPerformance.CloseDown method closes down the performance. An application that created the performance object and called DirectMusicPerformance.Init on it must call CloseDown before the performance object is released.

object.CloseDown()

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

Remarks

Failure to call CloseDown can cause memory leaks or application failures.

CloseDown releases any downloaded instruments that have not been unloaded.

DirectMusicPerformance.GetBumperLength

The DirectMusicPerformance.GetBumperLength method retrieves the amount of time between the time at which messages are placed in the port buffer and the time at which they begin to be processed by the port.

object.GetBumperLength() As Long

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

Return Values

If the method succeeds, it returns the bumper length, in milliseconds.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

Remarks

The default value is 50 milliseconds.

See Also

DirectMusicPerformance.SetBumperLength

DirectMusicPerformance.GetChordmap

The DirectMusicPerformance.GetChordmap method retrieves the chord map from the performance's control segment.

object.GetChordMap(mtTime As Long, _

 mtUntil As Long) As DirectMusicChordMap

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

mtTime

Time for which the chord map is to be retrieved, in music time.

mtUntil

Variable to receive the music time (relative to mtTime) until which the chordmap is valid. If this returns a value of 0, either the chord map is always valid, or it is unknown when it might become invalid. See Remarks.

Return Values

If the method succeeds, it returns a DirectMusicChordmap object.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_NO_MASTER_CLOCK��DMUS_E_GET_UNSUPPORTED��DMUS_E_NOT_FOUND��DMUS_E_TRACK_NOT_FOUND��

Remarks

Normally, the primary segment is the control segment. However, a secondary segment can be designated as a control segment when it is played. The object returned by the method can become invalid before the time returned in mtUntil if another control segment is cued.

See Also

CONST_DMUS_SEGF_FLAGS

DirectMusicPerformance.GetClockTime

The DirectMusicPerformance.GetClockTime method retrieves the current time.

object.GetClockTime() As Long

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

Return Values

If the method succeeds, it returns the time, in units of approximately 1 millisecond, relative to an arbitrary start time.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to DMUS_E_NO_MASTER_CLOCK.

See Also

DirectMusicPerformance.GetMusicTime, Clock Time vs. Music Time

DirectMusicPerformance.GetCommand

The DirectMusicPerformance.GetCommand method retrieves a command from the performance's control segment. The command indicates what type of pattern is being played at the specified time.

object.GetCommand(mtTime As Long, mtUntil As Long) As Byte

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

mtTime

Time for which the command is to be retrieved, in music time.

mtUntil

Variable to receive the music time (relative to mtTime) until which the command is valid. If this returns a value of 0, either the command is always valid, or it is unknown when it might become invalid. See Remarks.

Return Values

If the method succeeds, it returns a command type. See CONST_DMUS_COMMANDT_TYPES.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following error codes:

DMUS_E_NO_MASTER_CLOCK��DMUS_E_GET_UNSUPPORTED��DMUS_E_NOT_FOUND��DMUS_E_TRACK_NOT_FOUND��

Remarks

Normally, the primary segment is the control segment. However, a secondary segment can be designated as a control segment when it is played. The object returned by the method can become invalid before the time returned in mtUntil if another control segment is cued.

See Also

CONST_DMUS_SEGF_FLAGS

DirectMusicPerformance.GetGrooveLevel

The DirectMusicPerformance.GetGrooveLevel method retrieves the groove level from the performance's control segment. The groove level determines which patterns can be played at the specified time.

object.GetGrooveLevel(mtTime As Long, _

 mtUntil As Long) As Byte

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

mtTime

Time for which the groove level is to be retrieved, in music time.

mtUntil

Variable to receive the music time (relative to mtTime) until which the groove level is valid. If this returns a value of 0, either the groove level is always valid, or it is unknown when it might become invalid. See Remarks.

Return Values

If the method succeeds, it returns a value in the range from 1 through 100.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following error codes:

DMUS_E_NO_MASTER_CLOCK��DMUS_E_GET_UNSUPPORTED��DMUS_E_NOT_FOUND��DMUS_E_TRACK_NOT_FOUND��

Remarks

Normally, the primary segment is the control segment. However, a secondary segment can be designated as a control segment when it is played. The object returned by the method can become invalid before the time returned in mtUntil if another control segment is cued.

See Also

CONST_DMUS_SEGF_FLAGS

DirectMusicPerformance.GetLatencyTime

The DirectMusicPerformance.GetLatencyTime method retrieves the current latency time. Latency time is the time at which messages are sent to the port to be rendered.

object.GetLatencyTime() As Long

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

Return Values

If the method succeeds, it returns the latency time, in clock time units.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to DMUS_E_NO_MASTER_CLOCK

DirectMusicPerformance.GetMasterAutoDownload

The DirectMusicPerformance.GetMasterAutoDownload method retrieves the current setting for automatic downloading of instruments.

object.GetMasterAutoDownload() As Boolean

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

Return Values

If the method succeeds, it returns True if autodownloading is on, and False otherwise. The default value is False.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

See Also

DirectMusicPerformance.SetMasterAutoDownload, DirectMusicSegment.SetAutoDownloadEnable

DirectMusicPerformance.GetMasterGrooveLevel

The DirectMusicPerformance.GetMasterGrooveLevel method retrieves the current master groove level, which is a value added to all groove levels in the performance. The resulting value is adjusted, if necessary, to fall within the range from 1 through 100.

object.GetMasterGrooveLevel() As Integer

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

Return Values

If the method succeeds, it returns the master groove level.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

See Also

DirectMusicPerformance.SetMasterGrooveLevel

DirectMusicPerformance.GetMasterTempo

The DirectMusicPerformance.GetMasterTempo method retrieves the current master tempo.

object.GetMasterTempo() As Single

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

Return Values

If the method succeeds, it returns a value in the range from 0.25 through 2.0.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

Remarks

The master tempo is a scaling factor that is applied to the tempo by the final output tool. By default it is 1. A value of 0.5 would halve the tempo, and a value of 2.0 would double it.

See Also

DirectMusicPerformance.SetMasterTempo

DirectMusicPerformance.GetMasterVolume

The DirectMusicPerformance.GetMasterVolume method retrieves the current master volume.

object.GetMasterVolume() As Long

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

Return Values

If the method succeeds, it returns the current master volume, in hundredths of a decibel.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

Remarks

The master volume is an amplification or attenuation factor applied to the default volume of the entire performance. The range of permitted values is determined by the port.

See Also

DirectMusicPerformance.SetMasterVolume

DirectMusicPerformance.GetMusicTime

The DirectMusicPerformance.GetMusicTime method returns the current time of the performance, in music time.

object.GetMusicTime() As Long

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

Return Values

If the method succeeds, it returns the current time, in music time units.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to DMUS_E_NO_MASTER_CLOCK.

See Also

DirectMusicPerformance.GetClockTime, Clock Time vs. Music Time

DirectMusicPerformance.GetNotificationPMsg

The DirectMusicPerformance.GetNotificationPMsg method retrieves a pending notification message.

object.GetNotificationPMSG(_

 message As DMUS_NOTIFICATION_PMSG) As Boolean

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

message

DMUS_NOTIFICATION_PMSG type to receive the message.

Return Values

If the method succeeds, it returns True if a message was received, and False if there was no message pending.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

DirectMusicPerformance.GetPortCaps

The DirectMusicPerformance.GetPortCaps method retrieves information about the capabilities of a port.

object.GetPortCaps(index As Long, caps As DMUS_PORTCAPS)

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

index

Index of the port, in the range from 1 through DirectMusicPerformance.GetPortCount.

caps

DMUS_PORTCAPS type to receive information about the port.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to DMUS_E_INVALIDARG.

DirectMusicPerformance.GetPortCount

The DirectMusicPerformance.GetPortCount method returns the number of DirectMusic ports available on the system.

object.GetPortCount() As Long

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

Return Values

If the method succeeds, it returns the number of available ports.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

DirectMusicPerformance.GetPortName

The DirectMusicPerformance.GetPortName returns the name of a port.

object.GetPortName(index As Long) As String

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

index

Index of the port. Must be in the range from 1 through the value returned by DirectMusicPerformance.GetPortCount.

Return Values

If the method succeeds, it returns the name of the port — for example, Microsoft Synthesizer.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

DirectMusicPerformance.GetPrepareTime

The DirectMusicPerformance.GetPrepareTime method retrieves the approximate interval between the time at which messages are prepared and the time at which they are processed and heard.

object.GetPrepareTime() As Long

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

Return Values

If the method succeeds, it returns the prepare time, in milliseconds.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

Remarks

The default value is 1000 milliseconds.

See Also

DirectMusicPerformance.SetPrepareTime

DirectMusicPerformance.GetQueueTime

The DirectMusicPerformance.GetQueueTime method retrieves the current queue (or flush) time. Messages that have time stamps earlier than this time have already been queued to the port and cannot be invalidated.

object.GetQueueTime() As Long

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

Return Values

If the method succeeds, it returns the queue time, in clock time units.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to DMUS_E_NO_MASTER_CLOCK.

Remarks

Queue time is equal to the value returned by DirectMusicPerformance.GetLatencyTime plus the value returned by DirectMusicPerformance.GetBumperLength.

When a segment is stopped immediately, all messages that have been sent but not queued to the port buffer are flushed. If you want to resume playing the segment again at the last point heard, set the new start point to the offset of queue time within the segment when the segment was stopped.

See Also

DirectMusicPerformance.Invalidate

DirectMusicPerformance.GetResolvedTime

The DirectMusicPerformance.GetResolvedTime method adjusts a given time to a given boundary.

object.GetResolvedTime(ctTime As Long, _

 flags As Long) As Long

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

ctTime

Time to resolve, in clock time units. If this is less than the current time, the current time is used.

flags

One or more of the following CONST_DMUS_SEGF_FLAGS describing the resolution desired:

DMUS_SEGF_AFTERPREPARETIME

Resolve to a time after the prepare time.

DMUS_SEGF_GRID

Resolve to a time on a grid boundary.

DMUS_SEGF_BEAT

Resolve to a time on a beat boundary.

DMUS_SEGF_MEASURE

Resolve to a time on a measure boundary.

Return Values

If the method succeeds, it returns the resolved time.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

DirectMusicPerformance.GetSegmentState

The DirectMusicPerformance.GetSegmentState method retrieves the DirectMusicSegmentState object representing the primary segment playing at a given time.

object.GetSegmentState(mtTime As Long) _

 As DirectMusicSegmentState

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

mtTime

Time for which the segment state is to be retrieved, in music time.

Return Values

If the method succeeds, it returns a DirectMusicSegmentState object.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to DMUS_E_NOT_FOUND.

Remarks

To get the currently playing segment state, pass the time retrieved by the DirectMusicPerformance.GetMusicTime method. Currently playing in this context means that it is being called into to perform messages. Because of latency, the currently playing segment state is not necessarily the one actually being heard.

Because of latency, it is also a good idea to add 150 to mtTime if retrieving a segment state immediately after calling DirectMusicPerformance.PlaySegment.

DirectMusicPerformance.GetStyle

The DirectMusicPerformance.GetStyle method retrieves the style underlying the control segment at a given time.

object.GetStyle(mtTime As Long, mtUntil As Long) _

 As DirectMusicStyle

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

mtTime

Time for which the style is to be retrieved, in music time.

mtUntil

Variable to receive the music time (relative to mtTime) until which the style is valid. If this returns a value of 0, either the style is always valid, or it is unknown when it might become invalid. See Remarks.

Return Values

If the method succeeds, it returns a DirectMusicStyle object.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_NO_MASTER_CLOCK��DMUS_E_GET_UNSUPPORTED��DMUS_E_NOT_FOUND��DMUS_E_TRACK_NOT_FOUND��

Remarks

Normally, the primary segment is the control segment. However, a secondary segment can be designated as a control segment when it is played. The object returned by the method can become invalid before the time returned in mtUntil if another control segment is cued.

DirectMusicPerformance.GetTempo

The DirectMusicPerformance.GetTempo method retrieves the tempo at a given time.

object.GetTempo(mtTime As Long, mtUntil As Long) As Double

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

mtTime

Time for which to retrieve the tempo, in music time. The last tempo change before or at this time is used to determine the tempo.

mtUntil

Variable to receive the music time (relative to mtTime) until which the tempo is valid. If this returns a value of 0, either the tempo is always valid, or it is unknown when it might become invalid.

Return Values

If the method succeeds, it returns the tempo, in beats per minute. This value is in the range from DMUS_TEMPO_MIN through DMUS_TEMPO_MAX (see CONST_DMUS).

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_NO_MASTER_CLOCK��DMUS_E_GET_UNSUPPORTED��DMUS_E_NOT_FOUND��DMUS_E_TRACK_NOT_FOUND��

DirectMusicPerformance.GetTimeSig

The DirectMusicPerformance.GetTimeSig method retrieves the time signature at a given time.

object.GetTimeSig(mtTime As Long, _

 mtUntil As Long, _

 timeSig As DMUS_TIMESIGNATURE)

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

mtTime

Time for which to retrieve the time signature, in music time. The last time signature change before or at this time is used to determine the time signature.

mtUntil

Variable to receive the music time (relative to mtTime) until which the time signature is valid. If this returns a value of 0, either the time signature is always valid, or it is unknown when it might become invalid. See Remarks.

timeSig

DMUS_TIMESIGNATURE type to receive information about the time signature. The mtTime member receives the offset of the last time signature change from the requested time, and is always 0 or less.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_NO_MASTER_CLOCK��DMUS_E_GET_UNSUPPORTED��DMUS_E_NOT_FOUND��DMUS_E_TRACK_NOT_FOUND��

DirectMusicPerformance.Init

The DirectMusicPerformance.Init method initializes the performance and associates it with a DirectSound object. This method should be called only once, before any other methods are called on the performance.

object.Init(DirectSound As DirectSound, hwnd As Long)

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

DirectSound

Existing DirectSound object, or Nothing if you want DirectMusic to create the object.

hwnd

Window handle to be used for the creation of DirectSound. This parameter can be 0, in which case the foreground window is used. See Remarks.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_ALREADY_INITED��DMUS_E_OUTOFMEMORY��

Remarks

There should be only one DirectSound object per process. If your application uses a DirectSound object for playing waves, it must pass in that object here.

The hwnd parameter is significant only if DirectSound is Nothing. If a DirectSound object is created separately by the application and passed to this method, the application is responsible for setting the window handle in a call to DirectSound.SetCooperativeLevel.

Do not 0 pass as hwnd because the application window might not be in the foreground when the method is called. In general, the top-level application window handle should be passed to DirectMusicPerformance.Init, DirectSound.SetCooperativeLevel, and DirectDraw7.SetCooperativeLevel.

The performance must be terminated by using the DirectMusicPerformance.CloseDown method before being released.

DirectMusicPerformance.Invalidate

The DirectMusicPerformance.Invalidate method flushes all queued messages whose time stamps are later than the supplied time and causes all tracks of all segments to resend their data from the given time forward.

object.Invalidate(mtTime As Long, flags As Long)

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

mtTime

Time from which to invalidate, adjusted by flags. Setting this value to 0 causes immediate invalidation.

flags

Adjusts mtTime to align to measures, beats, or grids. This value can be 0 or one of the following members of CONST_DMUS_SEGF_FLAGS:

DMUS_SEGF_MEASURE�DMUS_SEGF_BEAT�DMUS_SEGF_GRID

Error Codes

If the method fails, it raises an error, and Err.Number can be set to DMUS_E_NO_MASTER_CLOCK.

Remarks

If mtTime is so long ago that it is impossible to invalidate that time, the earliest possible time is used.

See Also

DirectMusicPerformance.GetQueueTime

DirectMusicPerformance.IsPlaying

The DirectMusicPerformance.IsPlaying method determines whether a particular segment or segment state is currently playing at the speakers.

object.IsPlaying(segment As DirectMusicSegment, _

 segmentState As DirectMusicSegmentState) As Boolean

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

segment

DirectMusicSegment to check. If Nothing, check only segmentState.

segmentState

DirectMusicSegmentState state to check. If Nothing, check only segment.

Return Values

If the method succeeds and the requested segment or segment state is playing, the return value is True. If neither is playing, or only one was requested and it is not playing, the return value is False.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_NO_MASTER_CLOCK��

DirectMusicPerformance.MusicToClockTime

The DirectMusicPerformance.MusicToClockTime method converts time in music time format to time in clock time format.

object.MusicToClockTime(mtTime As Long) As Long

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

mtTime

Time in music time format to convert.

Return Values

If the method succeeds, it returns the time, in clock time units.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to DMUS_E_NO_MASTER_CLOCK.

Remarks

Because clock time has a greater precision than music time, a time that has been converted from clock time to music time, and then back again, will probably not have its original value.

See Also

DirectMusicPerformance.ClockToMusicTime, Clock Time vs. Music Time

DirectMusicPerformance.PlaySegment

The DirectMusicPerformance.PlaySegment method begins playback of a segment.

object.PlaySegment(segment As DirectMusicSegment, _

 lFlags As Long, _

 startTime As Long) As DirectMusicSegmentState

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

segment

DirectMusicSegment to play.

lFlags

Flags that modify the method's behavior. See CONST_DMUS_SEGF_FLAGS.

startTime

Time at which to begin playing the segment, adjusted to any resolution boundary specified in lFlags. The time is in music time unless the DMUS_SEGF_REFTIME flag is set. A value of 0 causes the segment to start playing as soon as possible.

Return Values

If the method succeeds, it returns a DirectMusicSegmentState object representing the playing segment.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_OUTOFMEMORY��DMUS_E_NO_MASTER_CLOCK��DMUS_E_SEGMENT_INIT_FAILED��DMUS_E_TIME_PAST��

Remarks

Segments should be greater than 250 milliseconds in length.

The boundary resolutions in lFlags are relative to the currently playing primary segment.

If a primary segment is scheduled to play while another primary segment is playing, the first one stops unless you set the DMUS_SEGF_QUEUE flag for the second segment. In this case, it plays as soon as the first one reaches its end.

See Also

DirectMusicPerformance.IsPlaying

DirectMusicPerformance.RemoveNotificationType

The DirectMusicPerformance.RemoveNotificationType method removes a previously added notification type from the performance so that notification messages of that type are no longer sent.

object.RemoveNotificationType(_

 type As CONST_DMUS_NOTIFICATION_TYPE)

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

type

Type of event for which notification messages are no longer to be sent. For possible values, see CONST_DMUS_NOTIFICATION_TYPE.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to DMUS_E_INVALIDARG

See Also

DirectMusicPerformance.AddNotificationType

DirectMusicPerformance.Reset

The DirectMusicPerformance.Reset method resets the port.

object.Reset(resetflags As Long)

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

resetflags

Flags. By default (resetflags = 0), the method performs a GMReset. If this value is 1, the port is reset by being closed and reopened.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

DirectMusicPerformance.SendCurvePMSG

The DirectMusicPerformance.SendCurvePMSG method sends a performance message containing information about a MIDI curve.

object.SendCurvePMSG(lTime As Long, _

 flags As Long, _

 channel As Long, _

 msg As DMUS_CURVE_PMSG)

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

lTime

Time at which the message is to play. This is in music time unless DMUS_PMSGF_REFTIME is in flags.

flags

Flags modifying how and when the message is processed. See CONST_DMUS_PMSGF_FLAGS.

channel

Performance channel that is the destination for the message.

msg

DMUS_CURVE_PMSG type containing information about the curve.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_NO_MASTER_CLOCK��DMUS_E_ALREADY_SENT��DMUS_E_INVALIDARG��

Remarks

If the time of the message is set to 0 and the flags parameter contains DMUS_PMSGF_REFTIME, it is assumed that this message is cued to go out immediately.

DirectMusicPerformance.SendMIDIPMSG

The DirectMusicPerformance.SendMIDIPMSG method sends a performance message containing information about a MIDI channel message not covered by other methods.

object.SendMIDIPMSG(lTime As Long, _

 flags As Long, _

 channel As Long, _

 status As Byte, _

 byte1 As Byte, _

 byte2 As Byte)

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

lTime

Time at which the message is to play. This is in music time unless DMUS_PMSGF_REFTIME is in flags.

flags

Flags modifying how and when the message is processed. See CONST_DMUS_PMSGF_FLAGS.

channel

Performance channel that is the destination for the message.

status

Standard MIDI status byte. See Remarks.

byte1

First data byte. Ignored for MIDI messages that do not require it.

byte2

Second data byte. Ignored for MIDI messages that do not require it.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_NO_MASTER_CLOCK��DMUS_E_ALREADY_SENT��DMUS_E_INVALIDARG��

Remarks

If the time of the message is set to 0 and the flags parameter contains DMUS_PMSGF_REFTIME, it is assumed that this message is cued to go out immediately.

Because the channel is specified in another parameter, status does not contain the channel number in the 4 lower bits, as it would in a standard MIDI message. Thus status is &H80 for a note-off, &H90 for a note-on, and so on. See the MIDI specification for other status bytes.

DirectMusicPerformance.SendNotePMSG

The DirectMusicPerformance.SendNotePMSG method sends a performance message containing information about a note.

object.SendNotePMSG(lTime As Long, _

 flags As Long, _

 channel As Long, _

 msg As DMUS_NOTE_PMSG)

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

lTime

Time at which the message is to play. This is in music time unless DMUS_PMSGF_REFTIME is in flags.

flags

Flags modifying how and when the message is processed. See CONST_DMUS_PMSGF_FLAGS.

channel

Performance channel that is the destination for the message.

msg

DMUS_NOTE_PMSG type containing information about the note.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_NO_MASTER_CLOCK��DMUS_E_ALREADY_SENT��DMUS_E_INVALIDARG��

Remarks

If the time of the message is set to 0 and the flags parameter contains DMUS_PMSGF_REFTIME, it is assumed that this message is cued to go out immediately.

See Also

Music Values and MIDI Notes

DirectMusicPerformance.SendPatchPMSG

The DirectMusicPerformance.SendPatchPMSG method sends a performance message containing information about a MIDI patch change.

object.SendPatchPMSG(lTime As Long, _

 flags As Long, _

 channel As Long, _

 instrument As Byte, _

 byte1 As Byte, _

 byte2 As Byte)

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

lTime

Time at which the message is to play. This is in music time unless DMUS_PMSGF_REFTIME is in flags.

flags

Flags modifying how and when the message is processed. See CONST_DMUS_PMSGF_FLAGS.

channel

Performance channel that is the destination for the message.

instrument

Patch number to assign to the channel.

byte1

Most significant byte of bank select.

byte2

Least significant byte of bank select.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_NO_MASTER_CLOCK��DMUS_E_ALREADY_SENT��DMUS_E_INVALIDARG��

Remarks

If the time of the message is set to 0 and the flags parameter contains DMUS_PMSGF_REFTIME, it is assumed that this message is cued to go out immediately.

DirectMusicPerformance.SendTempoPMSG

The DirectMusicPerformance.SendTempoPMSG method sends a performance message containing information about a tempo change.

object.SendTempoPMSG(lTime As Long, _

 flags As Long, _

 tempo As Double)

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

lTime

Time at which the message is to play. This is in music time unless DMUS_PMSGF_REFTIME is in flags.

flags

Flags modifying how and when the message is processed. See CONST_DMUS_PMSGF_FLAGS.

tempo

New tempo, in beats per minute.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_NO_MASTER_CLOCK��DMUS_E_ALREADY_SENT��DMUS_E_INVALIDARG��

Remarks

If the time of the message is set to 0 and the flags parameter contains DMUS_PMSGF_REFTIME, it is assumed that this message is cued to go out immediately.

DirectMusicPerformance.SendTimeSigPMSG

The DirectMusicPerformance.SendCurvePMSG method sends a performance message containing information about a MIDI curve.

object.SendTimeSigPMSG(lTime As Long, _

 flags As Long, _

 timeSig As DMUS_TIMESIGNATURE)

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

lTime

Time at which the message is to play. This is in music time unless DMUS_PMSGF_REFTIME is in flags.

flags

Flags modifying how and when the message is processed. See CONST_DMUS_PMSGF_FLAGS.

timeSig

DMUS_TIMESIGNATURE type containing information about the time signature.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_NO_MASTER_CLOCK��DMUS_E_ALREADY_SENT��DMUS_E_INVALIDARG��

Remarks

If the time of the message is set to 0 and the flags parameter contains DMUS_PMSGF_REFTIME, it is assumed that this message is cued to go out immediately.

DirectMusicPerformance.SendTransposePMSG

The DirectMusicPerformance.SendTransposePMSG method sends a performance message causing a transposition to begin.

object.SendTransposePMSG(lTime As Long, _

 flags As Long, _

 channel As Long, _

 transpose As Integer)

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

lTime

Time at which the message is to play. This is in music time unless DMUS_PMSGF_REFTIME is in flags.

flags

Flags modifying how and when the message is processed. See CONST_DMUS_PMSGF_FLAGS.

channel

Pchannel on which the transposition is to take place.

transpose

Number of semitones by which to transpose notes. This can be a negative value. If the transposition of a note puts it outside the standard MIDI range from 0 through 127, it does not play.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_NO_MASTER_CLOCK��DMUS_E_ALREADY_SENT��DMUS_E_INVALIDARG��

Remarks

If the time of the message is set to 0 and the flags parameter contains DMUS_PMSGF_REFTIME, it is assumed that this message is cued to go out immediately.

DirectMusicPerformance.SetBumperLength

The DirectMusicPerformance.SetBumperLength method sets the amount of time between the time at which messages are placed in the port buffer and the at which they begin to be processed by the port.

object.SetBumperLength(lMilliSeconds As Long)

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

lMilliSeconds

Desired bumper length, in milliseconds. The default value is 50.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

See Also

DirectMusicPerformance.GetBumperLength, DirectMusicPerformance.SetPrepareTime

DirectMusicPerformance.SetMasterAutoDownload

The DirectMusicPerformance.SetMasterAutoDownload method turns automatic downloading of instruments on or off.

object.SetMasterAutoDownload(b As Boolean)

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

b

True to turn autodownloading on, False to turn it off. The default value is False.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

See Also

DirectMusicPerformance.GetMasterAutoDownload, DirectMusicSegment.SetAutoDownloadEnable

DirectMusicPerformance.SetMasterGrooveLevel

The DirectMusicPerformance.SetMasterGrooveLevel method sets a value to be added to all groove levels in the performance.

object.SetMasterGrooveLevel(level As Integer)

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

level

Value to add to the groove level, in the range from –99 through 99.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_FAIL��DMUS_E_OUTOFMEMORY��

See Also

DirectMusicPerformance.GetMasterGrooveLevel

Remarks

The adjusted groove level is always in the range from 1 through 100.

DirectMusicPerformance.SetMasterTempo

The DirectMusicPerformance.SetMasterTempo method sets a scaling factor that is applied to the tempo.

object.SetMasterTempo(tempo As Single)

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

tempo

Desired master tempo, in the range from 0.25 through 2.0.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

Remarks

By default, the master tempo is 1. A value of 0.5 would halve the tempo, and a value of 2.0 would double it.

See Also

DirectMusicPerformance.GetMasterTempo

DirectMusicPerformance.SetMasterVolume

The DirectMusicPerformance.SetMasterVolume method adjusts the master volume of the performance.

object.SetMasterVolume(vol As Long)

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

vol

Master volume adjustment, in hundredths of a decibel.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

Remarks

The master volume is an amplification or attenuation factor applied to the default volume of the entire performance. The range of permitted values is determined by the port.

See Also

DirectMusicPerformance.GetMasterVolume

DirectMusicPerformance.SetNotificationHandle

The DirectMusicPerformance.SetNotificationHandle method sets the event handle for notifications. When signaled, the application should call the DirectMusicPerformance.GetNotificationPMsg method to retrieve the notification event.

object.SetNotificationHandle(hnd As Long)

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

hnd

Event handle, or 0 to clear an existing handle.

See Also

DirectXEvent

DirectMusicPerformance.SetPort

The DirectMusicPerformance.SetPort method sets the active port for the performance. This method must be called after the performance is initialized and before any instruments are downloaded or any segment is played.

object.SetPort(index As Long, numGroups As Long)

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

index

Index of the port. Must be in the range from 1 through the value returned by DirectMusicPerformance.GetPortCount, or –1 for the default port.

numGroups

Number of channel groups on the port. Must be less than or equal to the number of channel groups reported in the lMaxChannelGroups member of the DMUS_PORTCAPS type returned by the DirectMusicPerformance.GetPortCaps method.

Remarks

Each channel group consists of 16 channels. Allocate enough channel groups to accommodate all performance channels in the segments that you intend to play. For MIDI files, one channel group is sufficient. The Microsoft Software Synthesizer supports up to 1000 channel groups.

DirectMusicPerformance.SetPrepareTime

The DirectMusicPerformance.SetPrepareTime method sets the approximate interval between the time at which messages are prepared and the time at which they are processed and heard.

object.SetPrepareTime(lMilliSeconds As Long)

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

lMilliSeconds

Prepare time, in milliseconds. The default value is 1000.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

See Also

DirectMusicPerformance.GetPrepareTime, DirectMusicPerformance.SetBumperLength

DirectMusicPerformance.Stop

The DirectMusicPerformance.Stop method stops playback of one or more segments.

object.Stop(segment As DirectMusicSegment, _

 segmentState As DirectMusicSegmentState, _

 mtTime As Long, _

 lFlags As Long)

Parameters

object

Object expression that resolves to a DirectMusicPerformance object.

segment

DirectMusicSegment to stop playing. All segment states based on this segment are stopped at mtTime. See Remarks.

segmentState

DirectMusicSegmentState object representing the instance of the segment to stop playing. See Remarks.

mtTime

Music time at which to stop the segment, segment state, or both. If the time is in the past or this value is 0, the requested segments and segment states stop playing immediately.

lFlags

Flag that indicates when the stop should occur. Boundaries are in relation to the current primary segment. Must be one of the following values:

0

Stop immediately.

DMUS_SEGF_GRID

Stop on the next grid boundary at or after mtTime.

DMUS_SEGF_MEASURE

Stop on the next measure boundary at or after mtTime.

DMUS_SEGF_BEAT

Stop on the next beat boundary at or after mtTime.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

Remarks

If segment and segmentState are both Nothing, all music stops, and all currently cued segments are released. If either segment or segmentState is not Nothing, only the requested segment states are removed from the performance.

If you set all parameters to Nothing or 0, everything stops immediately, and controller reset messages and note-off messages are sent to all mapped performance channels.

See Also

DirectMusicPerformance.PlaySegment, CONST_DMUS_SEGF_FLAGS

DirectMusicSegment

An object of the DirectMusicSegment class represents a single piece of music or a template.

Segments are usually loaded by calling DirectMusicLoader.LoadSegment and DirectMusicLoader.LoadSegmentFromResource. They can also be composed from musical elements by using methods of the DirectMusicComposer object, or created from existing segments by using the DirectMusicSegment.Clone method.

The methods of the DirectMusicSegment object can be grouped as follows:

Timing and looping�GetLength���GetLoopPointStart���GetLoopPointEnd���GetRepeats���GetStartPoint���SetLength���SetLoopPoints���SetRepeats���SetStartPoint��Duplication�Clone��Instruments�ConnectToCollection���Download���Unload��Parameters�SetAutoDownloadEnable���SetStandardMidiFile���SetTempoEnable���SetTimeSigEnable��

DirectMusicSegment.Clone

The DirectMusicSegment.Clone method creates a copy of all or part of the segment.

object.Clone(mtStart As Long, _

 mtEnd As Long) As DirectMusicSegment

Parameters

object

Object expression that resolves to a DirectMusicSegment object.

mtStart

Start of the part to clone, in music time. If less than 0 or greater than the length of the segment, 0 is used.

mtEnd

End of the part to clone, in music time. If this value is past the end of the segment, the segment is cloned to the end. A value of 0 or anything less than mtStart also clones to the end.

Return Values

If the method succeeds, it returns a DirectMusicSegment object.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to DMUS_E_OUTOFMEMORY.

Remarks

The start point and loop points set by the DirectMusicSegment.SetStartPoint and DirectMusicSegment.SetLoopPoints methods are set to their default values (0, and 0 to the end of the segment respectively) inside the clone. The number of repeats is also reset to 0.

For style-based segments, if mtStart is greater than 0, it should be on a measure boundary.

DirectMusicSegment.ConnectToCollection

The DirectMusicSegment.ConnectToCollection method associates a segment with a DLS instrument collection. This is the collection that is downloaded when the DirectMusicSegment.Download method is called.

object.ConnectToCollection(c As DirectMusicCollection)

Parameters

object

Object expression that resolves to a DirectMusicSegment object.

c

DirectMusicCollection object representing instruments to be used in playing the segment.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_SET_UNSUPPORTED��DMUS_E_TRACK_NOT_FOUND��

Remarks

By default, the General MIDI collection in the Gm.dls file is used. This method needs to be called only if the segment is to be played with custom instruments.

DirectMusicSegment.Download

The DirectMusicSegment.Download method downloads the collection associated with the segment so that the port can play the instruments.

object.Download(performance As DirectMusicPerformance)

Parameters

object

Object expression that resolves to a DirectMusicSegment object.

performance

DirectMusicPerformance object to whose port the instruments are being downloaded.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

See Also

DirectMusicSegment.ConnectToCollection, DirectMusicSegment.Unload, DirectMusicSegment.SetAutoDownloadEnable

DirectMusicSegment.GetLength

The DirectMusicSegment.GetLength method retrieves the length of the segment.

object.GetLength() As Long

Parameters

object

Object expression that resolves to a DirectMusicSegment object.

Return Values

If the method succeeds, it returns the length of the segment, in music time.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

Remarks

If for some reason the segment's length was never set, the method returns 0.

See Also

DirectMusicSegment.SetLength

DirectMusicSegment.GetLoopPointEnd

The DirectMusicSegment.GetLoopPointEnd method retrieves the point in the segment at which a repeating section is to end.

object.GetLoopPointEnd() As Long

Parameters

object

Object expression that resolves to a DirectMusicSegment object.

Return Values

If the method succeeds, it returns the end point of the loop, in music time. If this value is 0, the entire segment loops.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

Remarks

The section does not repeat unless the number of repetitions has been set to 1 or more by using the DirectMusicSegment.SetRepeats method. By default, the entire segment repeats.

See Also

DirectMusicSegment.GetLoopPointStart, DirectMusicSegment.SetLoopPoints, DirectMusicSegment.GetRepeats

DirectMusicSegment.GetLoopPointStart

The DirectMusicSegment.GetLoopPointStart method retrieves the point in the segment at which a repeating section is to start.

object.GetLoopPointStart() As Long

Parameters

object

Object expression that resolves to a DirectMusicSegment object.

Return Values

If the method succeeds, it returns the start point of the loop, in music time.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

Remarks

The section does not repeat unless the number of repetitions has been set to 1 or more by using the DirectMusicSegment.SetRepeats method. By default, the entire segment repeats.

See Also

DirectMusicSegment.GetLoopPointEnd, DirectMusicSegment.SetLoopPoints, DirectMusicSegment.GetRepeats

DirectMusicSegment.GetRepeats

The DirectMusicSegment.GetRepeats method retrieves the number of times that the looping portion of a segment is set to repeat.

object.GetRepeats() As Long

Parameters

object

Object expression that resolves to a DirectMusicSegment object.

Return Values

If the method succeeds, it returns the number of times that the looping portion repeats.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

See Also

DirectMusicSegment.SetRepeats, DirectMusicSegment.SetLoopPoints, DirectMusicSegment.GetLoopPointStart, DirectMusicSegment.GetLoopPointEnd, DirectMusicSegmentState.GetRepeats

DirectMusicSegment.GetStartPoint

The DirectMusicSegment.GetStartPoint method retrieves the point at which the segment starts playing in response to the DirectMusicPerformance.PlaySegment method.

object.GetStartPoint() As Long

Parameters

object

Object expression that resolves to a DirectMusicSegment object.

Return Values

If the method succeeds, it returns the start point of the segment, in music time.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

See Also

DirectMusicSegment.SetStartPoint

DirectMusicSegment.SetAutoDownloadEnable

The DirectMusicSegment.SetAutoDownloadEnable method enables or disables automatic downloading and unloading of instruments in the collection associated with the segment.

object.SetAutoDownloadEnable(b As Boolean)

Parameters

object

Object expression that resolves to a DirectMusicSegment object.

b

True to enable autodownloading, or False to disable it.

Remarks

Automatic downloading is disabled by default. When it is enabled, instruments are automatically downloaded when the segment is played, and unloaded when it is stopped.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_SET_UNSUPPORTED��DMUS_E_TRACK_NOT_FOUND��

See Also

DirectMusicSegment.Download

DirectMusicSegment.SetLength

The DirectMusicSegment.SetLength method sets the length of the segment.

object.SetLength(mtLength As Long)

Parameters

object

Object expression that resolves to a DirectMusicSegment object.

mtLength

Desired length, in music time. Must be greater than 0.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to DMUS_E_OUT_OF_RANGE.

Remarks

In most cases, applications do not need to set the length, which is automatically set when the segment is loaded. However, this method can be used to shorten a segment.

See Also

DirectMusicSegment.GetLength

DirectMusicSegment.SetLoopPoints

The DirectMusicSegment.SetLoopPoints method sets the start and end points inside the segment to repeat the number of times set by the DirectMusicSegment.SetRepeats method.

object.SetLoopPoints(mtStart As Long, mtEnd As Long)

Parameters

object

Object expression that resolves to a DirectMusicSegment object.

mtStart

Point at which to begin the loop, in music time.

mtEnd

Point at which to end the loop, in music time. A value of 0 loops the entire segment.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to DMUS_E_OUT_OF_RANGE.

Remarks

When the segment is played, it plays from the segment start time until mtEnd, then loops to mtStart, plays the looped portion the number of times set by DirectMusicSegment.SetRepeats, then plays to the end.

The default values are set to loop the entire segment from beginning to end.

The method fails if mtStart is greater than or equal to the length of the segment, or if mtEnd is greater than the length of the segment. If mtEnd is 0, mtStart must be 0 as well.

This method does not affect any currently playing segment states created from this segment.

A segment that is reused might be loaded from an internal cache, in which case it has the same loop points that it had the last time these values were set. It is a good idea to reset the loop points to 0 before releasing or resetting the object.

See Also

DirectMusicSegment.GetLoopPointStart, DirectMusicSegment.GetLoopPointEnd, DirectMusicSegment.SetRepeats

DirectMusicSegment.SetRepeats

The DirectMusicSegment.SetRepeats method sets the number of times that the looping portion of the segment is to repeat.

object.SetRepeats(lRepeats As Long)

Parameters

object

Object expression that resolves to a DirectMusicSegment object.

lRepeats

Number of repetitions.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

See Also

DirectMusicSegment.GetRepeats, DirectMusicSegment.SetLoopPoints

DirectMusicSegment.SetStandardMidiFile

The DirectMusicSegment.SetStandardMidiFile method informs DirectMusic that the segment is based on a standard MIDI file, not one authored specifically for DirectMusic. Calling this method ensures that certain events are handled properly when the segment is played.

object.SetStandardMidiFile()

Parameters

object

Object expression that resolves to a DirectMusicSegment object.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

Remarks

The method should be called before instruments are downloaded.

DirectMusicSegment.SetStartPoint

The DirectMusicSegment.SetStartPoint method sets the point at which the segment starts playing in response to a call to the DirectMusicPerformance.PlaySegment method.

object.SetStartPoint(mtStart As Long)

Parameters

object

Object expression that resolves to a DirectMusicSegment object.

mtStart

Point within the segment at which it is to start playing, in music time. If this value is less than 0 or greater than the length of the segment, the start point is set to 0.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to DMUS_E_OUT_OF_RANGE.

Remarks

By default, the start point is 0, meaning that the segment starts from the beginning.

The call fails if mtStart is greater than or equal to the length of the segment.

The method does not affect any currently playing segment states created from this segment.

A segment that is reused might be loaded from an internal cache, in which case it has the same start point that it had the last time that this value was set. It is a good idea to set the start point to 0 before the object is released or reset.

See Also

DirectMusicSegment.GetStartPoint, DirectMusicSegmentState.GetStartPoint, DirectMusicSegment.SetLoopPoints

DirectMusicSegment.SetTempoEnable

The DirectMusicSegment.SetTempoEnable method enables or disables tempo messages for the segment.

object.SetTempoEnable(b As Boolean)

Parameters

object

Object expression that resolves to a DirectMusicSegment object.

b

True to enable tempo messages, or False to disable them.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_SET_UNSUPPORTED��DMUS_E_TRACK_NOT_FOUND��

DirectMusicSegment.SetTimeSigEnable

The DirectMusicSegment.SetTimeSigEnable method enables or disables time signature messages for the segment.

object.SetTempoEnable(b As Boolean)

Parameters

object

Object expression that resolves to a DirectMusicSegment object.

b

True to enable time signature messages, or False to disable them.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to one of the following values:

DMUS_E_SET_UNSUPPORTED��DMUS_E_TRACK_NOT_FOUND��

DirectMusicSegment.Unload

The DirectMusicSegment.Unload method unloads instruments that were downloaded to the port by the DirectMusicSegment.Download method.

object.Unload(performance As DirectMusicPerformance)

Parameters

object

Object expression that resolves to a DirectMusicSegment object.

performance

DirectMusicPerformance object from whose port the instruments are being unloaded.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

See Also

DirectMusicSegment.SetAutoDownloadEnable

DirectMusicSegmentState

The DirectMusicSegmentState class is used to get information about a segment instance. When the DirectMusicPerformance.PlaySegment method is called, it creates a DirectMusicSegmentState object that represents that instance of the segment and enables the application to retrieve information about it. The object can also be passed to methods of DirectMusicPerformance to determine whether a segment instance is still playing, or to stop it.

The class has the following methods:

Information�GetRepeats ���GetSeek ���GetSegment ���GetStartPoint���GetStartTime��

See Also

DirectMusicPerformance.GetSegmentState, DirectMusicPerformance.IsPlaying, DirectMusicPerformance.Stop

DirectMusicSegmentState.GetRepeats

The DirectMusicSegmentState.GetRepeats method returns the number of times that the looping portion of the segment is set to repeat.

object.GetRepeats() As Long

Parameters

object

Object expression that resolves to a DirectMusicSegmentState object.

Return Values

If the method succeeds, it returns the repeat count. A value of 0 indicates that the segment is to play through only once, with no portion repeated.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

See Also

DirectMusicSegment.SetRepeats

DirectMusicSegmentState.GetSeek

The DirectMusicSegmentState.GetSeek method retrieves the current seek pointer in the segment state. This is immediately after the last point in the segment for which messages have been generated.

object.GetSeek() As Long

Parameters

object

Object expression that resolves to a DirectMusicSegmentState object.

Return Values

If the method succeeds, it returns the current seek pointer, in music time.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

Remarks

When a segment is stopped, messages that have been sent but not yet queued to the port buffer are flushed. Therefore, if you stop a segment and then restart it at the last seek pointer, some notes are lost.

DirectMusicSegmentState.GetSegment

The DirectMusicSegmentState.GetSegment method returns an object representing the segment that owns this segment state.

object.GetSegment() As DirectMusicSegment

Parameters

object

Object expression that resolves to a DirectMusicSegmentState object.

Return Values

If the method succeeds, it returns a DirectMusicSegment object.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

DirectMusicSegmentState.GetStartPoint

The DirectMusicSegmentState.GetStartPoint method returns the offset into the segment at which play began or will begin.

object.GetStartPoint() As Long

Parameters

object

Object expression that resolves to a DirectMusicSegmentState object.

Return Values

If the method succeeds, it returns the start point for this segment state, in music time. This might not be same value as is returned by DirectMusicSegment.GetStartPoint if the start point of the segment has been changed since this segment state was created. Different instances of a playing segment can have different start points.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

See Also

DirectMusicSegment.SetStartPoint, DirectMusicSegmentState.GetStartTime

DirectMusicSegmentState.GetStartTime

The DirectMusicSegmentState.GetStartTime method gets the performance time at which the segment started or will start playing.

object.GetStartTime() As Long

Parameters

object

Object expression that resolves to a DirectMusicSegmentState object.

Return Values

If the method succeeds, it returns the start time, in music time, of this instance of the segment.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to DMUS_E_BUFFER_EMPTY.

Remarks

If the segment was started from some point other than the beginning, you can retrieve the time at which the beginning of the segment would have fallen by subtracting the time returned by DirectMusicSegmentState.GetStartPoint from the value returned by this method.

See Also

DirectMusicSegment.SetStartPoint, DirectMusicSegment.GetStartPoint, DirectMusicSegmentState.GetStartPoint

DirectMusicStyle

An object of the DirectMusicStyle class provides the performance with the information that it needs to play musical patterns. Styles usually include bands and motifs, and can include chord maps, so the DirectMusicStyle object also provides methods for accessing these objects.

The object is generally obtained by using the DirectMusicLoader.LoadStyle or the DirectMusicLoader.LoadStyleFromResource method. It can also be obtained from the performance by using the DirectMusicPerformance.GetStyle method, provided the current control segment is based on a style.

The methods of the DirectMusicStyle class can be organized in the following groups:

Bands�GetBand���GetBandCount���GetBandName���GetDefaultBand��Motifs�GetMotif���GetMotifCount���GetMotifName��Time�GetTempo���GetTimeSignature��

DirectMusicStyle.GetBand

The DirectMusicStyle.GetBand method gets a band object by name.

object.GetBand(name As String) As DirectMusicBand

Parameters

object

Object expression that resolves to a DirectMusicStyle object.

name

Name assigned to the band by the author of the style.

Return Values

If the method succeeds, it returns a DirectMusicBand object.

Error Codes

If the method fails, it raises an error, and Err.Number can be set to DMUS_E_FAIL.

See Also

DirectMusicStyle.GetBandName, DirectMusicStyle.GetDefaultBand

DirectMusicStyle.GetBandCount

The DirectMusicStyle.GetBandCount method gets the number of bands available in the style.

object.GetBandCount() As Long

Parameters

object

Object expression that resolves to a DirectMusicStyle object.

Return Values

If the method succeeds, it returns the number of bands in the style.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

See Also

DirectMusicStyle.GetBand, DirectMusicStyle.GetBandName

DirectMusicStyle.GetBandName

The DirectMusicStyle.GetBandName method gets the name of a band in the style.

object.GetBandName(index As Long) As String

Parameters

object

Object expression that resolves to a DirectMusicStyle object.

index

Index of the band in the style, in the range from 1 through DirectMusicStyle.GetBandCount.

Return Values

If the method succeeds, it returns the name assigned to the band by the author of the style.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

See Also

DirectMusicStyle.GetBand

DirectMusicStyle.GetDefaultBand

The DirectMusicStyle.GetDefaultBand method gets the default band for the style .

object.GetDefaultBand() As DirectMusicBand

Parameters

object

Object expression that resolves to a DirectMusicStyle object.

name

Name assigned to the band by the author of the style.

Return Values

If the method succeeds, it returns a DirectMusicBand object.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

See Also

DirectMusicStyle.GetBand

DirectMusicStyle.GetMotif

The DirectMusicStyle.GetMotif method creates a segment containing the named motif.

object.GetMotif(name As String) As DirectMusicSegment

Parameters

object

Object expression that resolves to a DirectMusicStyle object.

name

Name assigned to the motif by the author of the style

Return Values

If the method succeeds, it returns a DirectMusicSegment object representing the motif.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

See Also

DirectMusicStyle.GetMotifCount, DirectMusicStyle.GetMotifName

DirectMusicStyle.GetMotifCount

The DirectMusicStyle.GetMotifCount method gets the number of motifs available in the style.

object.GetMotifCount() As Long

Parameters

object

Object expression that resolves to a DirectMusicStyle object.

Return Values

If the method succeeds, it returns the number of motifs in the style.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

DirectMusicStyle.GetMotifName

The DirectMusicStyle.GetMotifName method gets the name of a motif in the style.

object.GetMotifName(index As Long) As String

Parameters

object

Object expression that resolves to a DirectMusicStyle object.

index

Index of the motif in the style, in the range from 1 through DirectMusicStyle.GetMotifCount.

Return Values

If the method succeeds, it returns the name assigned to the motif by the author of the style.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

See Also

DirectMusicStyle.GetMotif

DirectMusicStyle.GetTempo

The DirectMusicStyle.GetTempo method retrieves the recommended tempo of the style.

object.GetTempo() As Double

Parameters

object

Object expression that resolves to a DirectMusicStyle object.

Return Values

If the method succeeds, it returns the recommended tempo, in beats per minute.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

DirectMusicStyle.GetTimeSignature

The DirectMusicStyle.GetTimeSignature method retrieves the style's time signature.

object.GetTimeSignature(pTimeSig As DMUS_TIMESIGNATURE)

Parameters

object

Object expression that resolves to a DirectMusicStyle object.

pTimeSig

DMUS_TIMESIGNATURE type to receive information about the time signature.

Error Codes

If the method fails, it raises an error, and Err.Number is set.

Types

This section contains information on the following types used in DirectMusic for Visual Basic:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_CURVE_PMSG

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_NOTE_PMSG

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_NOTIFICATION_PMSG

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_PORTCAPS

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMUS_TIMESIGNATURE

DMUS_CURVE_PMSG

The DMUS_CURVE_PMSG type contains information about a MIDI curve message.

Type DMUS_CURVE_PMSG

 beat As Byte

 ccData As Byte

 curveShape As Byte

 endValue As Integer

 flags As Byte

 grid As Byte

 measure As Integer

 mtDuration As Long

 mtOriginalStart As Long

 mtResetDuration As Long

 offset As Integer

 resetValue As Integer

 startValue As Integer

 type As Byte

End Type

Members

beat

Beat count (within a measure) at which this curve occurs.

ccData

CC number if this is a control change type.

curveShape

Shape of the curve. This can be one of the values from the CONST_DMUS_CURVES enumeration.

endValue

End value of the curve.

flags

Set to DMUS_CURVE_RESET if the resetValue must be set when the time is reached or an invalidation occurs because of a transition. If 0, the curve stays permanently at the new value.

grid

Grid offset from a beat at which this curve occurs.

measure

Measure in which this curve occurs.

mtDuration

How long the curve lasts.

mtOriginalStart

Original start time, in music time. Must be set to either 0 when this message is created, or to the original time of the curve.

mtResetDuration

How long after the curve is finished until the reset value is set, in music time.

offset

Offset from a grid at which this curve occurs, in music time.

resetValue

Reset value of the curve, set after mtResetDuration or upon a flush or invalidation.

startValue

Start value of the curve.

type

Type of curve. This can be one of the values from the CONST_DMUS_CURVET enumeration.

See Also

DirectMusicPerformance.SendCurvePMSG

DMUS_NOTE_PMSG

The DMUS_NOTE_PMSG type contains data for a music note event.

Type DMUS_NOTE_PMSG

 beat as Byte

 durRange As Byte

 flags As Byte

 grid As Byte

 measure As Integer

 midiValue As Byte

 mtDuration As Long

 musicValue As Integer

 offset As Integer

 playModeFlags As Byte

 subChordLevel As Byte

 timeRange As Byte

 velocity As Byte

 velRange As Byte

End Type

Members

beat

Beat count (within a measure) at which this note occurs.

durRange

Range to randomize duration.

flags

Should be set to DMUS_NOTEF_NOTEON. See Remarks.

grid

Grid offset from a beat at which this note occurs.

measure

Measure in which this note occurs.

midiValue

MIDI note value, converted from musicValue.

mtDuration

Duration of the note.

musicValue

Description of the note. In most play modes, this is a packed array of four-bit values, as follows:

Octave, in the range from –2 through 14. The note is transposed up or down by the octave times 12.

Chord position, in the range from 0 through 15, though it should never be above 3. The first position in the chord is 0.

Scale position, in the range from 0 through 15. Typically, it is from 0 through 2, but it is possible to have a one-note chord and have everything above the chord be interpreted as a scale position.

Accidental, in the range from –8 through 7, but typically in the range from –2 through 2. This represents an offset that takes the note out of the scale.

In the fixed play modes, the music value is a MIDI note value in the range from 0 through 127.

offset

Offset from a grid at which this note occurs, in music time.

playModeFlags

Play mode determining how the music value is related to the chord and subchord. For a list of values, see CONST_DMUS_PLAYMODE_FLAGS.

subChordLevel

Subchord level that the note uses.

timeRange

Range by which to randomize time.

velocity

Note velocity.

velRange

Range by which to randomize velocity.

Remarks

Applications sending note messages must provide values only in the flags, midiValue, mtDuration, and velocity members. The other members are of interest only to tools, which are not supported in DirectX for Visual Basic.

Normally, the application sets flags to DMUS_NOTEF_NOTEON. The application is not responsible for sending note-off messages. When the DirectMusic output tool receives a DMUS_NOTE_PMSG and sees that DMUS_NOTEF_NOTEON is set, it clears the flag, adds mtDuration to the time stamp, and requeues the message so that the note is turned off at the appropriate time.

It is possible, however, for the application to stop a note prematurely by sending the same note on the same channel with flags set to 0.

See Also

DirectMusicPerformance.SendNotePMSG, Music Values and MIDI Notes

DMUS_NOTIFICATION_PMSG

The DMUS_NOTIFICATION_PMSG type contains information about a notification message sent by the performance.

Type DMUS_NOTIFICATION_PMSG

 ctTime As Long

 lField1 As Long

 lField2 As Long

 lNotificationOption As Long

 lNotificationType As Long

 mtTime As Long

End Type

Members

ctTime

Time stamp of the message, in clock time.

lField1

Extra data specific to the type of notification. For DMUS_NOTIFY_ON_MEASUREANDBEAT notifications, this member returns the beat number within the measure.

lField2

Extra data specific to the type of notification. Reserved for future or application-defined use.

lNotificationOption

Identifier of the notification subtype, from the CONST_DMUS_NOTIFICATION_SUBTYPE enumeration.

If the notification type is DMUS_NOTIFY_ON_SEGMENT, this member can contain one of the following values:

DMUS_NOTIFICATION_SEGABORT

The segment was stopped by DirectMusicPerformance.Stop.

DMUS_NOTIFICATION_SEGALMOSTEND

The segment has reached the end minus the prepare time.

DMUS_NOTIFICATION_SEGEND

The segment has ended.

DMUS_NOTIFICATION_SEGLOOP

The segment has looped.

DMUS_NOTIFICATION_SEGSTART

The segment has started.

If the notification type is DMUS_NOTIFY_ON_COMMAND, this member can contain one of the following values:

DMUS_NOTIFICATION_GROOVE

Groove change.

DMUS_NOTIFICATION_EMBELLISHMENT

Embellishment command (intro, fill, break, or end).

If the notification type is DMUS_NOTIFY_ON_PERFORMANCE, this member can contain one of the following values:

DMUS_NOTIFICATION_MUSICSTARTED

Playback has started.

DMUS_NOTIFICATION_MUSICSTOPPED

Playback has stopped.

If the notification type is DMUS_NOTIFY_ON_MEASUREANDBEAT, this member contains DMUS_NOTIFICATION_MEASUREBEAT. No other subtypes are defined.

If the notification type is DMUS_NOTIFY_ON_CHORD, this member contains DMUS_NOTIFICATION_CHORD. No other subtypes are defined.

lNotificationType

Identifier of the notification type, from the CONST_DMUS_NOTIFICATION_TYPE enumeration.

mtTime

Time stamp of the message, in music time.

See Also

DirectMusicPerformance.AddNotificationType, DirectMusicPerformance.GetNotificationPMSG

DMUS_PORTCAPS

The DMUS_PORTCAPS type returns information about the capabilities of a port. It is passed to the DirectMusicPerformance.GetPortCaps method.

Type DMUS_PORTCAPS

 lClass as Long

 lEffectFlags As Long

 lFlags As Long

 lMaxAudioChannels As Long

 lMaxChannelGroups As Long

 lMaxVoices As Long

 lMemorySize As Long

 lType As Long

End Type

Members

lClass

Class of this port. One of the members of the CONST_DMUS_PC_CLASS enumeration.

lEffectFlags

Flags from the CONST_DMUS_EFFECT_FLAGS enumeration indicating what audio effects are available on the port.

lFlags

Flags describing various capabilities of the port. See CONST_DMUS_PC_FLAGS.

lMaxAudioChannels

Maximum number of audio channels that can be rendered by the port. The value can be –1 if the driver does not support returning this parameter.

lMaxChannelGroups

Maximum number of channel groups supported by this port. A channel group is a set of 16 MIDI channels.

lMaxVoices

Maximum number of voices that can be allocated when this port is opened. The value can be –1 if the driver does not support returning this parameter.

lMemorySize

Amount of memory available to store DLS instruments. If the port is using system memory and the amount is therefore limited only by the available system memory, this field contains DMUS_PC_SYSTEMMEMORY.

lType

Type of this port. See CONST_DMUS_PORT_TYPE.

DMUS_TIMESIGNATURE

The DMUS_TIMESIGNATURE type contains information about a time signature. It is passed to the DirectMusicPerformance.GetTimeSig and DirectMusicStyle.GetTimeSignature methods, and is also used in messages sent by the DirectMusicPerformance.SendTimeSigPMSG method.

Type DMUS_TIMESIGNATURE

 beat As Byte

 beatsPerMeasure As Byte

 gridsPerBeat As Integer

 mtTime As Long

End Type

Members

beat

Bottom of time signature.

beatsPerMeasure

Top of time signature.

gridsPerBeat

Grids (subdivisions) per beat. This value determines the timing resolution for certain music events—for example, segments cued with the DMUS_SEGF_GRID flag (see CONST_DMUS_SEGF_FLAGS.).

mtTime

Music time at which this time signature occurs.

Enumerations

DirectMusic for Visual Basic uses enumerations to group constants to take advantage of the statement completion feature of the Microsoft® Visual Studio® development environment.

This section contains reference information for the following enumerations:

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DMUS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DMUS_COMMANDT_TYPES

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DMUS_COMPOSEF_FLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DMUS_CURVE_FLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DMUS_CURVES

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DMUS_CURVET

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DMUS_EFFECT_FLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DMUS_NOTEF_FLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DMUS_NOTIFICATION_SUBTYPE

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DMUS_NOTIFICATION_TYPE

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DMUS_PC_CLASS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DMUS_PC_FLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DMUS_PLAYMODE_FLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DMUS_PMSGF_FLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DMUS_PORT_TYPE

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DMUS_SEGF_FLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DMUS_SHAPET_TYPES

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DMUSERR

CONST_DMUS

The CONST_DMUS enumeration contains miscellaneous constants used in DirectMusic.

Enum CONST_DMUS

 DMUS_MAXSUBCHORD = 8

 DMUS_TEMPO_MAX = 350 (&H15E)

 DMUS_TEMPO_MIN = 10

End Enum

DMUS_MAXSUBCHORD

Maximum number of subchords allowed in a chord.

DMUS_TEMPO_MAX

Maximum tempo, in beats per minute.

DMUS_TEMPO_MIN

Minimum tempo, in beats per minute.

CONST_DMUS_COMMANDT_TYPES

The members of the CONST_DMUS_COMMANDT_TYPES enumeration represent commands that establish musical patterns. They are used in the lCommand parameter of the DirectMusicComposer.AutoTransition and DirectMusicComposer.ComposeTransition methods and are returned by the DirectMusicPerformance.GetCommand method.

Type CONST_DMUS_COMMANDT_TYPES

 DMUS_COMMANDT_BREAK = 3

 DMUS_COMMANDT_END = 4

 DMUS_COMMANDT_ENDANDINTRO = 5

 DMUS_COMMANDT_FILL = 1

 DMUS_COMMANDT_GROOVE = 0

 DMUS_COMMANDT_INTRO = 2

End Enum

DMUS_COMMANDT_BREAK

The command is a break.

DMUS_COMMANDT_END

The command is an ending.

DMUS_COMMANDT_ENDANDINTRO

The command is an ending and an intro.

DMUS_COMMANDT_FILL

The command is a fill.

DMUS_COMMANDT_GROOVE

The command is a groove command.

DMUS_COMMANDT_INTRO

The command is an intro.

CONST_DMUS_COMPOSEF_FLAGS

The members of the CONST_DMUS_COMPOSEF_FLAGS enumeration are used in the lFlags parameter of the DirectMusicComposer.AutoTransition and DirectMusicComposer.ComposeTransition methods.

Enum CONST_DMUS_COMPOSEF_FLAGS

 DMUS_COMPOSEF_AFTERPREPARETIME = 64 (&H40)

 DMUS_COMPOSEF_ALIGN = 1

 DMUS_COMPOSEF_BEAT = 16 (&H10)

 DMUS_COMPOSEF_GRID = 8

 DMUS_COMPOSEF_IMMEDIATE = 4

 DMUS_COMPOSEF_LONG = 8192 (&H2000)

 DMUS_COMPOSEF_MEASURE = 32 (&H20)

 DMUS_COMPOSEF_MODULATE = 4096 (&H1000)

 DMUS_COMPOSEF_NONE = 0

 DMUS_COMPOSEF_OVERLAP = 2

End Enum

DMUS_COMPOSEF_AFTERPREPARETIME

AutoTransition only. Use the DMUS_SEGF_AFTERPREPARETIME flag (see CONST_DMUS_SEGF_FLAGS) when cuing the transition.

DMUS_COMPOSEF_ALIGN

Align transition to the time signature of the currently playing segment. Not currently implemented.

DMUS_COMPOSEF_BEAT

AutoTransition only. Start transition on a beat boundary.

DMUS_COMPOSEF_GRID

AutoTransition only. Start transition on a grid boundary.

DMUS_COMPOSEF_IMMEDIATE

AutoTransition only. Start transition on a music or clock time boundary.

DMUS_COMPOSEF_MEASURE

AutoTransition only. Start transition on a measure boundary.

DMUS_COMPOSEF_LONG

Composes a long transition. If this flag is not set, the length of the transition is at most one measure unless the lCommand parameter of ComposeTransition or AutoTransition specifies an ending and the style contains an ending of greater than one measure. If this flag is set, the length of the transition increases by one measure.

DMUS_COMPOSEF_MODULATE

Compose a transition that modulates smoothly from fromSeg to toSeg, using the chord of toSeg.

DMUS_COMPOSEF_NONE

No flags. By default, the transition starts on a measure boundary.

DMUS_COMPOSEF_OVERLAP

Overlap the transition into toSeg. Not currently implemented.

CONST_DMUS_CURVE_FLAGS

The CONST_DMUS_CURVE_FLAGS enumeration contains a single constant used in the DMUS_CURVE_PMSG type.

Enum CONST_DMUS_CURVE_FLAGS

 DMUS_CURVE_RESET = 1

End Enum

DMUS_CURVE_RESET

The reset value must be set when the time is reached or an invalidation occurs because of a transition.

CONST_DMUS_CURVES

Members of the CONST_DMUS_CURVES enumeration are used to define the shape of a curve in the DMUS_CURVE_PMSG type.

Enum CONST_DMUS_CURVES

 DMUS_CURVES_EXP = 2

 DMUS_CURVES_INSTANT = 1

 DMUS_CURVES_LINEAR = 0

 DMUS_CURVES_LOG = 3

 DMUS_CURVES_SINE = 4

End Enum

DMUS_CURVES_EXP

Exponential curve shape.

DMUS_CURVES_INSTANT

Instant curve shape (beginning and end of curve happen at essentially the same time).

DMUS_CURVES_LINEAR

Linear curve shape.

DMUS_CURVES_LOG

Logarithmic curve shape.

DMUS_CURVES_SINE

Sine curve shape.

CONST_DMUS_CURVET

Members of the CONST_DMUS_CURVET enumeration are used to describe the type of curve in the DMUS_CURVE_PMSG type.

Enum CONST_DMUS_CURVET

 DMUS_CURVET_CCCURVE = 4

 DMUS_CURVET_MATCURVE = 5

 DMUS_CURVET_PATCURVE = 6

 DMUS_CURVET_PBCURVE = 3

End Enum

DMUS_CURVET_CCCURVE

Continuous controller curve (MIDI Control Change channel voice message; status byte &HBn, where n is the channel number).

DMUS_CURVET_MATCURVE

Monophonic aftertouch curve (MIDI Channel Pressure channel voice message; status byte &HDn).

DMUS_CURVET_PATCURVE

Polyphonic aftertouch curve (MIDI Poly Key Pressure channel voice message, status byte &HDn).

DMUS_CURVET_PBCURVE

Pitch-bend curve (MIDI Pitch Bend channel voice message; status byte &HEn).

CONST_DMUS_EFFECT_FLAGS

Members of the CONST_DMUS_EFFECT_FLAGS enumeration are used in the DMUS_PORTCAPS type to specify which effects are supported by a port.

Enum CONST_DMUS_EFFECT_FLAGS

 DMUS_EFFECT_CHORUS = 2

 DMUS_EFFECT_NONE = 0

 DMUS_EFFECT_REVERB = 1

End Enum

DMUS_EFFECT_CHORUS

The port supports chorus.

DMUS_EFFECT_NONE

The port does not support any effects.

DMUS_EFFECT_REVERB

The port supports reverb.

CONST_DMUS_NOTEF_FLAGS

The CONST_DMUS_NOTEF_FLAGS enumeration contains a single constant used in note messages.

Enum CONST_DMUS_NOTEF_FLAGS

 DMUS_NOTEF_NOTEON = 1

End Enum

DMUS_NOTEF_NOTEON

See the Remarks for DMUS_NOTE_PMSG.

CONST_DMUS_NOTIFICATION_SUBTYPE

The members of the CONST_DMUS_NOTIFICATION_SUBTYPE enumeration provide information about the musical events reported in notification messages.

Enum CONST_DMUS_NOTIFICATION_SUBTYPE

 DMUS_NOTIFICATION_CHORD = 0

 DMUS_NOTIFICATION_EMBELLISHMENT = 1

 DMUS_NOTIFICATION_GROOVE = 0

 DMUS_NOTIFICATION_MEASUREBEAT = 0

 DMUS_NOTIFICATION_MUSICSTARTED = 0

 DMUS_NOTIFICATION_MUSICSTOPPED = 1

 DMUS_NOTIFICATION_SEGABORT = 4

 DMUS_NOTIFICATION_SEGALMOSTEND = 2

 DMUS_NOTIFICATION_SEGEND = 1

 DMUS_NOTIFICATION_SEGLOOP = 3

 DMUS_NOTIFICATION_SEGSTART = 0

End Enum

For an explanation of the values, see DMUS_NOTIFICATION_PMSG.

CONST_DMUS_NOTIFICATION_TYPE

The members of the CONST_DMUS_NOTIFICATION_TYPE enumeration identify a notification type. They are passed to the DirectMusicPerformance.AddNotificationType and DirectMusicPerformance.RemoveNotificationType methods and identify the notification type in messages retrieved by DirectMusicPerformance.GetNotificationPMSG.

Enum CONST_DMUS_NOTIFICATION_TYPE

 DMUS_NOTIFY_ON_CHORD = 1

 DMUS_NOTIFY_ON_COMMAND = 2

 DMUS_NOTIFY_ON_MEASUREANDBEAT = 3

 DMUS_NOTIFY_ON_PERFORMANCE = 4

 DMUS_NOTIFY_ON_SEGMENT = 5

End Enum

DMUS_NOTIFY_ON_CHORD

Chord change.

DMUS_NOTIFY_ON_COMMAND

Command event.

DMUS_NOTIFY_ON_MEASUREANDBEAT

Measure and beat event.

DMUS_NOTIFY_ON_PERFORMANCE

Performance event. When this value is found in the lNotificationType member of a DMUS_NOTIFICATION_PMSG type, the event is further defined in the lNotificationOption member.

DMUS_NOTIFY_ON_SEGMENT

Segment event. When this value is found in the lNotificationType of a DMUS_NOTIFICATION_PMSG type, the event is further defined in the lNotificationOption member.

See Also

DMUS_NOTIFICATION_PMSG

CONST_DMUS_PC_CLASS

Members of the CONST_DMUS_PC_CLASS enumeration are used in the DMUS_PORTCAPS type to specify the class of the port.

Enum CONST_DMUS_PC_CLASS

 DMUS_PC_INPUTCLASS = 0

 DMUS_PC_OUTPUTCLASS = 1

End Enum

DMUS_PC_INPUTCLASS

Input port.

DMUS_PC_OUTPUTCLASS

Output port.

CONST_DMUS_PC_FLAGS

Members of the CONST_DMUS_PC_FLAGS enumeration are used in the DMUS_PORTCAPS type to describe miscellaneous capabilities of the port.

Enum CONST_DMUS_PC_FLAGS

 DMUS_PC_DIRECTSOUND = 128 (&H80)

 DMUS_PC_DLS = 1

 DMUS_PC_EXTERNAL = 2

 DMUS_PC_GMINHARDWARE = 16 (&H10)

 DMUS_PC_GSINHARDWARE = 32 (&H20)

 DMUS_PC_MEMORYSIZEFIXED = 8

 DMUS_PC_SHAREABLE = 256 (&H100)

 DMUS_PC_SOFTWARESYNTH = 4

 DMUS_PC_SYSTEMMEMORY = 2147483647 (&H7FFFFFFF)

 DMUS_PC_XGINHARDWARE = 64 (&H40)

End Enum

DMUS_PC_DIRECTSOUND

The port supports streaming wave data to DirectSound.

DMUS_PC_DLS

The port supports DLS Level 1 sample collections.

DMUS_PC_EXTERNAL

This port connects to devices outside of the host—for example, devices connected over an external MIDI port such as the MPU-401.

DMUS_PC_GMINHARDWARE

The synthesizer has its own GM instrument set, so GM instruments do not need to be downloaded.

DMUS_PC_GSINHARDWARE

This port contains the Roland GS sound set in hardware.

DMUS_PC_MEMORYSIZEFIXED

Memory available for DLS instruments cannot be adjusted.

DMUS_PC_SHAREABLE

More than one port can be created that uses the same range of channel groups on the device. Unless this bit is set, the port can be opened only in exclusive mode. In exclusive mode, an attempt to create a port fails unless free channel groups are available to assign to the create request.

DMUS_PC_SOFTWARESYNTH

The port is a software synthesizer.

DMUS_PC_SYSTEMMEMORY

The port is using system memory, and the amount is therefore limited only by the available system memory. This constant is used in DMUS_PORTCAPS.lMemorysize, not lFlags.

DMUS_PC_XGINHARDWARE

The port contains the Yamaha XG extensions in hardware.

CONST_DMUS_PLAYMODE_FLAGS

The members of the CONST_DMUS_PLAYMODE_FLAGS enumeration are used to set the play mode in a DMUS_NOTE_PMSG message type. The play mode determines how the note is transposed to the current chord before it is converted to a MIDI note.

Enum CONST_DMUS_PLAYMODE_FLAGS

 DMUS_PLAYMODE_ALWAYSPLAY = 14

 DMUS_PLAYMODE_CHORD_INTERVALS = 8

 DMUS_PLAYMODE_CHORD_ROOT = 2

 DMUS_PLAYMODE_FIXED = 0

 DMUS_PLAYMODE_FIXEDTOCHORD = 2

 DMUS_PLAYMODE_FIXEDTOKEY = 1

 DMUS_PLAYMODE_KEY_ROOT = 1

 DMUS_PLAYMODE_MELODIC = 6

 DMUS_PLAYMODE_NONE = 16 (&H10)

 DMUS_PLAYMODE_NORMALCHORD = 10

 DMUS_PLAYMODE_PEDALPOINT = 5

 DMUS_PLAYMODE_SCALE_INTERVALS = 4

End Enum

The following members are the basic flags:

DMUS_PLAYMODE_CHORD_INTERVALS

Use chord intervals from chord pattern.

DMUS_PLAYMODE_CHORD_ROOT

Transpose over the chord root.

DMUS_PLAYMODE_KEY_ROOT

Transpose over the key root.

DMUS_PLAYMODE_NONE

No mode. Indicates that the parent part's mode should be used.

DMUS_PLAYMODE_SCALE_INTERVALS

Use scale intervals from scale pattern.

The following members represent combinations of the basic flags:

DMUS_PLAYMODE_ALWAYSPLAY

Combination of DMUS_PLAYMODE_SCALE_INTERVALS, DMUS_PLAYMODE_CHORD_INTERVALS, and DMUS_PLAYMODE_CHORD_ROOT. If it is desirable to play a note that is above the top of the chord, this mode finds a position for the note by using intervals from the scale. Essentially, this mode is a combination of the normal and melodic playback modes, in which a failure in normal mode causes a second try in melodic mode.

DMUS_PLAYMODE_FIXED

Interpret the music value as a MIDI value. This is defined as 0 and signifies the absence of other flags. This flag is used for drums, sound effects, and sequenced notes that should not be transposed by the chord or scale.

DMUS_PLAYMODE_FIXEDTOCHORD

Same as DMUS_PLAYMODE_CHORD_ROOT. The music value is a fixed MIDI value, but it is transposed over the chord root.

DMUS_PLAYMODE_FIXEDTOKEY

Same as DMUS_PLAYMODE_KEY_ROOT. The music value is a fixed MIDI value, but it is transposed over the key root.

DMUS_PLAYMODE_MELODIC

Combination of DMUS_PLAYMODE_CHORD_ROOT and DMUS_PLAYMODE_SCALE_INTERVALS. The chord root is used, but the notes track only the intervals in the scale. The key root and chord intervals are ignored. This is useful for melodic lines that play relative to the chord root.

DMUS_PLAYMODE_NORMALCHORD

Combination of DMUS_PLAYMODE_CHORD_ROOT and DMUS_PLAYMODE_CHORD_INTERVALS. This is the prevalent playback mode. The notes track the intervals in the chord, which is based on the chord root. If there is a scale component to the music value, the additional intervals are pulled from the scale and added. If the chord does not have an interval to match the chord component of the music value, the note is silent.

DMUS_PLAYMODE_PEDALPOINT

Combination of DMUS_PLAYMODE_KEY_ROOT and DMUS_PLAYMODE_SCALE_INTERVALS. The key root is used, and the notes track only the intervals in the scale. The chord root and intervals are ignored. This is useful for melodic lines that play relative to the key root.

CONST_DMUS_PMSGF_FLAGS

The members of the CONST_DMUS_PMSGF_FLAGS enumeration are used in the various message-sending methods of DirectMusicPerformance to specify when a message should be delivered to tools.

Enum CONST_DMUS_PMSGF_FLAGS

 DMUS_PMSGF_MUSICTIME = 2

 DMUS_PMSGF_REFTIME = 1

 DMUS_PMSGF_TOOL_ATTIME = 16 (&H10)

 DMUS_PMSGF_TOOL_FLUSH = 32 (&H20)

 DMUS_PMSGF_TOOL_IMMEDIATE = 4

 DMUS_PMSGF_TOOL_QUEUE = 8

End Enum

DMUS_PMSGF_REFTIME

The time stamp is in clock time.

DMUS_PMSGF_MUSICTIME

The time stamp is in music time.

DMUS_PMSGF_TOOL_IMMEDIATE

DMUS_PMSGF_TOOL_QUEUE

DMUS_PMSGF_TOOL_ATTIME

DMUS_PMSGF_TOOL_FLUSH

See Remarks.

Remarks

Because DirectX for Visual Basic does not support DirectMusic tools, only DMUS_PMSGF_REFTIME and DMUS_PMSGF_MUSICTIME are currently valid. The time of messages is in music time by default, so DMUS_PMSGF_REFTIME is the only flag that applications normally use.

CONST_DMUS_PORT_TYPE

The CONST_DMUS_PORT_TYPE enumeration is used in the DMUS_PORTCAPS type to specify the driver model of the port.

Enum CONST_DMUS_PORT_TYPE

 DMUS_PORT_KERNEL_MODE = 2

 DMUS_PORT_USER_MODE_SYNTH = 1

 DMUS_PORT_WINMM_DRIVER = 0

End Enum

DMUS_PORT_WINMM_DRIVER

Windows multimedia driver.

DMUS_PORT_USER_MODE_SYNTH

User-mode synthesizer.

DMUS_PORT_KERNEL_MODE

Windows Driver Model (WDM) driver.

CONST_DMUS_SEGF_FLAGS

The members of the CONST_DMUS_SEGF_FLAGS enumeration are used in various methods of the DirectMusicPerformance object to control the timing and other aspects of actions on a segment.

Enum CONST_DMUS_SEGF_FLAGS

 DMUS_SEGF_AFTERPREPARETIME = 1024 (&H400)

 DMUS_SEGF_BEAT = 4096 (&H1000)

 DMUS_SEGF_CONTROL = 512 (&H200)

 DMUS_SEGF_DEFAULT = 16384 (&H4000)

 DMUS_SEGF_GRID = 2048 (&H800)

 DMUS_SEGF_MEASURE = 8192 (&H2000)

 DMUS_SEGF_NOINVALIDATE = 32768 (&H8000)

 DMUS_SEGF_QUEUE = 256 (&H100)

 DMUS_SEGF_REFTIME = 64 (&H40)

 DMUS_SEGF_SECONDARY = 128 (&H80)

End Enum

DMUS_SEGF_AFTERPREPARETIME

Play after the prepare time. (See DirectMusicPerformance.GetPrepareTime.)

DMUS_SEGF_BEAT

Play on a beat boundary.

DMUS_SEGF_CONTROL

Play as a control segment (secondary segments only). See Remarks.

DMUS_SEGF_DEFAULT

Use segment's default boundary.

DMUS_SEGF_GRID

Play on a grid boundary.

DMUS_SEGF_MEASURE

Play on a measure boundary.

DMUS_SEGF_NOINVALIDATE

Setting this flag in DirectMusicPerformance.PlaySegment for a primary or control segment causes the new segment not to cause an invalidation. Without this flag, an invalidation occurs, cutting off and resetting any currently playing curve or note. This flag should be combined with DMUS_SEGF_AFTERPREPARETIME so that notes in the new segment do not play over notes played by the old segment.

DMUS_SEGF_QUEUE

Put at the end of the primary segment queue (primary segment only).

DMUS_SEGF_REFTIME

Time parameter is in clock time.

DMUS_SEGF_SECONDARY

Secondary segment.

Remarks

Normally, the primary segment is the control segment. The DMUS_SEGF_CONTROL flag can be used to make a secondary segment the control segment. There should be only one control segment at a time. (It is possible to create multiple control segments, but there is no guarantee of which one will actually be used by DirectMusic as the control segment.) By default, only the control segment sends tempo messages.

If the DMUS_SEGF_CONTROL flag is set, DMUS_SEGF_SECONDARY is assumed.

See Also

DirectMusicPerformance.GetResolvedTime, DirectMusicPerformance.Invalidate, DirectMusicPerformance.PlaySegment, DirectMusicPerformance.Stop

CONST_DMUS_SHAPET_TYPES

The members of the CONST_DMUS_SHAPET_TYPES enumeration are used in the wShape parameter of the DirectMusicComposer.ComposeSegmentFromShape and DirectMusicComposer.ComposeTemplateFromShape methods to specify the desired pattern of the groove level.

Enum CONST_DMUS_SHAPET_TYPES

 DMUS_SHAPET_FALLING = 0

 DMUS_SHAPET_LEVEL = 1

 DMUS_SHAPET_LOOPABLE = 2

 DMUS_SHAPET_LOUD = 3

 DMUS_SHAPET_PEAKING = 5

 DMUS_SHAPET_QUIET = 4

 DMUS_SHAPET_RANDOM = 6

 DMUS_SHAPET_RISING = 7

 DMUS_SHAPET_SONG = 8

End Enum

DMUS_SHAPET_FALLING

The groove level falls.

DMUS_SHAPET_LEVEL

The groove level remains even.

DMUS_SHAPET_LOOPABLE

The segment is arranged to loop back to the beginning.

DMUS_SHAPET_LOUD

The groove level is high.

DMUS_SHAPET_PEAKING

The groove level rises to a peak, then falls.

DMUS_SHAPET_QUIET

The groove level is low.

DMUS_SHAPET_RANDOM

The groove level is random.

DMUS_SHAPET_RISING

The groove level rises.

DMUS_SHAPET_SONG

The segment is in a song form. Several phrases of 6 to 8 bars are composed and put together to give a verse-chorus effect, with variations in groove level.

CONST_DMUSERR

The CONST_DMUSERR enumeration represents DirectMusic error codes.

Error Codes

This section provides a brief explanation of the various error codes that can be returned by DirectMusic methods. For a list of the specific codes that each method can return, see the individual method descriptions. These lists are not necessarily comprehensive.

DMUS_E_ALL_TRACKS_FAILED

The segment object was unable to load all tracks from the IStream object data, perhaps because of errors in the stream or because the tracks are incorrectly registered on the client.

DMUS_E_ALREADY_ACTIVATED

The port has been activated, and the parameter cannot be changed.

DMUS_E_ALREADY_DOWNLOADED

Buffer has already been downloaded.

DMUS_E_ALREADY_EXISTS

The tool is already contained in the graph. You must create a new instance.

DMUS_E_ALREADY_INITED

The object has already been initialized.

DMUS_E_ALREADY_LOADED

The DLS collection is already open.

DMUS_E_ALREADY_SENT

The message has already been sent.

DMUS_E_ALREADYCLOSED

The port is not open.

DMUS_E_ALREADYOPEN

The port was already opened.

DMUS_E_BADARTICULATION

Invalid articulation chunk in DLS collection.

DMUS_E_BADINSTRUMENT

Invalid instrument chunk in DLS collection.

DMUS_E_BADOFFSETTABLE

Offset table has errors.

DMUS_E_BADWAVE

Corrupt wave header.

DMUS_E_BADWAVELINK

Wave-link chunk in DLS collection points to an invalid wave.

DMUS_E_BUFFER_EMPTY

There is no data in the buffer.

DMUS_E_BUFFER_FULL

The specified number of bytes exceeds the maximum buffer size.

DMUS_E_BUFFERNOTAVAILABLE

The buffer is not available for download.

DMUS_E_BUFFERNOTSET

No buffer was prepared for the data.

DMUS_E_CANNOT_OPEN_PORT

The default system port could not be opened.

DMUS_E_DEVICE_IN_USE

Device is already in use (possibly by a non-DirectMusic client) and cannot be opened again.

DMUS_E_DMUSIC_RELEASED

Operation cannot be performed because the final instance of the DirectMusic object was released. Ports cannot be used after final release of the DirectMusic object.

DMUS_E_DRIVER_FAILED

An unexpected error was returned from a device driver, indicating possible failure of the driver or hardware.

DMUS_E_DSOUND_ALREADY_SET

A DirectSound object has already been set.

DMUS_E_DSOUND_NOT_SET

Port could not be created because no DirectSound object has been specified.

DMUS_E_FAIL

The method did not succeed.

DMUS_E_GET_UNSUPPORTED

Getting the parameter is not supported.

DMUS_E_INSUFFICIENTBUFFER

Buffer is not large enough for the requested operation.

DMUS_E_INVALIDARG

Invalid argument.

DMUS_E_INVALID_BAND

File does not contain a valid band.

DMUS_E_INVALID_DOWNLOADID

Invalid download identifier was used in the process of creating a download buffer.

DMUS_E_INVALID_EVENT

The event either is not a valid MIDI message or makes use of running status, and cannot be packed into the buffer.

DMUS_E_INVALIDBUFFER

Invalid DirectSound buffer was handed to port.

DMUS_E_INVALIDFILE

Not a valid file.

DMUS_E_INVALIDPATCH

No instrument in the collection matches the patch number.

DMUS_E_INVALIDPOS

Error reading wave data from a DLS collection. Indicates a bad file.

DMUS_E_LOADER_BADPATH

The file path is invalid.

DMUS_E_LOADER_FAILEDCREATE

Object could not be found or created.

DMUS_E_LOADER_FAILEDOPEN

File open failed because the file does not exist or is locked.

DMUS_E_LOADER_FORMATNOTSUPPORTED

The object cannot be loaded because the data format is not supported.

DMUS_E_LOADER_OBJECTNOTFOUND

The object was not found.

DMUS_E_NO_MASTER_CLOCK

There is no master clock in the performance. Be sure to call the DirectMusicPerformance.Init method.

DMUS_E_NOINTERFACE

No object interface is available.

DMUS_E_NOT_DOWNLOADED_TO_PORT

The object cannot be unloaded because it is not present on the port.

DMUS_E_NOT_FOUND

The requested item is not contained by the object.

DMUS_E_NOT_INIT

A required object is not initialized or failed to initialize.

DMUS_E_NOTADLSCOL

The object being loaded is not a valid DLS collection.

DMUS_E_NOTIMPL

The method is not implemented. This value can be returned if a driver does not support a feature necessary for the operation.

DMUS_E_OUT_OF_RANGE

The requested time is outside the range of the segment.

DMUS_E_OUTOFMEMORY

Insufficient memory to complete task.

DMUS_E_PORT_NOT_RENDER

Not an output port.

DMUS_E_PORTS_OPEN

The requested operation cannot be performed while there are instantiated ports in any process in the system.

DMUS_E_SEGMENT_INIT_FAILED

Segment initialization failed, probably because of a critical memory situation.

DMUS_E_SET_UNSUPPORTED

Setting the parameter is not supported.

DMUS_E_TIME_PAST

The time requested is in the past.

DMUS_E_TRACK_NOT_FOUND

There is no track of the requested type.

DMUS_E_TYPE_DISABLED

Parameter is unavailable because it has been disabled.

DMUS_E_TYPE_UNSUPPORTED

Parameter is unsupported on this track.

DMUS_E_UNKNOWN_PROPERTY

The property set or item is not implemented by this port.

DMUS_E_UNSUPPORTED_STREAM

The stream does not contain data supported by the loading object.

DirectMusic Tutorials

This section contains tutorials providing step-by-step instructions for implementing basic Microsoft® DirectMusic® functionality.

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusic C/C++ Tutorials

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusic Visual Basic Tutorials

DirectMusic C/C++ Tutorials

[Visual Basic]

This section pertains only to applications written in C++. See DirectMusic Visual Basic Tutorials.

[C++]

This section contains the following tutorials showing how to implement DirectMusic in a C or C++ application:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Tutorial 1: Playing a MIDI File

�SYMBOL 183 \f "Symbol" \s 11 \h �	Tutorial 2: Using Tools

�SYMBOL 183 \f "Symbol" \s 11 \h �	Tutorial 3: Using Compositions

Tutorial 1: Playing a MIDI File

[Visual Basic]

This tutorial pertains only to applications written in C++. See DirectMusic Visual Basic Tutorials.

[C++]

This tutorial is a guide to setting up the simplest possible DirectMusic application, one that just plays a primary segment. In this example the segment represents a MIDI file, but the process of loading and playing the data would be exactly the same if the source were a segment authored in a tool such as DirectMusic Producer.

The tutorial is divided into the following steps:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 1: Initialize COM

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 2: Create the Performance

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 3: Create the Loader

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 4: Load the MIDI File

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 5: Play the MIDI File

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 6: Shut Down DirectMusic

Step 1: Initialize COM

[Visual Basic]

This tutorial pertains only to applications written in C++. See DirectMusic Visual Basic Tutorials.

[C++]

Before making any calls to DirectMusic, you have to initialize COM as follows:

if (FAILED(CoInitialize(NULL)))

{

 // Terminate the application.

} // Else full speed ahead!

Next: Step 2: Create the Performance

Step 2: Create the Performance

[Visual Basic]

This tutorial pertains only to applications written in C++. See DirectMusic Visual Basic Tutorials.

[C++]

The central object of any DirectMusic application is the performance, which manages the playback of segments. It is created by using the COM CoCreateInstance function, as in the following sample function:

IDirectMusicPerformance* CreatePerformance(void)

{

 IDirectMusicPerformance* pPerf;

 if (FAILED(CoCreateInstance(

 CLSID_DirectMusicPerformance,

 NULL,

 CLSCTX_INPROC,

 IID_IDirectMusicPerformance2,

 (void**)&pPerf

)))

 {

 pPerf = NULL;

 }

 return pPerf;

}

You can use this function to initialize a global performance pointer that will be used in later steps:

IDirectMusicPerformance* g_pPerf = CreatePerformance();

if (g_pPerf == NULL)

{

 // Failure -- performance not created

}

Once the performance has been created, you need to initialize it by calling the IDirectMusicPerformance::Init method. The method creates a DirectMusic object to manage the default port. Because you don't need to access the IDirectMusic methods directly, you don't need to retrieve a pointer to it, so you pass NULL as the first parameter to Init. You also pass NULL as the IDirectSound pointer and as the window handle, so that DirectMusic will create a DirectSound object and pass the current focus window to it when setting the cooperative level.

if (FAILED(g_pPerf->Init(NULL, NULL, NULL)))

{

 // Failure -- performance not initialized

};

Now you need to add a port to the performance. Calling the IDirectMusicPerformance::AddPort method with a NULL parameter automatically adds the default port (normally the Microsoft Software Synthesizer) with one channel group, and assigns PChannels 0-15 to the group's MIDI channels.

if (FAILED(pPerf->AddPort(NULL)))

{

 // Failure -- port not initialized

}

Next: Step 3: Create the Loader

Step 3: Create the Loader

[Visual Basic]

This tutorial pertains only to applications written in C++. See DirectMusic Visual Basic Tutorials.

[C++]

In order to load any object from disk, you first need to create the DirectMusicLoader object. This is done just as for any other COM object, as shown in the following sample function:

IDirectMusicLoader* CreateLoader(void)

{

 IDirectMusicLoader* pLoader;

 if (FAILED(CoCreateInstance(

 CLSID_DirectMusicLoader,

 NULL,

 CLSCTX_INPROC,

 IID_IDirectMusicLoader,

 (void**)&pLoader

)))

 {

 pLoader = NULL;

 }

 return pLoader;

}

You'll use this function to initialize a global variable:

IDirectMusicLoader* g_pLoader = CreateLoader();

if (g_pLoader == NULL)

{

 // Failure -- loader not created

}

Next: Step 4: Load the MIDI File

Step 4: Load the MIDI File

[Visual Basic]

This tutorial pertains only to applications written in C++. See DirectMusic Visual Basic Tutorials.

[C++]

In this step you will implement a function, LoadMIDISegment, that takes a pointer to the IDirectMusicLoader created in the last step and uses it to create a segment object encapsulating the data from a MIDI file.

IDirectMusicSegment* LoadMIDISegment(IDirectMusicLoader* pLoader,

 WCHAR wszMidiFileName)

{

 DMUS_OBJECTDESC ObjDesc;

 IDirectMusicSegment* pSegment = NULL;

Let's assume that all the MIDI files you want to play are in the current working directory. You need to let the loader know this, by setting the search directory. (If the search directory is not being changed elsewhere, in order to load objects from other directories, this actually has to be done only once, not each time you load a file.)

 char szDir[_MAX_PATH];

 WCHAR wszDir[_MAX_PATH];

 if(_getcwd(szDir, _MAX_PATH) == NULL)

 {

 return NULL;

 }

/*

Convert from multibyte format to Unicode using the following macro:

#define MULTI_TO_WIDE(x,y) MultiByteToWideChar(CP_ACP, \

 MB_PRECOMPOSED, y, -1, x, _MAX_PATH);

*/

 MULTI_TO_WIDE(wszDir, szDir);

 HRESULT hr = pLoader->SetSearchDirectory(GUID_DirectMusicAllTypes,

 wszDir, FALSE);

 if (FAILED(hr))

 {

 return NULL;

 }

You then describe the object to be loaded, in a DMUS_OBJECTDESC structure:

 ObjDesc.guidClass = CLSID_DirectMusicSegment;

 ObjDesc.dwSize = sizeof(DMUS_OBJECTDESC);

 wcscpy(ObjDesc.wszFileName, wszMidiFileName);

 ObjDesc.dwValidData = DMUS_OBJ_CLASS | DMUS_OBJ_FILENAME;

Now load the object and query it for the IDirectMusicSegment interface. This is done in a single call to IDirectMusicLoader::GetObject. Note that loading the object also initializes the tracks and does everything else necessary to get the MIDI data ready for playback.

 pLoader->GetObject(&ObjDesc,

 IID_IDirectMusicSegment2, (void**) &pSegment);

To ensure that the segment plays as a standard MIDI file, you now need to set a parameter on the band track. Use the IDirectMusicSegment::SetParam method and let DirectMusic find the track, by passing -1 (or 0xFFFFFFFF) in the dwGroupBits method parameter.

 g_pMIDISeg->SetParam(GUID_StandardMIDIFile,

 -1, 0, 0, (void*)g_pPerf);

This step is necessary because DirectMusic handles program changes and bank selects differently for standard MIDI files than it does for MIDI content authored specifically for DirectMusic. The GUID_StandardMIDIFile parameter must be set before the instruments are downloaded.

The next step is to download the instruments. This is necessary even for playing a simple MIDI file, because the default software synthesizer needs the DLS data for the General MIDI instrument set. If you skip this step, the MIDI file will play silently. Again, you call SetParam on the segment, this time specifying the GUID_Download parameter:

 g_pMIDISeg->SetParam(GUID_Download, -1, 0, 0, (void*)g_pPerf);

Note that there's no harm in requesting the download even though this might already have been done in a previous call to the LoadMIDISegment function. A redundant request is simply ignored. Eventually you have to unload the instruments, but that can wait until you're ready to shut down DirectMusic.

The function now returns a pointer to the segment, which is ready to be played.

 return pSegment;

} // End of LoadSegment()

Before loading a new segment, clean up any existing one. Then pass a file name to the LoadMIDISegment function.

if (g_pMIDIseg)

{

 g_pMIDIseg->Release();

 g_pMIDIseg = NULL;

}

if (g_pLoader)

{

 IDirectMusicSegment* g_pMIDIseg = LoadMIDISegment(g_pLoader,

 L"tune.mid");

}

Next: Step 5: Play the MIDI File

Step 5: Play the MIDI File

[Visual Basic]

This tutorial pertains only to applications written in C++. See DirectMusic Visual Basic Tutorials.

[C++]

Now that all of the preparatory work has been done, playing the music is simplicity itself.

IDirectMusicSegmentState* g_pSegState;

if (g_pMIdiSEG)

{

 g_pPerf->PlaySegment(g_pMIDISeg, 0, 0, &g_pSegState);

}

The call to IDirectMusicPerformance::PlaySegment takes the following parameters:

�SYMBOL 183 \f "Symbol" \s 11 \h �	The segment you created in the previous step.

�SYMBOL 183 \f "Symbol" \s 11 \h �	A set of timing flags and a start time (not needed here because you simply want the segment to play as soon as possible).

�SYMBOL 183 \f "Symbol" \s 11 \h �	The address of a pointer to a segment state object. You can use the returned pointer in order to retrieve information about the segment. This parameter can be NULL if you won't be needing the segment state.

If you want the file to be played more than once, before calling PlaySegment you must call the IDirectMusicSegment::SetRepeats method.

If you want to stop the music before it has played to the end or finished its repeats, you do so by using the IDirectMusicPerformance::Stop method. The simplest way to use this method is simply to request that all music currently playing or cued to play be stopped immediately:

g_pPerf->Stop(NULL, NULL, 0, 0)

Alternatively, you can supply a pointer to the current segment or segment state in order to stop playback of just one segment, or one instance of that segment.

Next: Step 6: Shut Down DirectMusic

Step 6: Shut Down DirectMusic

[Visual Basic]

This tutorial pertains only to applications written in C++. See DirectMusic Visual Basic Tutorials.

[C++]

Before exiting, the program must unload the instruments, release all the objects that have been created, and dereference COM (remember, every call to CoInitialize must have a matching call to CoUninitialize).

The following function performs the necessary cleanup:

HRESULT FreeDirectMusic()

{

 // If there is any music playing, stop it. This is

 // not really necessary, because the music will stop when

 // the instruments are unloaded or the performance is

 // closed down.

 g_pPerf->Stop(NULL, NULL, 0, 0);

 // Unload instruments – this will cause silence.

 // CloseDown unloads all instruments, so this call is also not

 // strictly necessary.

 g_pMIDISeg->SetParam(GUID_Unload, -1, 0, 0, (void*)g_pPerf);

 // Release the segment.

 g_pMIDISeg->Release();

 // CloseDown and Release the performance object.

 g_pPerf->CloseDown();

 g_pPerf->Release();

 // Release the loader object.

 g_pLoader->Release();

 // Release COM.

 CoUninitialize();

 return S_OK;

}

Tutorial 2: Using Tools

[Visual Basic]

This tutorial pertains only to applications written in C++. See DirectMusic Visual Basic Tutorials.

[C++]

This tutorial shows how a tool might be implemented as a C++ class and used in a DirectMusic application. The CEchoTool class enables an application to add one or more echoes to every music note in a performance.

The sample code is based on the EchoTool sample application included with the DirectX SDK.

The tutorial is broken down into the following steps:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 1: Declare the Tool Class

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 2: Define the IUnknown Methods

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 3: Specify Message Types

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 4: Define the ProcessPMsg Method

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 5: Define the Class Methods

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 6: Add the Tool to the Performance

Step 1: Declare the Tool Class

[Visual Basic]

This tutorial pertains only to applications written in C++. See DirectMusic Visual Basic Tutorials.

[C++]

The first step in creating a tool for DirectMusic in C++ is to declare a class derived from IDirectMusicTool.

Here is the declaration for the sample CEchoTool class:

class CEchoTool : public IDirectMusicTool

{

public:

 CEchoTool();

 ~CEchoTool();

public:

// IUnknown

 virtual STDMETHODIMP QueryInterface(const IID &iid, void **ppv);

 virtual STDMETHODIMP_(ULONG) AddRef();

 virtual STDMETHODIMP_(ULONG) Release();

// IDirectMusicTool

 HRESULT STDMETHODCALLTYPE Init(

 IDirectMusicGraph* pGraph);

 HRESULT STDMETHODCALLTYPE GetMsgDeliveryType(

 DWORD* pdwDeliveryType);

 HRESULT STDMETHODCALLTYPE GetMediaTypeArraySize(

 DWORD* pdwNumElements);

 HRESULT STDMETHODCALLTYPE GetMediaTypes(

 DWORD** padwMediaTypes,

 DWORD dwNumElements);

 HRESULT STDMETHODCALLTYPE ProcessPMsg(

 IDirectMusicPerformance* pPerf,

 DMUS_PMSG* pDMUS_PMSG);

 HRESULT STDMETHODCALLTYPE Flush(

 IDirectMusicPerformance* pPerf,

 DMUS_PMSG* pDMUS_PMSG,

 REFERENCE_TIME rtTime);

private:

 long m_cRef; // Reference counter

 DWORD m_dwEchoNum; // Number of echoes to generate

 MUSIC_TIME m_mtDelay; // Delay time between echoes

 CRITICAL_SECTION m_CrSec; // To make SetEchoNum()

 // and SetDelay() thread-safe

public:

// Public class methods

 void SetEchoNum(DWORD);

 void SetDelay(MUSIC_TIME);

};

Next: Step 2: Define the IUnknown Methods

Step 2: Define the IUnknown Methods

[Visual Basic]

This tutorial pertains only to applications written in C++. See DirectMusic Visual Basic Tutorials.

[C++]

The inherited IUnknown methods of the sample CEchoTool class are implemented as follows:

STDMETHODIMP CEchoTool::QueryInterface(const IID &iid, void **ppv)

{

 if (iid == IID_IUnknown || iid == IID_IDirectMusicTool)

 {

 ppv = static_cast<IDirectMusicTool>(this);

 } else

 {

 *ppv = NULL;

 return E_NOINTERFACE;

 }

 reinterpret_cast<IUnknown*>(this)->AddRef();

 return S_OK;

}

STDMETHODIMP_(ULONG) CEchoTool::AddRef()

{

 return InterlockedIncrement(&m_cRef);

}

STDMETHODIMP_(ULONG) CEchoTool::Release()

{

 if(0 == InterlockedDecrement(&m_cRef))

 {

 delete this;

 return 0;

 }

 return m_cRef;

}

Next: Step 3: Specify Message Types

Step 3: Specify Message Types

[Visual Basic]

This tutorial pertains only to applications written in C++. See DirectMusic Visual Basic Tutorials.

[C++]

The CEchoTool class needs to define all the IDirectMusicTool methods. But because it does not need to perform any work in Init or Flush, it simply returns E_NOTIMPL from those methods.

The following methods are used to specify what messages will get passed to the tool for processing:

�SYMBOL 183 \f "Symbol" \s 11 \h �	GetMsgDeliveryType specifies when messages should be passed to the tool—as soon as they are available, at the exact time they are stamped for, or just in time to be processed and put in the port buffer. These three "delivery types" are represented respectively by the DMUS_PMSGF_TOOL_IMMEDIATE, DMUS_PMSGF_TOOL_ATTIME, and DMUS_PMSGF_TOOL_QUEUE flags in the dwFlags member of the DMUS_PMSG structure.

�SYMBOL 183 \f "Symbol" \s 11 \h �	GetMediaTypes establishes what type of messages should be passed to the tool, based on the content of the message. CEchoTool processes only music notes and patch changes, so it will accept MIDI short messages, music note messages, and DirectMusic patch messages. These messages are identified by flags of the DMUS_PMSGT_TYPES enumerated type in the DMUS_PMSG message structure.

�SYMBOL 183 \f "Symbol" \s 11 \h �	GetMediaTypeArraySize returns the number of elements in the media type array.

CEchoTool implements these methods in the following sample code:

HRESULT STDMETHODCALLTYPE CEchoTool::GetMsgDeliveryType(

 DWORD* pdwDeliveryType)

{

 // This tool wants messages immediately.

 // This is the default, so returning E_NOTIMPL

 // would work. The other method is to specifically

 // set *pdwDeliveryType to the delivery type,

// DMUS_PMSGF_TOOL_IMMEDIATE, DMUS_PMSGF_TOOL_QUEUE,

// or DMUS_PMSGF_TOOL_ATTIME.

 *pdwDeliveryType = DMUS_PMSGF_TOOL_IMMEDIATE;

 return S_OK;

}

HRESULT STDMETHODCALLTYPE CEchoTool::GetMediaTypeArraySize(

 DWORD* pdwNumElements)

{

 *pdwNumElements = 3;

 return S_OK;

}

HRESULT STDMETHODCALLTYPE CEchoTool::GetMediaTypes(

 DWORD** padwMediaTypes,

 DWORD dwNumElements)

{

 if (dwNumElements == 3)

 {

 (*padwMediaTypes)[0] = DMUS_PMSGT_NOTE;

 (*padwMediaTypes)[1] = DMUS_PMSGT_MIDI;

 (*padwMediaTypes)[2] = DMUS_PMSGT_PATCH;

 return S_OK;

 }

 else

 {

 // This should never happen.

 return E_FAIL;

 }

}

Next: Step 4: Define the ProcessPMsg Method

Step 4: Define the ProcessPMsg Method

[Visual Basic]

This tutorial pertains only to applications written in C++. See DirectMusic Visual Basic Tutorials.

[C++]

The actual work of the tool is performed in the method derived from IDirectMusicTool::ProcessPMsg. This method will be called for every message of the type listed in the array returned by IDirectMusicTool::GetMediaTypes.

The CEchoTool::ProcessPMsg method first performs some initialization of local variables:

HRESULT STDMETHODCALLTYPE CEchoTool::ProcessPMsg(

 IDirectMusicPerformance* pPerf,

 DMUS_PMSG* pMsg)

{

 DMUS_NOTE_PMSG* pNote;

 DWORD dwCount;

 DWORD dwEchoNum;

 MUSIC_TIME mtDelay;

 // SetEchoNum() and SetDelay() use these member variables,

 // so use a critical section to make them thread-safe.

 EnterCriticalSection(&m_CrSec);

 dwEchoNum = m_dwEchoNum;

 mtDelay = m_mtDelay;

 LeaveCriticalSection(&m_CrSec);

Next the method calls the IDirectMusicGraph::StampPMsg method on the message. If there is another tool to which this message must be directed after we're finished with it here, StampPMsg succeeds. (Note that DirectMusic provides a final output tool, so StampPMsg should succeed even if there are no other application-specific tools to which the message must be routed.) If it fails, our method returns S_FREE so that the message will automatically be discarded.

 if ((NULL == pMsg->pGraph) ||

 FAILED(pMsg->pGraph->StampPMsg(pMsg)))

 {

 return DMUS_S_FREE;

 }

Now it's time for CEchoTool to perform its work on the message. Remember, it is set up to receive messages only of type DMUS_PMSGT_NOTE, DMUS_PMSGT_MIDI; or DMUS_PMSGT_PATCH. (These types are part of the DMUS_PMSGT_TYPES enumeration.)

For each successive echo to be created, the tool does the following:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Creates a new message by calling the IDirectMusicPerformance::AllocPMsg method.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Copies the DMUS_PMSG structure for the original message into the new one and updates some members for COM management.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Assigns the new message to a different performance channel.

�SYMBOL 183 \f "Symbol" \s 11 \h �	In the case of a music note, progressively reduces the volume of each echo.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Adds the delay time to the time at which the message is to be played.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Puts the new message in the pipeline by calling the IDirectMusicPerformance::SendPMsg method. Note that because IDirectMusicGraph::StampPMsg is not called on the message, it will not be routed to any tools other than the default final output tool.

Here's the sample code that deals with MIDI notes:

 if(pPMsg->dwType == DMUS_PMSGT_MIDI)

 {

 // copy MIDI messages into the echo channels.

 for(dwCount = 1; dwCount <= dwEchoNum; dwCount++)

 {

 DMUS_MIDI_PMSG* pMidi;

 if(SUCCEEDED(pPerf->AllocPMsg(sizeof(DMUS_MIDI_PMSG),

 (DMUS_PMSG**)&pMidi)))

 {

 // Copy the original message into this message.

 memcpy(pMidi, pPMsg, sizeof(DMUS_MIDI_PMSG));

 // Addref or clear out any fields that contain

 // or may contain pointers to objects.

 if(pMidi->pTool) pMidi->pTool->AddRef();

 if(pMidi->pGraph) pMidi->pGraph->AddRef();

 pMidi->punkUser = NULL;

 // Set the PChannel so the message goes to the

 // next higher group.

 pMidi->dwPChannel = pMidi->dwPChannel +

 (16*dwCount);

 // Add to the time of the echoed message.

 pMidi->mtTime += (dwCount * mtDelay);

 // Set the message so only MUSIC_TIME is valid.

 // REFERENCE_TIME will be recomputed inside

 // SendPMsg().

 pMidi->dwFlags = DMUS_PMSGF_MUSICTIME;

 // Send the message

 pPerf->SendPMsg((DMUS_PMSG*)pMidi);

 }

 }

 }

Patch changes are also copied and sent to all possible echo channels, even those not currently being used, so that if echoes are added later they will be played by the correct instruments. Note that in the sample EchoTool application, MAX_ECHOES is defined in Echotool.h.

 else if(pPMsg->dwType == DMUS_PMSGT_PATCH)

 {

 for(dwCount = 1; dwCount <= MAX_ECHOES; dwCount++)

 {

 DMUS_PATCH_PMSG* pPatch;

 if(SUCCEEDED(pPerf->AllocPMsg(sizeof(DMUS_PATCH_PMSG),

 (DMUS_PMSG**)&pPatch)))

 {

 // Copy the original message into this message,

 memcpy(pPatch, pPMsg, sizeof(DMUS_PATCH_PMSG));

 // Addref or clear out any fields that contain

 // or may contain pointers to objects

 if(pPatch->pTool) pPatch->pTool->AddRef();

 if(pPatch->pGraph) pPatch->pGraph->AddRef();

 pPatch->punkUser = NULL;

 // Set the PChannel so the message goes to the

 // next higher group.

 pPatch->dwPChannel = pPatch->dwPChannel +

 (16*dwCount);

 // Add to the time of the echoed message.

 pPatch->mtTime += (dwCount * mtDelay);

 // Set the message so only MUSIC_TIME is valid.

 // REFERENCE_TIME will be recomputed inside

 // SendPMsg()

 pPatch->dwFlags = DMUS_PMSGF_MUSICTIME;

 // Send the message.

 pPerf->SendPMsg((DMUS_PMSG*)pPatch);

 }

 }

 }

The method deals with music notes much as it did with MIDI notes, but taking the additional step of reducing the volume:

 else if(pPMsg->dwType == DMUS_PMSGT_NOTE)

 {

 // Create a variable to track the next note's velocity

 BYTE bVelocity;

 pNote = (DMUS_NOTE_PMSG*)pPMsg;

 bVelocity = pNote->bVelocity;

 for(dwCount = 1; dwCount <= dwEchoNum; dwCount++)

 {

 if(SUCCEEDED(pPerf->AllocPMsg(sizeof(DMUS_NOTE_PMSG),

 (DMUS_PMSG**)&pNote)))

 {

 // Copy the original note into this message.

 memcpy(pNote, pPMsg, sizeof(DMUS_NOTE_PMSG));

 // Addref or clear out any fields that contain

 // or may contain pointers to objects.

 if(pNote->pTool) pNote->pTool->AddRef();

 if(pNote->pGraph) pNote->pGraph->AddRef();

 pNote->punkUser = NULL;

 // Add to the time of the echoed note.

 pNote->mtTime += (dwCount * mtDelay);

 // Reduce the volume of the echoed note.

 bVelocity = (BYTE) (bVelocity -

 ((bVelocity * (dwCount * 15))/100));

 pNote->bVelocity = bVelocity;

 // Set the note so only MUSIC_TIME is valid.

 // REFERENCE_TIME will be recomputed inside

 // SendPMsg().

 pNote->dwFlags = DMUS_PMSGF_MUSICTIME;

 pNote->dwPChannel = pNote->dwPChannel +

 (16*dwCount);

 // Send the message.

 pPerf->SendPMsg((DMUS_PMSG*)pNote);

 }

 }

 }

Finally, the ProcessPMsg method returns DMUS_S_REQUEUE so the original message will be put back in the pipeline.

 return DMUS_S_REQUEUE;

} // End CEchoTool::ProcessPMsg()

Next: Step 5: Define the Class Methods

Step 5: Define the Class Methods

[Visual Basic]

This tutorial pertains only to applications written in C++. See DirectMusic Visual Basic Tutorials.

[C++]

Besides its inherited IUnknown and IDirectMusicTool methods, the sample CEchoTool class has a constructor and destructor as well as two public methods for setting the parameters of the echo. The definition of these methods is somewhat peripheral to this tutorial, but is included here for completeness.

CEchoTool::CEchoTool()

{

 m_cRef = 1; // So one Release() will free this

 m_dwEchoNum = 3; // Default to 3 echoes per note

 m_mtDelay = DMUSPPQ / 2; // Default to 8th-note echoes

 InitializeCriticalSection(&m_CrSec);

}

CEchoTool::~CEchoTool()

{

 DeleteCriticalSection(&m_CrSec);

}

void CEchoTool::SetEchoNum(DWORD dwEchoNum)

{

 // ProcessPMsg() uses m_dwEchoNum, so use a critical

 // section to make it thread-safe.

 if(dwEchoNum <= MAX_ECHOES)

 {

 EnterCriticalSection(&m_CrSec);

 m_dwEchoNum = dwEchoNum;

 LeaveCriticalSection(&m_CrSec);

 }

}

void CEchoTool::SetDelay(MUSIC_TIME mtDelay)

{

 // ProcessPMsg() uses m_mtDelay, so use a critical

 // section to make it thread-safe.

 EnterCriticalSection(&m_CrSec);

 m_mtDelay = mtDelay;

 LeaveCriticalSection(&m_CrSec);

}

Next: Step 6: Add the Tool to the Performance

Step 6: Add the Tool to the Performance

[Visual Basic]

This tutorial pertains only to applications written in C++. See DirectMusic Visual Basic Tutorials.

[C++]

Once it has defined the CEchoTool class, the application can create a tool object, insert it into a graph, and add it to the performance so that it will intercept appropriate messages in the pipeline.

The following code creates an instance of the CEchoTool class, initializes the number of echoes to be produced by the tool, creates a graph to contain the tool, and adds the graph to the performance. (In the EchoTool sample application, some of this work is done in a helper function, AddTool. The code has been modified here to make it easier to follow.)

/* It is assumed that pPerf is a valid pointer to the

 IDirectMusicPerformance interface of a performance object. */

CEchoTool *pEchoTool;

IDirectMusicGraph* pGraph;

pEchoTool = new CEchoTool;

if (pEchoTool)

{

 pEchoTool->SetEchoNum(0);

 // Create an IDirectMusicGraph object to hold the tool.

 if (SUCCEEDED(CoCreateInstance(

 CLSID_DirectMusicGraph,

 NULL,

 CLSCTX_INPROC,

 IID_IDirectMusicGraph,

 (void**)&pGraph)))

 {

 // Add the tool to the graph.

 if (SUCCEEDED(pGraph->InsertTool(

 (IDirectMusicTool*)pCEchoTool,

 NULL, // Apply to all PChannels

 0, // How many PChannels otherwise

 0))) // Index of tool in graph

 {

 // Add the graph to the performance. This increments the

 // reference count, so the original graph can then be

 // released.

 pPerf->SetGraph(pGraph);

 }

 pGraph->Release();

 }

}

Note that setting the graph on the performance ensures that messages from all segments will have the opportunity to be processed by its tools. Alternatively, you could use the IDirectMusicSegment::SetGraph method to apply tools only to a particular segment.

Tutorial 3: Using Compositions

[Visual Basic]

This tutorial pertains only to applications written in C++. See DirectMusic Visual Basic Tutorials.

[C++]

This tutorial shows how to set up a music performance that is based on elements authored in DirectMusic Producer, and how to have the music performed interactively—that is, in such as way that it responds to program events.

The code samples are based on the DMDonuts sample in the DirectX SDK. Because DMDonuts is a large and complex application, only the main points will be covered here. For the complete DirectMusic implementation, see the Donuts.cpp source file and its included headers, where all the relevant code is delimited by DMUSIC BEGIN and DMUSIC END comments.

The tutorial is broken down into the following steps:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 1: Defines and Globals

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 2: Initialize the Performance

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 3: Load the Music Elements

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 4: Set Up Notifications

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 5: Create the Primary Segments

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 6: Play a Primary Segment

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 7: Transition to Another Primary Segment

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 8: Play a Motif

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 9: Handle Notifications

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 10: Shut Down DirectMusic

Step 1: Defines and Globals

[Visual Basic]

This tutorial pertains only to applications written in C++. See DirectMusic Visual Basic Tutorials.

[C++]

The following defines and global variables are declared at the beginning of Donuts.cpp. They are given here for you to refer to as you work through the tutorial.

BOOL bMusicEnabled = TRUE;

// Various constants

const GUID guidZero = {0};

#define MOTIF_BOUNCE 0

#define MOTIF_DEATH 1

#define MOTIF_SHIELD 2

#define MOTIF_BLOWUP 4

#define MOTIF_BLOWUPLITE 3

#define NUM_MOTIFS 5

#define NUM_STYLES 2

#define SEGMENT_1 0

#define SEGMENT_2 1

#define SEGMENT_TRANS_1 2

#define SEGMENT_TRANS_2 3

#define NUM_SEGMENTS 4

#define NUM_CHORDMAP 4

#define BLOWUPS_PER_BEAT 2

#define MEASURE_LENGTH DMUS_PPQ * 4

// parts/quarter * quarters/measure (assumes 4/4)

// Global interfaces

IDirectMusicStyle* gapStyle[NUM_STYLES];

IDirectMusicChordMap* gapChordMap[NUM_STYLES] [NUM_CHORDMAP];

IDirectMusicSegment* gapMotif[NUM_STYLES] [NUM_MOTIFS];

IDirectMusicSegment* gapSegment[NUM_SEGMENTS] =

 {NULL, NULL, NULL, NULL};

IDirectMusicComposer * gpComposer = NULL;

IDirectMusicPerformance* gpPerformance = NULL;

IDirectMusic* gpDirectMusic = NULL;

IDirectMusicLoader* gpLoader = NULL;

IDirectMusicSegment* gpIntroTemplate = NULL;

IDirectMusicSegment* gpGameTemplate = NULL;

IDirectMusicSegment* gapShieldSegment[NUM_STYLES] = {NULL, NULL};

IDirectMusicSegment* gapDefaultSegment[NUM_STYLES] =

 {NULL, NULL};

IDirectMusicBand* gapShieldBand[NUM_STYLES] = {NULL, NULL};

IDirectMusicBand* gapDefaultBand[NUM_STYLES] = {NULL, NULL};

// Global variables

BOOL bAnyHits = FALSE;

int gnCurrentStyle = 0;

int gnCurrentChordMap = 0;

int gnLastStyle = 0;

int gnLastChordMap = 0;

BOOL gbShieldsOn = FALSE;

static int snLastTempo;

static int snSubLevel;

static int snMaxBlowUps = BLOWUPS_PER_BEAT;

Next: Step 2: Initialize the Performance

Step 2: Initialize the Performance

[Visual Basic]

This tutorial pertains only to applications written in C++. See DirectMusic Visual Basic Tutorials.

[C++]

The DirectMusic performance is set up in the InitializeGame function in Donuts.cpp.

First the application queries the registry to obtain the search path for the DirectX sample music files, by calling the GetSearchPath function. Then it creates COM objects for the composer and the performance, as follows:

CoInitialize(NULL);

if (!SUCCEEDED(::CoCreateInstance(

 CLSID_DirectMusicComposer,

 NULL,

 CLSCTX_INPROC,

 IID_IDirectMusicComposer,

 (void**)&gpComposer

)))

{

 return CleanupAndExit("Couldn't create a composer object");

}

if (!SUCCEEDED(CoCreateInstance(CLSID_DirectMusicPerformance,

 NULL,

 CLSCTX_INPROC,

 IID_IDirectMusicPerformance,

 (void**)&gpPerformance)))

{

 return CleanupAndExit("Couldn't create a performance object");

}

The application then initializes the performance by calling IDirectMusicPerformance::Init, which creates a DirectMusic object that can be used to create and activate its ports. Depending on whether or not DirectSound is being used for other sound effects, the call either attaches the existing DirectSound object to the performance by passing in lpDS or creates one by passing in NULL.

#ifdef USE_DSOUND

 if(!SUCCEEDED(gpPerformance->Init(&gpDirectMusic,

 lpDS, hWndMain)))

 {

 return CleanupAndExit("Couldn't initialize the performance");

 }

#else

 if(!SUCCEEDED(gpPerformance->Init(&gpDirectMusic,

 NULL, hWndMain)))

 {

 return CleanupAndExit("Couldn't initialize the performance");

 }

#endif

The application now gets the default port, creates an instance of it with one channel group, and retrieves its capabilities:

IDirectMusicPort* pPort = NULL;

DMUS_PORTPARAMS dmos;

DMUS_PORTCAPS dmpc;

GUID guidSynthGUID;

HRESULT hr = S_OK;

if (!SUCCEEDED(gpDirectMusic->GetDefaultPort(&guidSynthGUID)))

{

 return CleanupAndExit("Could't GetDefaultPort on IDirectMusic");

}

ZeroMemory(&dmos, sizeof(dmos));

dmos.dwSize = sizeof(DMUS_PORTPARAMS);

dmos.dwChannelGroups = 1;

dmos.dwValidParams = DMUS_PORTPARAMS_CHANNELGROUPS;

if(!SUCCEEDED(gpDirectMusic->CreatePort(guidSynthGUID,

 &dmos,

 &pPort,

 NULL)))

{

 return CleanupAndExit("Couldn't CreatePort on IDirectMusic");

}

ZeroMemory(&dmpc, sizeof(dmpc));

dmpc.dwSize = sizeof(DMUS_PORTCAPS);

if(!SUCCEEDED(pPort->GetCaps(&dmpc)))

{

 if (pPort) pPort->Release();

 return CleanupAndExit("Couldn't GetCaps on IDirectMusicPort");

}

The behavior of the application now varies depending on whether _SOFTWARE_SYNTH_ is defined. If it is, a synthesizer with DLS capabilities is wanted, so the application checks for the DMUS_PC_DLS capabilities flag on the default port. If it fails to find that flag, it goes on to free the default port and enumerate available ports until if finds an output port that has the DMUS_PC_DLS capability. Finally, it creates an instance of that port.

if ((dmpc.dwClass != DMUS_PC_OUTPUTCLASS)

 || !(dmpc.dwFlags & DMUS_PC_DLS))

{

 pPort->Release();

 pPort = NULL;

}

if (!pPort)

{

 for (DWORD index = 0; hr == S_OK; index++)

 {

 ZeroMemory(&dmpc, sizeof(dmpc));

 dmpc.dwSize = sizeof(DMUS_PORTCAPS);

 hr = gpDirectMusic->EnumPort(index, &dmpc);

 if(hr == S_OK)

 {

 if ((dmpc.dwClass == DMUS_PC_OUTPUTCLASS) &&

 (dmpc.dwFlags & DMUS_PC_DLS))

 {

 CopyMemory(&guidSynthGUID, &dmpc.guidPort,

 sizeof(GUID));

 ZeroMemory(&dmos, sizeof(dmos));

 dmos.dwSize = sizeof(DMUS_PORTPARAMS);

 dmos.dwChannelGroups = 1;

 dmos.dwValidParams = DMUS_PORTPARAMS_CHANNELGROUPS;

 hr = gpDirectMusic->CreatePort(guidSynthGUID,

 &dmos, &pPort, NULL);

 break;

 }

 }

 }

 if (hr != S_OK)

 {

 if (pPort) pPort->Release();

 return CleanupAndExit("Couldn't initialize the Synth port");

 }

}

If, on the other hand, _SOFTWARE_SYNTH_ is not defined, a legacy hardware port is wanted, and the application goes on to enumerate ports until it finds the MIDI mapper. (That code is omitted here.)

Now the port is activated and attached to the performance.

pPort->Activate(TRUE);

gpPerformance->AddPort(pPort);

The next call maps PChannels 0-15 to the first group of MIDI channels on the port. Note that this step is necessary because the application did not pass NULL to AddPort.

gpPerformance->AssignPChannelBlock(0, pPort, 1);

The original reference to the port can now be released. This call doesn't remove the port from the performance.

if (pPort) pPort->Release();

Next: Step 3: Load the Music Elements

Step 3: Load the Music Elements

[Visual Basic]

This tutorial pertains only to applications written in C++. See DirectMusic Visual Basic Tutorials.

[C++]

The next step in setting up the DirectMusic functionality of the DMDonuts sample application is to load the music elements—styles, templates, motifs, chordmaps, and bands—from file. Like the previous step, this one is carried out in the InitializeGame function.

First the application creates the loader object:

if (!SUCCEEDED(::CoCreateInstance(

 CLSID_DirectMusicLoader,

 NULL,

 CLSCTX_INPROC,

 IID_IDirectMusicLoader,

 (void**)&gpLoader

)))

{

 return CleanupAndExit("Couldn't create a loader object");

}

Then it sets the search directory for all object types and enables the object cache. This second call simply confirms the default cache status.

hr = E_FAIL;

/ * The GetSearchPath function gets the media directory

 from the registry and returns it in wszSearchPath. */

if (GetSearchPath(wszSearchPath))

{

 hr = gpLoader->SetSearchDirectory(

 GUID_DirectMusicAllTypes, wszSearchPath, FALSE);

}

/* If that directory doesn't exist, try the current directory. */

if (FAILED(hr))

{

 hr = gpLoader->SetSearchDirectory(GUID_DirectMusicAllTypes,

 L".", FALSE);

}

if (FAILED(hr))

{

 return CleanupAndExit("Couldn't set the search directory \

 for the DirectMusic loader");

}

gpLoader->EnableCache(GUID_DirectMusicAllTypes, TRUE);

The following code snippet loads the style named "Donuts", which is in the Donuts.sty file. Note that because the application hasn't called IDirectMusicLoader::ScanDirectory to build a database of objects that can be loaded by internal name, the first call to IDirectMusicLoader::GetObject will fail. The fallback procedure is to identify the object by file name and call GetObject again.

IDirectMusicObject* pObject = NULL;

DMUS_OBJECTDESC ObjectDescript;

ObjectDescript.dwSize = sizeof(DMUS_OBJECTDESC);

ObjectDescript.guidClass = CLSID_DirectMusicStyle;

wcscpy(ObjectDescript.wszName, L"Donuts");

ObjectDescript.dwValidData = DMUS_OBJ_CLASS | DMUS_OBJ_NAME;

if (!SUCCEEDED(gpLoader->GetObject(&ObjectDescript,

 IID_IDirectMusicStyle, (void**)&gapStyle[1])))

{

 wcscpy(ObjectDescript.wszFileName, L"Donuts.sty");

 ObjectDescript.dwValidData = DMUS_OBJ_CLASS | DMUS_OBJ_FILENAME;

 if (!SUCCEEDED(gpLoader->GetObject(&ObjectDescript,

 IID_IDirectMusicStyle, (void**)&gapStyle[1])))

 {

 return CleanupAndExit("Couldn't load style object 1");

 }

}

The InitializeGame function then goes on to load another style and two templates in similar fashion.

The next step is to initialize an array of motifs that will be used to mark certain events in the game. Each motif is contained in a style and is obtained by calling the IDirectMusicStyle::GetMotif method, which creates a segment for the motif. The method must be supplied with the internal name of the motif, as in the following example from Donuts.cpp.

WCHAR awszMotifs[NUM_MOTIFS][64];

wcscpy(awszMotifs[MOTIF_BOUNCE], L"Bounce");

.

.

.

hr = gapStyle[0]->GetMotif(awszMotifs[MOTIF_BOUNCE],

 &(gapMotif[0][MOTIF_BOUNCE]));

If you look at the complete code, you'll see that the application loads two sets of motifs with the same names, one set from the "Donuts" style and the other from "Donutz." DMDonuts switches between these two styles as the player moves from level to level. When a gapMotif is played, its first index is determined by the value of the global gnCurrentStyle, ensuring that it is the correct motif for that level.

The application now initializes four chordmaps for each style. These are obtained from separate files.

WCHAR awszChordMap[NUM_STYLES][NUM_CHORDMAP][64];

wcscpy(awszChordMap[0][0], L"minaeo.per");

wcscpy(awszChordMap[0][1], L"minfunc.per");

wcscpy(awszChordMap[0][2], L"mipedpt.per");

wcscpy(awszChordMap[0][3], L"tension.per");

wcscpy(awszChordMap[1][0], L"dianoble.per");

wcscpy(awszChordMap[1][1], L"minpedpt.per");

wcscpy(awszChordMap[1][2], L"mippjazz.per");

wcscpy(awszChordMap[1][3], L"minjazz.per");

ObjectDescript.guidClass = CLSID_DirectMusicChordMap;

ObjectDescript.dwValidData = DMUS_OBJ_CLASS | DMUS_OBJ_FILENAME;

for (short n = 0; n < NUM_STYLES; n++)

{

 for (short m = 0; m < NUM_CHORDMAP; m++)

 {

 if (hr == S_OK)

 {

 wcscpy(ObjectDescript.wszFileName,

 awszChordMap[n][m]);

 hr = gpLoader->GetObject(&ObjectDescript,

 IID_IDirectMusicChordMap,

 (void**)&gapChordMap[n][m]);

 }

 }

}

if (hr != S_OK)

{

 return CleanupAndExit("Couldn't load a ChordMap");

}

The last elements to be retrieved from the styles are the bands. Each style has two different bands: one for when the player's ship isn't shielded and one for when it is. Note that the names of the bands are allocated differently than were the motifs and chordmaps—each is a BSTR rather than a local array of WCHAR—but the effect is the same, because in the Win32® API a BSTR is a pointer to a WCHAR array.

As each band is loaded, it is downloaded to the performance, making available the DLS data for its instruments.

BSTR bstrDefault = SysAllocString(L"Default 2");

BSTR bstrShields = SysAllocString(L"Shields");

for (n = 0; n < NUM_STYLES; n++)

{

 if (hr == S_OK)

 {

 hr = gapStyle[n]->GetBand(bstrShields, &gapShieldBand[n]);

 }

 if (hr == S_OK)

 {

 hr = gapShieldBand[n]->Download(gpPerformance);

 }

 if (hr == S_OK)

 {

 hr = gapStyle[n]->GetBand(bstrDefault, &gapDefaultBand[n]);

 }

 if (hr == S_OK)

 {

 hr = gapDefaultBand[n]->Download(gpPerformance);

 }

}

SysFreeString(bstrDefault);

SysFreeString(bstrShields);

After some error-checking code, the InitializeGame function goes on to create segments from the four bands it has obtained. These segments will be used to "play" the band changes at the appropriate times. Once the segments have been created, the band interfaces are released.

for (n = 0; n < NUM_STYLES; n++)

{

 if (hr == S_OK)

 {

 hr = gapShieldBand[n]->CreateSegment(&gapShieldSegment[n]);

 }

 if (hr == S_OK)

 {

 hr = gapDefaultBand[n]->CreateSegment(&gapDefaultSegment[n]);

 }

 apShieldBand[n]->Release();

 apDefaultBand[n]->Release();

}

Next: Step 4: Set Up Notifications

Step 4: Set Up Notifications

[Visual Basic]

This tutorial pertains only to applications written in C++. See DirectMusic Visual Basic Tutorials.

[C++]

The last bit of DirectMusic code inside the InitializeGame function is a request for notification when playback of the primary segment reaches a beat boundary or the end of the segment. As you'll see later in this tutorial, the notification mechanism is used to limit the number of "blowup" motifs that can be played at the same time.

The following code adds the notification types. Note that the notification GUIDs have to be placed in a variable, because they are passed by reference.

GUID guid;

guid = GUID_NOTIFICATION_SEGMENT;

gpPerformance->AddNotificationType(guid);

guid = GUID_NOTIFICATION_MEASUREANDBEAT;

gpPerformance->AddNotificationType(guid);

Next: Step 5: Create the Primary Segments

Step 5: Create the Primary Segments

[Visual Basic]

This tutorial pertains only to applications written in C++. See DirectMusic Visual Basic Tutorials.

[C++]

The one-time initialization of DirectMusic in the DMDonuts sample application is now complete. Further initialization is done in the setup_game function each time the game is started or the player advances to the next level.

The setup_game function first calls another function called ComposeNewSegments, which selects a style and chordmap based on the current game level, releases any previously created segments, and then composes two new segments based on the templates previously loaded from file. One of these segments is an introductory theme that plays until a donut has been hit; the other plays from that point until the player beats the level. The snSubLevel variable tracks which part of the level we are in and is used elsewhere to determine which segment should be played when music is toggled on with the F7 key.

snSubLevel = 1;

snLastTempo = 0;

gnLastStyle = gnCurrentStyle;

gnLastChordMap = gnCurrentChordMap;

gnCurrentStyle = level % NUM_STYLES;

gnCurrentChordMap = ((level - 1) / 2) % NUM_CHORDMAP;

HRESULT hr = S_OK;

MUSIC_TIME mtSegmentLength;

if (gapSegment[SEGMENT_1])

{

 gapSegment[SEGMENT_1]->Release();

}

hr = gpComposer->ComposeSegmentFromTemplate(

 gapStyle[gnCurrentStyle],

 gpIntroTemplate, 0,

 gapChordMap[gnCurrentStyle][gnCurrentChordMap],

 &gapSegment[SEGMENT_1]

);

if (!SUCCEEDED(hr))

{

 CleanupAndExit("Segment 1 composition failed");

}

We happen to know that the template has a signpost on the last measure that matches the signpost on the first measure, for graceful looping. Once the segment is composed, the last measure is lopped off. Note that the value of MEASURE_LENGTH was calculated in Step 1: Defines and Globals as (DMUS_PPQ * 4)—that is, four quarter-notes of music time. This is valid because the time signature is 4/4.

gapSegment[SEGMENT_1]->GetLength(&mtSegmentLength);

gapSegment[SEGMENT_1]->SetLength(

 mtSegmentLength - MEASURE_LENGTH);

Finally, the segment is set to loop repeatedly.

gapSegment[SEGMENT_1]->SetRepeats(999);

The second segment, based on gpGameTemplate, is composed and set up the same way.

Next: Step 6: Play a Primary Segment

Step 6: Play a Primary Segment

[Visual Basic]

This tutorial pertains only to applications written in C++. See DirectMusic Visual Basic Tutorials.

[C++]

In the previous step, the setup_game function in Donuts.cpp called the ComposeNewSegments function, which created two primary segments to be used for the current game level. Now the setup_game function plays the first of these segments:

gpPerformance->PlaySegment(

 gapSegment[SEGMENT_1], 0, 0, NULL);

Note that the absence of any flag causes the segment to be played immediately.

The function now plays the default band segment that was created for the current style. (Remember, there are two different styles that alternate when the game level changes. Each style has two bands, the default band and the "shield" band.) Playing the band segment ensures that the correct set of instruments is playing the music. Note that the band segment must be flagged as secondary. No start time is given in the third parameter because the changes are to be made immediately, and the last parameter is NULL because we don't require a pointer to the segment state.

gpPerformance->PlaySegment(

 gapDefaultSegment[gnCurrentStyle],

 DMUS_SEGF_SECONDARY,

 0, NULL);

The default band for the style is used when the player's ship is unshielded, which is always the case at the beginning of a level. The application plays the second band inside the UpdateDisplayList function in response to the shields being turned on, and plays the default band again when the shields are turned off.

Next: Step 7: Transition to Another Primary Segment

Step 7: Transition to Another Primary Segment

[Visual Basic]

This tutorial pertains only to applications written in C++. See DirectMusic Visual Basic Tutorials.

[C++]

DMDonuts cues a different primary segment in two places: when the game level changes, and when the first hit is made on a donut on any level. The following code is from the CheckForHits function. When the function finds that a hit is the first to have occurred on this level, it tells the DirectMusic composer to create a transition from the current (introductory) theme to the action theme. The call to IDirectMusicComposer::AutoTransition also cues the transition and the following action segment so that they play automatically; in this case, the transition will start on the next measure boundary.

if (gapSegment[SEGMENT_TRANS_1])

{

 gapSegment[SEGMENT_TRANS_1]->Release();

}

gpComposer->AutoTransition(

 gpPerformance, // The performance

 gapSegment[SEGMENT_2], // The next primary segment

 DMUS_COMMANDT_FILL, // Embellishment type

 DMUS_COMPOSEF_MODULATE | // Modulate to new key

 DMUS_COMPOSEF_MEASURE, // and start on measure

 gapChordMap[gnCurrentStyle] [gnCurrentChordMap],

 // Use current chordmap

 &gapSegment[SEGMENT_TRANS_1], // Created transition segment

 NULL, NULL // No segment states needed

);

Note that you don't have to stop the first segment. It stops automatically when a transition or new primary segment is played.

Next: Step 8: Play a Motif

Step 8: Play a Motif

[Visual Basic]

This tutorial pertains only to applications written in C++. See DirectMusic Visual Basic Tutorials.

[C++]

DMDonuts uses several motifs to accent the game action: for example, when the player's ship bounces off the edge of the screen and when an object is hit by the player's fire.

Playing a motif is very simple, as the following code from the CheckForHits function shows. The MOTIF_BLOWUP motif is played whenever a donut is hit.

gpPerformance->PlaySegment(

 gapMotif[gnCurrentStyle][MOTIF_BLOWUP],

 DMUS_SEGF_SECONDARY | DMUS_SEGF_GRID, 0, NULL);

The motif must be played as a secondary segment so that it does not interrupt the main theme being played as the primary segment. It is cued to play on a grid boundary, the lowest resolution at which it can play without being out of step with the primary segment. The rtStartTime parameter is 0, indicating that the segment should play as soon as the first boundary is reached, and the ppSegmentState parameter is NULL because there's no need to access the segment while it is playing.

Next: Step 9: Handle Notifications

Step 9: Handle Notifications

[Visual Basic]

This tutorial pertains only to applications written in C++. See DirectMusic Visual Basic Tutorials.

[C++]

Back in Step 4: Set Up Notifications we saw how DMDonuts requests notification whenever a segment ends and whenever a beat or measure boundary is reached. The purpose of this notification is to help limit the number of "blowup" motifs playing at any one time.

Notifications are retrieved in the WinMain function. After dealing with any messages in the queue, the application checks to see if there are any pending notifications. It does this by calling the IDirectMusicPerformance::GetNotificationPMsg method. If no notification message is pending, the method returns S_FALSE and no further action is needed. A return of S_OK indicates that a notification message has been placed in *pEvent. Because it has only requested notifications relevant to the beat, the application doesn't actually need to examine the message, which is immediately discarded. It then resets snMaxBlowUps, which tracks how many more blowup motifs can be played till the next beat.

if (gpPerformance)

{

 DMUS_NOTIFICATION_PMSG* pEvent;

 while (S_OK == gpPerformance->GetNotificationPMsg(&pEvent))

 {

 gpPerformance->FreePMsg((DMUS_PMSG*)pEvent);

 snMaxBlowUps = BLOWUPS_PER_BEAT;

 }

}

Next: Step 10: Shut Down DirectMusic

Step 10: Shut Down DirectMusic

[Visual Basic]

This tutorial pertains only to applications written in C++. See DirectMusic Visual Basic Tutorials.

[C++]

Closing down DirectMusic is a matter of clearing the loader cache, stopping the performance, releasing all the objects that have been created, and finally dereferencing COM (remember, every call to CoInitialize must have a matching call to CoUninitialize).

The following function performs the necessary cleanup in Donuts.cpp:

void CleanUpDMusic()

{

 if (gpLoader)

 {

 gpLoader->ClearCache(GUID_DirectMusicAllTypes);

 gpLoader->Release();

 }

 if (gpComposer)

 {

 gpComposer->Release();

 }

 if (gpIntroTemplate)

 {

 gpIntroTemplate->Release();

 }

 if (gpGameTemplate)

 {

 gpGameTemplate->Release();

 }

 for (short n = 0; n < NUM_STYLES; n++)

 {

 if (gapShieldBand[n])

 {

 gapShieldBand[n]->Unload(gpPerformance);

 gapShieldBand[n]->Release();

 }

 if (gapDefaultBand[n])

 {

 gapDefaultBand[n]->Unload(gpPerformance);

 gapDefaultBand[n]->Release();

 }

 if (gapShieldSegment[n])

 {

 gapShieldSegment[n]->Release();

 }

 if (gapDefaultSegment[n])

 {

 gapDefaultSegment[n]->Release();

 }

 if (gapStyle[n])

 {

 gapStyle[n]->Release();

 }

 for (short m = 0; m < NUM_CHORDMAP; m++)

 {

 if (gapChordMap[n][m])

 {

 gapChordMap[n][m]->Release();

 }

 }

 for (m = 0; m < NUM_MOTIFS; m++)

 {

 if (gapMotif[n][m])

 {

 gapMotif[n][m]->Release();

 }

 }

 }

 if (gpPerformance)

 {

 gpPerformance->Stop(NULL, NULL, 0, 0);

 gpPerformance->CloseDown();

 gpPerformance->Release();

 }

 for (n = 0; n < NUM_SEGMENTS; n++)

 {

 if (gapSegment[n])

 {

 gapSegment[n]->Release();

 }

 }

 if (gpDirectMusic)

 {

 gpDirectMusic->Release();

 }

 CoUninitialize();

}

DirectMusic Visual Basic Tutorials

[C++]

This section pertains only to DirectX for Visual Basic. See DirectMusic C/C++ Tutorials.

[Visual Basic]

This section contains the following tutorials showing how to implement DirectMusic in a Visual Basic application:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Tutorial 1: Playing a MIDI File

�SYMBOL 183 \f "Symbol" \s 11 \h �	Tutorial 2: Using DLS Sound Effects

Tutorial 1: Playing a MIDI File

[C++]

This section pertains only to DirectX for Visual Basic. A similar tutorial is available for C/C++; see Tutorial 1: Playing a MIDI File.

[Visual Basic]

This tutorial is a guide to setting up the simplest possible DirectMusic application, one that just plays a primary segment. In this example, the segment represents a MIDI file, but the process of loading and playing the data would be exactly the same if the source were a segment authored in a tool such as DirectMusic Producer.

The tutorial is divided into the following steps:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 1: Create the Performance and Loader

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 2: Load the MIDI File

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 3: Play the MIDI File

Step 1: Create the Performance and Loader

[C++]

This topic pertains only to DirectX for Visual Basic. See DirectMusic C/C++ Tutorials.

[Visual Basic]

The central object of any DirectMusic application is an instance of the DirectMusicPerformance class. Most applications require only a single performance object, although it is possible to have multiple performances playing to different ports, with different tempos, and so on. To load any musical data, the application also needs a DirectMusicLoader object.

To create these objects, you must first declare a global DirectX7 object.

The following global declarations create the DirectX7 object and variables for the other necessary objects:

Public gObjDX As New DirectX7

Public gObjDMLoader As DirectMusicLoader

Public gObjDMPerformance As DirectMusicPerformance

In the startup code, create the performance and loader objects as follows:

Set gObjDMLoader = gObjDX.DirectMusicLoaderCreate

Set gObjDMPerformance = gObjDX.DirectMusicPerformanceCreate

You must also initialize the performance and assign a port to it. The following code has the performance create its own DirectSound object and assigns the default port, which is always either the Microsoft Software Synthesizer or a DLS-capable hardware synthesizer. A single channel group is assigned to the port because a MIDI file requires a maximum of 16 channels. If you are writing an application that plays other kinds of segments as well, you might need to increase this number.

' hWnd is the window handle of the main form

Call gObjDMPerformance.Init(Nothing, hWnd)

Call gObjDMPerformance.SetPort(-1, 1)

Next: Step 2: Load the MIDI File

Step 2: Load the MIDI File

[C++]

This topic pertains only to DirectX for Visual Basic. See DirectMusic C/C++ Tutorials.

[Visual Basic]

To load a MIDI file, you need three things:

�SYMBOL 183 \f "Symbol" \s 11 \h �	The DirectMusicLoader object created in the previous step.

�SYMBOL 183 \f "Symbol" \s 11 \h �	A DirectMusicSegment variable.

�SYMBOL 183 \f "Symbol" \s 11 \h �	The name of the MIDI file.

If your music files are not in the working directory of the application, call DirectMusicLoader.SetSearchDirectory so that the loader knows where to look, or provide a full path for each file.

The following code sets the search directory for the loader and loads a file from that directory.

Call gObjDMLoader.SetSearchDirectory("c:\midiplay\media")

' This needs to be done only once.

Dim objSeg As DirectMusicSegment

' FileName is a string containing the short name of the file

Set objSeg = gObjDMLoader.LoadSegment(FileName)

Next: Step 3: Play the MIDI File

Step 3: Play the MIDI File

[C++]

This topic pertains only to DirectX for Visual Basic. See DirectMusic C/C++ Tutorials.

[Visual Basic]

Now that you have a DirectMusicSegment object representing the MIDI file, you need to do a little more preparation before you can play it.

First, let the segment know that it represents a standard MIDI file. Although the segment can be played without this step, certain details of playback might not be handled properly. The following code performs this step for files with the conventional MIDI file extension:

If StrConv(Right(FileName, 4), vbLowerCase) = ".mid" Then

 Call objSeg.SetStandardMidiFile

End If

Second, ensure that the DLS data for the instruments is downloaded to the port. The simplest way to do this is to turn on automatic downloading for the entire performance, as might be done in the setup code, as follows:

Call gObjDMPerformance.SetMasterAutoDownload(True)

The disadvantage of this method is that the instruments are unloaded from the port as soon as the segment stops, and must then be downloaded again. If your application is playing different segments in rapid succession, this behavior might cause unacceptable delays. For greater control, you can download the instruments each time a segment is about to be played. The instruments remain on the port until you choose to unload them, or until the performance is closed down. Any redundant downloads are ignored.

Call objSeg.Download(gObjDMPerformance)

Now, the segment can be played:

Call gObjDMPerformance.PlaySegment(objSeg, 0, 0)

If you want to track the state of playback (for example, to be able to pause and resume), you can save the return value of DirectMusicPerformance.PlaySegment in a DirectMusicSegmentState object:

Dim objSegState as DirectMusicSegmentState

Set objSegState = gObjDMPerformance.PlaySegment(gObjPrimarySeg, 0, 0)

Tutorial 2: Using DLS Sound Effects

[C++]

This topic pertains only to application development in DirectX for Visual Basic.

[Visual Basic]

This tutorial shows how to use DLS to create nonmusical sound effects, using DirectMusic. The code example is based on the DLSEffects sample, which uses the DLS collection file Boids.dls. If you like, you can use DirectMusic Producer to examine this collection to better understand some of the concepts discussed in the tutorial. Consult the DirectMusic Producer documentation for more information on how to view and edit a DLS collection.

The tutorial is divided into the following steps:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 1: Load the Sounds

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 2: Play Effects�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 3: Modify and Stop Effects

Step 1: Load the Sounds

[C++]

This topic pertains only to application development in DirectX for Visual Basic.

[Visual Basic]

After creating and initializing the performance, the DLSEffects sample loads the DLS file and a segment file, both from the directory represented by mediapath.

' dx is a DirectX7 object.

' perf is an initialized DirectMusicPerformance object.

' seg is declared as DirectMusicSegment.

mediapath = FindMediaDir("sample.sgt", "dmusic")

If mediapath <> vbNullString Then ChDir mediapath

Dim loader As DirectMusicLoader

Set loader = dx.DirectMusicLoaderCreate

Set coll = loader.LoadCollection(mediapath & "boids.dls")

Set seg = loader.LoadSegment(mediapath & "sample.sgt")

It does not matter what segment is loaded. The application does not play the segment, but it is necessary to have a DirectMusicSegment object to download DLS data.

Now, the application associates the DirectMusicCollection object with the segment and downloads it to the port. Any other instruments referred to by the segment are downloaded as well.

Call seg.ConnectToCollection(coll)

Call seg.Download(perf)

The Boids.dls collection contains only a single instrument, called Vocals, which has patch number 127. You can assign this instrument to any channel by sending a MIDI patch message. The application assigns the instrument to two channels so that one of the samples that is to be played, the heartbeat sound, can be given a pitch bend without affecting other samples.

Const channel = 1

Const hbchannel = 2

Const patch = 127

Call perf.SendPatchPMSG(0, DMUS_PMSGF_REFTIME, channel, patch, 0, 0)

Call perf.SendPatchPMSG(0, DMUS_PMSGF_REFTIME, hbchannel, patch, 0, 0)

Now, any note played on channels 1 or 2 uses the Vocals instrument. How this instrument is used to get different sound effects is covered in Step 2: Play Effects.

Step 2: Play Effects

[C++]

This topic pertains only to application development in DirectX for Visual Basic.

[Visual Basic]

In the DLSEffects sample, the user can hear a variety of sound effects, including laughter, fragments of speech in several languages, and an infant's heartbeat. All these sounds are contained in a single DLS instrument.

Completely different sounds can be played by a single instrument because different note ranges, or regions, can be associated with different wave samples. In Boids.dls, for example, the first speech fragment is assigned to the pitch range from C0 through B3. Any note in that range is based on the same wave sample. The root note is C3, meaning that when a C3 note is played, the wave is heard at its original frequency. All other notes cause the pitch of the wave to be modified.

The following procedure sends a note at the volume indicated by the global variable gVelocity:

Private Sub SendNote(chan As Integer, pitch As Byte, dur As Long)

 Dim noteMsg As DMUS_NOTE_PMSG

 noteMsg.velocity = gVelocity

 noteMsg.flags = DMUS_NOTEF_NOTEON

 noteMsg.midiValue = pitch

 noteMsg.mtDuration = dur

 Call perf.SendNotePMSG(0, DMUS_PMSGF_REFTIME, chan, noteMsg)

 End Sub

All but one of the waves in Boids.dls are one-shot samples. This means that when a note is played, the wave sample plays only once, regardless of the duration of the note. The exception is the heartbeat sample, which is looped so that it plays as long as the note is playing. This looping behavior was specified by the author of the instrument collection.

The following procedure sends a C3 note. C3 is the root note of the first speech sample, so it plays at the correct pitch. The constant NoteDur is 6000 milliseconds, allowing enough time for this or any of the other waves to play completely before DirectMusic generates a note-off MIDI message. (If you click the button and send an identical note before this time has elapsed, the note-off message might cancel the new note as well, so it might not play fully.)

Private Sub cmdC3_Click()

 SendNote channel, 36, NoteDur

End Sub

The DLSEffects application plays most of the samples at their root note. However, the heartbeat sample is treated a little differently, as an illustration of how the pitch of sound effects can be modified programmatically. This topic is covered in Step 3: Modify and Stop Effects.

Step 3: Modify and Stop Effects

[C++]

This topic pertains only to application development in DirectX for Visual Basic.

[Visual Basic]

In the definition of the Vocals instrument in Boids.dls, the region of the heart sample is in the range from B7 through B8. As the sound is playing in the sample application, the user can choose a note within this region by using the Note slider. Each time the slider is changed, the existing note is stopped, and a new one is sent.

Because the duration of the note is indefinite, it is sent in the form of a standard MIDI note-on message by using DirectMusicPerformance.SendMIDIPMSG. (You could also use DirectMusicPerformance.SendNotePMSG, specifying a very large number for the duration of the note.) The current frequency and velocity are given in the last two parameters. Because the method accepts the channel as a separate parameter, the MIDI status byte (&H90) does not contain the channel number in the 4 lower bits, as it would in a standard MIDI message.

Call perf.SendMIDIPMSG(0, DMUS_PMSGF_REFTIME, hbchannel, _

 &H90, B7Freq, gVelocity)

In addition to changing the note for the heartbeat, the user can also assign a pitch bend to the channel on which the note is played. The pitch bend is also sent as a standard MIDI message:

Call perf.SendMIDIPMSG(0, DMUS_PMSGF_REFTIME, hbchannel, _

 &HE0, lo, hi)

The lo and hi parameters are 7-bit values, so there are 16,384 possible settings for a pitch bend. For more information, see the MIDI specification.

To stop the heartbeat note, the sample application sends a note of the same pitch as the currently playing note, using the SendNotePMSG method, with the flags member of the DMUS_NOTE_PMSG type set to 0, instead of the usual DMUS_NOTEF_NOTEON.

Private Sub B7NoteOff()

 Dim noteMsg As DMUS_NOTE_PMSG

 noteMsg.flags = 0

 noteMsg.midiValue = B7Freq ' B7Freq is pitch of last note-on

 Call perf.SendNotePMSG(0, DMUS_PMSGF_REFTIME, hbchannel, noteMsg)

End Sub

The pitch bend on the channel does not affect this operation.

DirectMusic Samples

This section describes sample applications included with the DirectX SDK that demonstrate the use of DirectMusic. Descriptions are organized as follows:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusic C/C++ Samples

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusic Visual Basic Samples

DirectMusic C/C++ Samples

[Visual Basic]

This section pertains only to application development in C and C++. See DirectMusic Visual Basic Samples.

[C++]

The following sample applications demonstrate the use and capabilities of the DirectMusic® application programming interface:

�SYMBOL 183 \f "Symbol" \s 11 \h �	3DMusic Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMBoids Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	DMDonuts Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusic MIDI Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectMusic Shell Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	EchoTool Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	MusicLines Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	PlayMotif Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	PlayPrimary Sample

Although DirectX® samples include Microsoft® Visual C++® project workspace files, you might need to verify other settings in your development environment to ensure that the samples compile properly. For more information, see Compiling DirectX Samples and Other DirectX Applications.

3DMusic Sample

[Visual Basic]

This topic pertains only to application development in C and C++. See DirectMusic Visual Basic Samples.

[C++]

Description

The 3DMusic sample shows how to play a MIDI file into a custom DirectSound 3-D buffer.

Path

Source: (SDK root)\Samples\Multimedia\Dmusic\Src\3DMusic

Executable: (SDK root)\Samples\Multimedia\DMusic\Bin\3DMusic.exe

User's Guide

The icons represents a listener and a sound source in a 3-D environment, although movement and orientation are possible in only two dimensions.

Use the arrow keys to move the sound source. Use the numeric keypad to change the orientation of the listener.

Choosing Play Stereo Drip from the File menu causes a dripping sound to play at random pan and volume, illustrating how pseudo–3-D effects can be achieved with a 2-D buffer.

Programming Notes

The program uses the registry key set up by the DirectX SDK setup to find the media file path.

Helper.cpp contains useful functions that set up DirectMusic. These functions are called from Sound.cpp.

DMBoids Sample

[Visual Basic]

This topic pertains only to application development in C and C++. See DirectMusic Visual Basic Samples.

[C++]

Description

DMBoids is a version of Boids that adds DirectMusic support. As objects fly over a simple landscape, the music responds to user input and events on the screen.

Path

Source: (SDK root)\Samples\Multimedia\Dmusic\Src\DMBoids

Executable: (SDK root)\Samples\Multimedia\DMusic\Bin\Dmboids.exe

User's Guide

Press F10 to access the main menu. The Drivers menu allows you to change the driver, device, and video mode. The application runs only in full-screen modes.

The A (alignment), C (cohesion) and O (obstacle) keys alter behavior of the boids in various ways as long as they are held down.

Hold down the S key or the spacebar and the birds flock in closer. Release the key and they spread apart. Note the use of motifs to track this behavior.

Hold down the M key and the birds wander off their path. Notice that the music completely changes. Release and the birds will eventually get back on the path.

Press the ESC key to quit.

Programming Notes

DirectMusic features illustrated include the following:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Software synthesis with DLS. In addition to the musical instruments from the GS sound set, the application uses custom downloadable sounds such as the voices that appear to come from the planets.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Composing and performing style-based segments.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Musical transitions using style-based motifs and segment cues.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Echo/articulation tool coded that uses the proximity of the birds to adjust the echoes and note durations of the music as it plays.

DMDonuts Sample

[Visual Basic]

This topic pertains only to application development in C and C++. See DirectMusic Visual Basic Samples.

[C++]

Description

DM Donuts is a variation of the Space Donuts sample with the addition of music that responds to game events.

Path

Source: (SDK root)\Samples\Multimedia\Dmusic\Src\DMDonuts

Executable: (SDK root)\Samples\Multimedia\DMusic\Bin\Dmdonuts.exe

User's Guide

While the donut floats in space, notice that the music is subtle and spacey. Press the arrow keys to move the ship. Bounce around and see how the music and rhythm respond.

Shoot the donut by firing with the space bar. Immediately there is an explosion of music and the background music grows in intensity.

Press the 7 key on the numeric keypad. This turns on the shields. Notice how the music becomes muted as if you were listening from inside the shield.

When all the donut fragments are destroyed, notice that the music immediately transitions into an ending, then starts the next level on the start of the next musical theme.

Notice that the music is never the same.

You can control the ship with the joystick if you prefer, by changing the input device under the Game menu.

The following is a complete list of game commands. All numbers must be entered from the numeric keypad. "Joy" refers to a joystick button.

Key�Command����ESC, F12�Quit��4�Turn left��6�Turn right��5 (Joy 3)�Stop��8�Accelerate forward��2�Accelerate backward��7 (Joy 2)�Shields ��SPACEBAR (Joy 1)�Fire��ENTER�Start game��F1�Toggle trailing afterimage effect on/off��F5�Toggle frame rate display on/off��F7�Turn music on/off��F10�Main menu��

The display defaults to 640x480 at 256 colors. You can specify a different resolution and pixel depth on the command line.

The game uses the following command line switches, which are case-sensitive:

e�Use software emulation, not hardware acceleration��t�Test mode, no input required��x�Stress mode. Never halt if you can help it��

These switches may be followed by three option numbers representing x-resolution, y-resolution, and bits per pixel. For example:

donuts -t 800 600 16

Programming Notes

Techniques illustrated include the following:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Composing and performing style-based segments.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Autotransitions on game state changes.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Motifs (short musical clips) to highlight actions. Because the motifs track the rhythm and harmony of the underlying music, they add to the music while providing sonic reinforcement.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Dynamic bands that change the orchestration in response to real-time events.

By default, this sample runs on the software synthesizer. On versions of the operating system that support DLS synthesis in hardware, undefine the _SOFTWARE_SYNTH_ compile flag and recompile the sample.

DirectMusic MIDI Sample

[Visual Basic]

This topic pertains only to application development in C and C++. See DirectMusic Visual Basic Samples.

[C++]

Description

The DirectMusic MIDI sample is a simple MIDI file player.

Path

Source: (SDK root)\Samples\Multimedia\Dmusic\Src\DMusMIDI

Executable: (SDK root)\Samples\Multimedia\DMusic\Bin\Dmusmidi.exe

User's Guide

Load a MIDI file by choosing Open from the File menu. (There is a sample file in the \Samples\Multimedia\DMusic\Media folder.) You can also load a file by drag-and-drop. If Autoplay Dropped Files is selected on the Options menu, a dropped file automatically starts playing.

Once a file is loaded, you can play, pause, or stop it by choosing from the File menu or the toolbar.

The Options menu provides a choice for adding reverberation to the music, and several choices for the interface. The time can be displayed in hours, minutes, and seconds from the start of play, or in music time ticks.

When no music is playing, you can select a port from the Device menu. Note that to hear music from the "MIDI Out" port, you must have an external synthesizer attached.

Programming Notes

The application demonstrates how to load a MIDI file as a segment, play it, stop it, and restart it either at the beginning or at the point where it was stopped. It also shows how to set the reverb property.

The code is written in pure C, so methods are called through pointers to vtables. For more information, see Accessing COM Objects by Using C.

DirectMusic Shell Sample

[Visual Basic]

This topic pertains only to application development in C and C++. See DirectMusic Visual Basic Samples.

[C++]

Description

The DirectMusic Shell sample demonstrates interactive music that responds to Windows system events.

Path

Source: (SDK root)\Samples\Multimedia\Dmusic\Src\DMShell

Executable: (SDK root)\Samples\Multimedia\DMusic\Bin\Dmshell.exe

User's Guide

When you run the program, its icon appears in the tray on the taskbar. Click on the icon to see a menu that allows you to change music schemes, select the output device, start and stop the music, and close the program.

Listen to the music and note how it changes and how motifs are introduced in response to system events such as minimizing, restoring, or closing a window, opening an application menu or the Start menu, and pressing a key (there are special sounds for a few keys).

Programming Notes

The Windows system messages are obtained in Dmhook.dll, the source code for which is found in the (SDK root)\Samples\Multimedia\Dmusic\Src\DMHook folder. (Dmhook.dll must be compiled with a Microsoft compiler.)

EchoTool Sample

[Visual Basic]

This topic pertains only to application development in C and C++. See DirectMusic Visual Basic Samples.

[C++]

Description

The EchoTool sample shows how to implement a tool in DirectMusic.

Path

Source: (SDK root)\Samples\Multimedia\Dmusic\Src\EchoTool

Executable: (SDK root)\Samples\Multimedia\DMusic\Bin

User's Guide

Select an option button to change the delay of the echoes. Click the Close button to exit the application.

Programming Notes

The tool creates up to four delayed echoes of the music playing through it.

Helper.cpp contains useful functions that set up DirectMusic. These functions are called from Main.cpp. Echotool.cpp contains the tool code.

For more information, see Tutorial 2: Using Tools.

MusicLines Sample

[Visual Basic]

This topic pertains only to application development in C and C++. See DirectMusic Visual Basic Samples.

[C++]

Description

The MusicLines sample demonstrates interactive music elements in a simple game, and in particular how game elements can be driven by the music.

Path

Source: (SDK root)\Samples\Multimedia\Dmusic\Src\MusicLines

Executable: (SDK root)\Samples\Multimedia\DMusic\Bin

User's Guide

In the opening dialog box, choose windowed or full-screen mode and a difficulty level, and set the players to human or computer. If two humans are playing, one can use the arrow keys while the other uses the keys AZSW. Start moving by pressing an arrow key.

The object of the game is to force the other player to collide with an existing line.

Change the direction of your line by pressing the arrow keys or the equivalent letter keys. Observe how the main music changes to reflect the current state of play, how motifs are used to signal events such as collisions, and how the speed of the lines is actually controlled by the music.

If you win against the computer, you can continue extending your line or bring the game to an end by deliberately colliding. Play again by pressing the space bar. Quit by pressing ALT+F4.

Programming Notes

The music logic is in Mlmusic.cpp and is amply commented.

PlayMotif Sample

[Visual Basic]

This topic pertains only to application development in C and C++. See DirectMusic Visual Basic Samples.

[C++]

Description

This sample application shows how motifs can be played over a primary segment.

Path

Source: (SDK root)\Samples\Multimedia\Dmusic\Src\PlayMotf

Executable: (SDK root)\Samples\Multimedia\DMusic\Bin

User's Guide

Click the buttons to play the various secondary segments (motifs) on top of the main playing primary segment. Click Close to exit the application.

Programming Notes

The program uses the registry key set up by the DirectX SDK setup to find the media file path.

PlayPrimary Sample

[Visual Basic]

This topic pertains only to application development in C and C++. See DirectMusic Visual Basic Samples.

[C++]

Description

The PlayPrimary sample shows how to play a primary segment based on an authored music section.

Path

Source: (SDK root)\Samples\Multimedia\Dmusic\Src\PlayPri

Executable: (SDK root)\Samples\Multimedia\DMusic\Bin

User's Guide

Click Close to quit the program.

Programming Notes

The program uses the registry key set up by the DirectX SDK setup to find the media file path.

IDH_DirectMusicBand_dmusic_vb

IDH_DirectMusicBand.CreateSegment_dmusic_vb

IDH_DirectMusicBand.Download_dmusic_vb

IDH_DirectMusicBand.Unload_dmusic_vb

IDH_DirectMusicChordMap_dmusic_vb

IDH_DirectMusicCollection_dmusic_vb

IDH_DirectMusicComposer_dmusic_vb

IDH_DirectMusicComposer.AutoTransition_dmusic_vb

IDH_DirectMusicComposer.ChangeChordMap_dmusic_vb

IDH_DirectMusicComposer.ComposeSegmentFromShape_dmusic_vb

IDH_DirectMusicComposer.ComposeSegmentFromTemplate_dmusic_vb

IDH_DirectMusicComposer.ComposeTemplateFromShape_dmusic_vb

IDH_DirectMusicComposer.ComposeTransition_dmusic_vb

IDH_DirectMusicLoader_dmusic_vb

IDH_DirectMusicLoader.LoadBand_dmusic_vb

IDH_DirectMusicLoader.LoadBandFromResource_dmusic_vb

IDH_DirectMusicLoader.LoadChordMap_dmusic_vb

IDH_DirectMusicLoader.LoadChordMapFromResource_dmusic_vb

IDH_DirectMusicLoader.LoadCollection_dmusic_vb

IDH_DirectMusicLoader.LoadCollectionFromResource_dmusic_vb

IDH_DirectMusicLoader.LoadSegment_dmusic_vb

IDH_DirectMusicLoader.LoadSegmentFromResource_dmusic_vb

IDH_DirectMusicLoader.LoadStyle_dmusic_vb

IDH_DirectMusicLoader.LoadStyleFromResource_dmusic_vb

IDH_DirectMusicLoader.SetSearchDirectory_dmusic_vb

IDH_DirectMusicPerformance_dmusic_vb

IDH_DirectMusicPerformance.AddNotificationType_dmusic_vb

IDH_DirectMusicPerformance.AdjustTime_dmusic_vb

IDH_DirectMusicPerformance.ClockToMusicTime_dmusic_vb

IDH_DirectMusicPerformance.CloseDown_dmusic_vb

IDH_DirectMusicPerformance.GetBumperLength_dmusic_vb

IDH_DirectMusicPerformance.GetChordmap_dmusic_vb

IDH_DirectMusicPerformance.GetClockTime_dmusic_vb

IDH_DirectMusicPerformance.GetCommand_dmusic_vb

IDH_DirectMusicPerformance.GetGrooveLevel_dmusic_vb

IDH_DirectMusicPerformance.GetLatencyTime_dmusic_vb

IDH_DirectMusicPerformance.GetMasterAutoDownload_dmusic_vb

IDH_DirectMusicPerformance.GetMasterGrooveLevel_dmusic_vb

IDH_DirectMusicPerformance.GetMasterTempo_dmusic_vb

IDH_DirectMusicPerformance.GetMasterVolume_dmusic_vb

IDH_DirectMusicPerformance.GetMusicTime_dmusic_vb

IDH_DirectMusicPerformance.GetNotificationPMsg_dmusic_vb

IDH_DirectMusicPerformance.GetPortCaps_dmusic_vb

IDH_DirectMusicPerformance.GetPortCount_dmusic_vb

IDH_DirectMusicPerformance.GetPortName_dmusic_vb

IDH_DirectMusicPerformance.GetPrepareTime_dmusic_vb

IDH_DirectMusicPerformance.GetQueueTime_dmusic_vb

IDH_DirectMusicPerformance.GetResolvedTime_dmusic_vb

IDH_DirectMusicPerformance.GetSegmentState_dmusic_vb

IDH_DirectMusicPerformance.GetStyle_dmusic_vb

IDH_DirectMusicPerformance.GetTempo_dmusic_vb

IDH_DirectMusicPerformance.GetTimeSig_dmusic_vb

IDH_DirectMusicPerformance.Init_dmusic_vb

IDH_DirectMusicPerformance.Invalidate_dmusic_vb

IDH_DirectMusicPerformance.IsPlaying_dmusic_vb

IDH_DirectMusicPerformance.MusicToClockTime_dmusic_vb

IDH_DirectMusicPerformance.PlaySegment_dmusic_vb

IDH_DirectMusicPerformance.RemoveNotificationType_dmusic_vb

IDH_DirectMusicPerformance.Reset_dmusic_vb

IDH_DirectMusicPerformance.SendCurvePMSG_dmusic_vb

IDH_DirectMusicPerformance.SendMIDIPMSG_dmusic_vb

IDH_DirectMusicPerformance.SendNotePMSG_dmusic_vb

IDH_DirectMusicPerformance.SendPatchPMSG_dmusic_vb

IDH_DirectMusicPerformance.SendTempoPMSG_dmusic_vb

IDH_DirectMusicPerformance.SendTimeSigPMSG_dmusic_vb

IDH_DirectMusicPerformance.SendTransposePMSG_dmusic_vb

IDH_DirectMusicPerformance.SetBumperLength_dmusic_vb

IDH_DirectMusicPerformance.SetMasterAutoDownload_dmusic_vb

IDH_DirectMusicPerformance.SetMasterGrooveLevel_dmusic_vb

IDH_DirectMusicPerformance.SetMasterTempo_dmusic_vb

IDH_DirectMusicPerformance.SetMasterVolume_dmusic_vb

IDH_DirectMusicPerformance.SetNotificationHandle_dmusic_vb

IDH_DirectMusicPerformance.SetPort_dmusic_vb

IDH_DirectMusicPerformance.SetPrepareTime_dmusic_vb

IDH_DirectMusicPerformance.Stop_dmusic_vb

IDH_DirectMusicSegment_dmusic_vb

IDH_DirectMusicSegment.Clone_dmusic_vb

IDH_DirectMusicSegment.ConnectToCollection_dmusic_vb

IDH_DirectMusicSegment.Download_dmusic_vb

IDH_DirectMusicSegment.GetLength_dmusic_vb

IDH_DirectMusicSegment.GetLoopPointEnd_dmusic_vb

IDH_DirectMusicSegment.GetLoopPointStart_dmusic_vb

IDH_DirectMusicSegment.GetRepeats_dmusic_vb

IDH_DirectMusicSegment.GetStartPoint_dmusic_vb

IDH_DirectMusicSegment.SetAutoDownloadEnable_dmusic_vb

IDH_DirectMusicSegment.SetLength_dmusic_vb

IDH_DirectMusicSegment.SetLoopPoints_dmusic_vb

IDH_DirectMusicSegment.SetRepeats_dmusic_vb

IDH_DirectMusicSegment.SetStandardMidiFile_dmusic_vb

IDH_DirectMusicSegment.SetStartPoint_dmusic_vb

IDH_DirectMusicSegment.SetTempoEnable_dmusic_vb

IDH_DirectMusicSegment.SetTimeSigEnable_dmusic_vb

IDH_DirectMusicSegment.Unload_dmusic_vb

IDH_DirectMusicSegmentState_dmusic_vb

IDH_DirectMusicSegmentState.GetRepeats_dmusic_vb

IDH_DirectMusicSegmentState.GetSeek_dmusic_vb

IDH_DirectMusicSegmentState.GetSegment_dmusic_vb

IDH_DirectMusicSegmentState.GetStartPoint_dmusic_vb

IDH_DirectMusicSegmentState.GetStartTime_dmusic_vb

IDH_DirectMusicStyle_dmusic_vb

IDH_DirectMusicStyle.GetBand_dmusic_vb

IDH_DirectMusicStyle.GetBandCount_dmusic_vb

IDH_DirectMusicStyle.GetBandName_dmusic_vb

IDH_DirectMusicStyle.GetDefaultBand_dmusic_vb

IDH_DirectMusicStyle.GetMotif_dmusic_vb

IDH_DirectMusicStyle.GetMotifCount_dmusic_vb

IDH_DirectMusicStyle.GetMotifName_dmusic_vb

IDH_DirectMusicStyle.GetTempo_dmusic_vb

IDH_DirectMusicStyle.GetTimeSignature_dmusic_vb

IDH_DMUS_CURVE_PMSG_dmusic_vb

IDH_DMUS_NOTE_PMSG_dmusic_vb

IDH_DMUS_NOTIFICATION_PMSG_dmusic_vb

IDH_DMUS_PORTCAPS_dmusic_vb

IDH_DMUS_TIMESIGNATURE_dmusic_vb

IDH_CONST_DMUS_dmusic_vb

IDH_CONST_DMUS_COMMANDT_TYPES_dmusic_vb

IDH_CONST_DMUS_COMPOSEF_FLAGS_dmusic_vb

IDH_CONST_DMUS_CURVE_FLAGS_dmusic_vb

IDH_CONST_DMUS_CURVES_dmusic_vb

IDH_CONST_DMUS_CURVET_dmusic_vb

IDH_CONST_DMUS_EFFECT_FLAGS_dmusic_vb

IDH_CONST_DMUS_NOTEF_FLAGS_dmusic_vb

IDH_CONST_DMUS_NOTIFICATION_SUBTYPE_dmusic_vb

IDH_CONST_DMUS_NOTIFICATION_TYPE_dmusic_vb

IDH_CONST_DMUS_PC_CLASS_dmusic_vb

IDH_CONST_DMUS_PC_FLAGS_dmusic_vb

IDH_CONST_DMUS_PLAYMODE_FLAGS_dmusic_vb

IDH_CONST_DMUS_PMSGF_FLAGS_dmusic_vb

IDH_CONST_DMUS_PORT_TYPE_dmusic_vb

IDH_CONST_DMUS_SEGF_FLAGS_dmusic_vb

IDH_CONST_DMUS_SHAPET_TYPES_dmusic_vb

IDH_CONST_DMUSERR_dmusic_vb

� FILENAME * MERGEFORMAT �DMOVER.doc� – page � PAGE * MERGEFORMAT �144�

