DirectInput

This section provides information about the DirectInput® component of the Microsoft® DirectX® application programming interface (API). The information is divided into the following topics:

�SYMBOL 183 \f "Symbol" \s 11 \h �	About DirectInput

�SYMBOL 183 \f "Symbol" \s 11 \h �	Why Use DirectInput?

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInput Architecture

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInput Essentials

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInput Tutorials

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInput Reference

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInput Tools and Samples

About DirectInput

DirectInput is an API for input devices including the mouse, keyboard, joystick, and other game controllers, as well as for force-feedback (input/output) devices.

Why Use DirectInput?

Aside from providing new services for devices not supported by the Microsoft® Win32® API, DirectInput gives faster access to input data by communicating directly with the hardware drivers, rather than relying on Microsoft® Windows® messages.

DirectInput enables an application to retrieve data from input devices even when the application is in the background. It also provides full support for any type of input device, as well as for force feedback.

The extended services and improved performance of DirectInput make it a valuable tool for games, simulations, and other real-time interactive applications running under Windows.

DirectInput Architecture

This section covers the basic structure of DirectInput and how it works with both the Windows operating system and input hardware. For practical information on how to implement the elements of DirectInput introduced here, see DirectInput Essentials.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Architectural Overview of DirectInput

�SYMBOL 183 \f "Symbol" \s 11 \h �	Integration with Windows

�SYMBOL 183 \f "Symbol" \s 11 \h �	Human Interface Device

Architectural Overview of DirectInput

[C++]

The basic architecture of a DirectInput implementation consists of the DirectInput object, which supports the IDirectInput7 COM interface, and an object for each input device that provides data. Each device in turn has device object instances or more simply device objects, which are individual controls or switches such as keys, buttons, or axes.

Note

The word object is used to describe both a code object and one of the individual controls on an input device. In this documentation, device object means an input device control, rather than a code object that instantiates the IDirectInputDevice7 interface. Code objects representing whole devices are referred to as DirectInputDevice objects.

Each DirectInputDevice object represents one input device, such as a mouse, keyboard, or joystick. A piece of hardware that is really a combination of different types of input devices, such as a keyboard with a touchpad, can be represented by two or more DirectInputDevice objects. A force-feedback device is represented by a single joystick object that handles both input and output.

DirectInputDevice objects instantiate the IDirectInputDevice7 interface.

The application ascertains the number and type of device objects available by using the IDirectInputDevice7::EnumObjects method. Individual device objects are not encapsulated as code objects, but are described in DIDEVICEOBJECTINSTANCE structures.

Force-feedback effects are represented by the IDirectInputEffect interface. Methods of this interface are used to create, modify, start, and stop effects.

All DirectInput interfaces are available in ANSI and Unicode versions. If "UNICODE" is defined during compilation, the Unicode versions are used.

[Visual Basic]

The basic architecture of a DirectInput implementation consists of a single DirectInput object and a DirectInputDevice object for each input device that is being used by the application. The DirectInputDevice object is used for retrieving the input data.

Any available device, regardless of whether it is being used by DirectInput, can also be represented by a DirectInputDeviceInstance object, which can be used to retrieve miscellaneous information about that device.

Each DirectInputDevice object represents one input device, such as a mouse, keyboard, or joystick. (In this documentation, the term joystick includes all game controllers other than a mouse or keyboard.) A piece of hardware that is really a combination of different types of input devices, such as a keyboard with a touchpad, can be represented by two or more DirectInputDevice objects. A force-feedback device is represented by a single joystick object that handles both input and output.

Each device in turn has device objects, which are individual controls or switches, such as keys, buttons, or axes. Each device object is represented by an instance of the DirectInputDeviceObjectInstance class, whose methods can be used to retrieve information about the device object. (The input data, however, is always retrieved by DirectInputDevice.)

Note

The word object is used to describe both a code object and one of the individual controls on an input device. In this documentation, device object means an input device control, rather than a DirectInputDevice object.

Devices and device objects can be enumerated, and the resulting collections are represented by DirectInputEnumDevices and DirectInputEnumDeviceObjects objects.

Integration with Windows

Because DirectInput works directly with the device drivers, it either suppresses or ignores mouse and keyboard messages. When using the mouse in exclusive mode, DirectInput suppresses mouse messages, and therefore Windows is unable to show the standard cursor.

DirectInput also ignores mouse and keyboard settings made by the user in Control Panel.

For the keyboard, character repeat settings are not used by DirectInput. When using buffered data, DirectInput interprets each press and release as a single event, with no repetition. When using immediate data, DirectInput is concerned only with the present physical state of the keys, not with keyboard events as interpreted by Windows.

For the mouse, DirectInput ignores Control Panel settings such as acceleration and swapped buttons. Again, DirectInput works directly with the mouse driver, bypassing the subsystem of Windows that interprets mouse data for windowed applications.

Note

Settings in the driver itself are recognized by DirectInput. For example, if the user has a three-button mouse and uses the driver-utility software to make the middle button a double-click shortcut, DirectInput reports a click of the middle button as two clicks of the primary button.

For a joystick or other game controller, DirectInput does use the calibrations set by the user in Control Panel.

Human Interface Device

Human Interface Device (HID) is a class under the universal serial bus (USB) standard. DirectInput provides full support for devices that conform with HID.

Getting data from HID devices is substantially the same as from traditional devices. In addition, HID devices can accept output: for example, you can turn the keyboard LEDs on and off.

By querying a HID device, DirectInput can determine its usage page and usage. These are predefined codes that give information about the type and subtype of the device.

HID controls are grouped in collections. Collections can be nested.

For more information about HID, see http://www.usb.org.

DirectInput Essentials

This section is a practical guide to the concepts and components of DirectInput and provides enough information for you to get started in implementing the DirectInput system in your application. For a broader overview, see DirectInput Architecture.

The following topics are discussed:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Creating DirectInput

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInput Device Enumeration

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInput Devices

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInput Device Data

�SYMBOL 183 \f "Symbol" \s 11 \h �	Force Feedback

�SYMBOL 183 \f "Symbol" \s 11 \h �	Designing for Previous Versions of DirectInput

Creating DirectInput

[C++]

The first step in any DirectInput application is obtaining the IDirectInput7 interface. You can do this most easily by calling the DirectInputCreateEx function.

You should create a single DirectInput object and not release it until the application terminates.

[Visual Basic]

The first step in any DirectInput application is creating the DirectInput object. Do this by using the DirectX7.DirectInputCreate method.

You should create a single DirectInput object and not destroy it until the application terminates.

DirectInput Device Enumeration

DirectInput can query the system for all available input devices, determine whether they are connected, and return information about them. This process is called enumeration.

[C++]

If your application is using only the standard keyboard or mouse, or both, you do not need to enumerate the available input devices. As explained under Creating the DirectInput Device, you can use predefined global variables when calling the IDirectInput7::CreateDeviceEx method.

For all other input devices, and for systems with multiple keyboards or mouse devices, call IDirectInput7::EnumDevices to obtain at least the instance globally unique identifiers (GUIDs) so that DirectInputDevice objects can be created. You might also want to enumerate to give the user a choice of available devices.

The following is a sample implementation of the IDirectInput7::EnumDevices method:

/* lpdi is a valid IDirectInput7 interface pointer. */

GUID KeyboardGUID = GUID_SysKeyboard;

lpdi->EnumDevices(DIDEVTYPE_KEYBOARD,

 DIEnumDevicesCallback,

 &KeyboardGUID,

 DIEDFL_ATTACHEDONLY);

The first parameter determines what types of devices are to be enumerated. It is NULL if you want to enumerate all devices, regardless of type; otherwise, it is one of the DIDEVTYPE_* values described in DIDEVICEINSTANCE.

The second parameter is a pointer to a callback function to be called once for each device enumerated. This function can be called by any name; the documentation uses the placeholder name DIEnumDevicesCallback.

The third parameter to the EnumDevices method is any 32-bit value that you want to pass into the callback function. In this example, it is a pointer to a variable of type GUID, passed in so that the callback can assign a keyboard instance GUID.

The fourth parameter is a flag to request enumeration of either all devices or only those that are attached (DIEDFL_ALLDEVICES or DIEDFL_ATTACHEDONLY).

If your application is using more than one input device, the callback function is a good place to initialize each device as it is enumerated. (For an example, see Tutorial 3: Using the Joystick.) You obtain the instance GUID of the device from the callback function. You can also perform other processing here, such as looking for particular subtypes of devices or adding the device name to a list box.

The following code example checks for the presence of an enhanced keyboard and stops the enumeration as soon as it finds one. It assigns the instance GUID of the last keyboard found to the KeyboardGUID variable (passed in as pvRef by the previous example of a EnumDevices call), which can then be used in a call to IDirectInput7::CreateDeviceEx.

BOOL hasEnhanced;

BOOL CALLBACK DIEnumKbdCallback(LPCDIDEVICEINSTANCE lpddi,

 LPVOID pvRef)

{

 (GUID) pvRef = lpddi->guidInstance;

 if (GET_DIDEVICE_SUBTYPE(lpddi->dwDevType) ==

 DIDEVTYPEKEYBOARD_PCENH)

 {

 hasEnhanced = TRUE;

 return DIENUM_STOP;

 }

 return DIENUM_CONTINUE;

} // End of callback

The first parameter points to a structure containing information about the device. This structure is created for you by DirectInput.

The second parameter points to data passed in from EnumDevices. In this case, it is a pointer to the variable KeyboardGUID. This variable was assigned a default value earlier, but it is given a new value each time that a device is enumerated. It is not important what instance GUID you use for a single keyboard, but the code example illustrates a technique for retrieving an instance GUID from the callback.

The return value in this case indicates that enumeration is to stop if the sought-for device has been found, or otherwise that it is to continue. Enumeration automatically stops as soon as all devices have been enumerated.

[Visual Basic]

If your application is using only the standard keyboard or mouse, or both, you do not need to enumerate the available input devices. As explained under Creating a DirectInput Device, you can use predefined GUID aliases when calling the DirectInput.CreateDevice method.

For all other input devices, and for systems with multiple keyboards or mouse devices, call DirectInput.GetDIEnumDevices to build a collection of available devices. This method returns a DirectInputEnumDevices object representing the collection. Each device in the collection can be retrieved as a DirectInputDeviceInstance object by using the DirectInputEnumDevices.GetItem method.

At the very least, you must retrieve the unique identifier for a nonstandard device by calling DirectInputDeviceInstance.GetGuidInstance before you can create a DirectInputDevice object for that device. You might also want to enumerate devices to look for particular types and subtypes (by using DirectInputDeviceInstance.GetDevType) or to populate a list box that allows the user to select a game controller.

You might even want to search for a device with particular capabilities. To do this, you must create a DirectInputDevice object for each candidate to examine it further by using the DirectInputDevice.GetCapabilities method.

DirectInput Devices

This section contains information about the code objects that represent devices such as a mouse, keyboards, and joysticks. The following topics are covered:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Device Setup

�SYMBOL 183 \f "Symbol" \s 11 \h �	Creating a DirectInput Device

�SYMBOL 183 \f "Symbol" \s 11 \h �	Device Capabilities

�SYMBOL 183 \f "Symbol" \s 11 \h �	Cooperative Levels

�SYMBOL 183 \f "Symbol" \s 11 \h �	Device Object Enumeration

�SYMBOL 183 \f "Symbol" \s 11 \h �	Device Data Formats

�SYMBOL 183 \f "Symbol" \s 11 \h �	Device Properties

�SYMBOL 183 \f "Symbol" \s 11 \h �	Acquiring Devices

�SYMBOL 183 \f "Symbol" \s 11 \h �	Recognizing Device Changes

For information on how to retrieve and interpret data from devices, see DirectInput Device Data.

Device Setup

Your application must create an object for each device from which it expects input. It must also prepare each device for use, which requires, at the very least, setting the data format and acquiring the device. You might also want to carry out other preparatory tasks, such as getting information about the devices and changing their properties.

The following tasks are part of the setup process. Certain steps are always required; others are only necessary if you need further information about devices or need to change default values.

	1.	Create the DirectInput device (required). See Creating a DirectInput Device.

	2.	Get the device capabilities (optional).

	3.	Enumerate the keys, buttons, and axes on the device (optional). See Device Object Enumeration.

	4.	Set the cooperative level (highly recommended).

	5.	Set the data format (required).

	6.	Set the device properties (you must at least set the buffer size if you intend to get buffered data).

	7.	When ready to read data, acquire the device (required). See Acquiring Devices.

Creating a DirectInput Device

To get input data from a device, you first have to create an object to represent that device.

[C++]

The IDirectInput7::CreateDeviceEx method is used to obtain a pointer to the IDirectInputDevice7 interface. Methods of this interface are then used to manipulate the device and obtain data.

The code following example, where lpdi is a pointer to the IDirectInput7 interface, creates a keyboard device:

LPDIRECTINPUTDEVICE7 lpdiKeyboard;

lpdi->CreateDeviceEx(GUID_SysKeyboard, IID_IDirectInputDevice7,

 (void**)&lpdiKeyboard, NULL);

The first parameter in IDirectInput7::CreateDeviceEx is an instance GUID that identifies the instance of the device for which the interface is to be created. DirectInput has two predefined GUIDs, GUID_SysMouse and GUID_SysKeyboard, which represent the system mouse and keyboard. You can pass these identifiers into the CreateDeviceEx method. The global variable GUID_Joystick should not be used as a parameter for CreateDeviceEx because it is a product GUID, not an instance GUID.

Note

If the computer has more than one mouse, input from all of them is combined to form the system device. The same is true for multiple keyboards.

DirectInput provides four other predefined GUIDs primarily for testing. These are GUID_SysKeyboardEm, GUID_SysKeyboardEm2, GUID_SysMouseEm, and GUID_SysMouseEm2. Passing one of these GUIDs to CreateDeviceEx grants access to the system keyboard or mouse through an emulation layer, at either level 1 or level 2. These GUIDs always represent the system mouse or keyboard. They are aliases for GUID_SysKeyboard and GUID_SysMouse, so they are not enumerated by IDirectInput7::EnumDevices unless the DIEDFL_INCLUDEALIASES flag is passed.

For devices other than the system mouse or keyboard, use the instance GUID for the device returned by IDirectInput7::EnumDevices. The instance GUID for a device is always the same. You can allow the user to select a device from a list of those enumerated, then save the GUID to a configuration file and use it again in future sessions.

[Visual Basic]

The DirectInput.CreateDevice method is used to obtain a DirectInputDevice object. Methods of this interface are then used to manipulate the device and obtain data.

The following code example, where di is the DirectInput object, creates a keyboard device:

Dim diDev As DirectInputDevice

Set diDev = di.CreateDevice("GUID_SysKeyboard")

The parameter is an alias for a GUID that identifies the instance of the device for which the interface is to be created. DirectInput provides two predefined GUIDs, GUID_SysMouse and GUID_SysKeyboard, which represent the system mouse and keyboard, and you can pass either of these to the CreateDevice method.

Note

If the computer has more than one mouse, input from all of them is combined to form the system device. The same is true for multiple keyboards.

For devices other than the system mouse or keyboard, use the instance GUID for the device obtained from DirectInputDeviceInstance.GetGuidInstance. The instance GUID for a device is always the same. You can allow the user to select a device from a list of those enumerated, then save the GUID to a configuration file and use it again in future sessions.

In the following code example, it is presumed that the application has enumerated devices and found a suitable one, diDevInstance, which is to be created as a DirectInputDevice:

Dim guid As String

guid = diDevInstance.GetGuidInstance

Set diDev = di.CreateDevice(guid)

For more information on obtaining the DirectInputDeviceInstance object, see DirectInput Device Enumeration.

Device Capabilities

Before you begin asking for input from a device, you need to find out something about its capabilities. Does the joystick have a point-of-view hat? Is the mouse currently attached to the user's computer?

[C++]

Such questions are answered with a call to the IDirectInputDevice7::GetCapabilities method, which returns the data in a DIDEVCAPS structure. As with other such structures in DirectX, you must initialize the dwSize member before passing this structure to the method.

Note

To optimize speed or memory usage, you can use the smaller DIDEVCAPS_DX3 structure instead.

The following code example checks whether the mouse is attached and whether it has a third axis (presumably a wheel):

// LPDIRECTINPUTDEVICE7 lpdiMouse; // initialized previously

DIDEVCAPS DIMouseCaps;

HRESULT hr;

BOOLEAN WheelAvailable;

DIMouseCaps.dwSize = sizeof(DIDEVCAPS);

hr = lpdiMouse->GetCapabilities(&DIMouseCaps);

WheelAvailable = ((DIMouseCaps.dwFlags & DIDC_ATTACHED)

 && (DIMouseCaps.dwAxes > 2));

Another way to check for a button or axis is to call IDirectInputDevice7::GetObjectInfo for that object. If the call returns DIERR_OBJECTNOTFOUND, the object is not present. The following code example determines whether there is a z-axis, even if it is not the third axis:

DIDEVICEOBJECTINSTANCE didoi;

didoi.dwSize = sizeof(DIDEVICEOBJECTINSTANCE);

hr = lpdiMouse->GetObjectInfo(&didoi,DIMOFS_Z, DIPH_BYOFFSET);

WheelAvailable = SUCCEEDED(hr);

[Visual Basic]

Such questions are answered with a call to the DirectInputDevice.GetCapabilities method, which returns the data in a DIDEVCAPS type.

The following code example checks whether the mouse is attached and whether it has a third axis (presumably a wheel):

/* diMouse is a valid DirectInputDevice object. */

Dim WheelAvailable As Boolean

Dim dicaps as DIDEVCAPS

Call diDev.GetCapabilities(dicaps)

WheelAvailable = ((dicaps.lFlags And DIDC_ATTACHED) _

 And (dicaps.lAxes > 2))

Another way to check for a certain button or axis is to call DirectInputDevice.GetObjectInfo for that object. If the call raises error DIERR_NOTFOUND, the object is not present. The following code example determines whether there is a z-axis, even if it is not the third axis:

Dim didoi As DirectInputDeviceObjectInstance

On Error GoTo NOTFOUND

Set didoi = diDev.GetObjectInfo(DIMOFS_Z, DIPH_BYOFFSET)

On Error GoTo 0

.

.

.

NOTFOUND:

If Err.Number = DIERR_NOTFOUND Then MsgBox "No z-axis found."

End If

Cooperative Levels

[C++]

The cooperative level of a device determines how the input is shared with other applications and with the Windows system. You set it by using the IDirectInputDevice7::SetCooperativeLevel method, as in the following code example:

/* hwnd is the top-level window handle. */

lpdiDevice->SetCooperativeLevel(hwnd,

 DISCL_NONEXCLUSIVE | DISCL_FOREGROUND)

The parameters are the handle to the top-level window associated with the device (generally the application window) and one or more flags.

[Visual Basic]

The cooperative level of a device determines how the input is shared with other applications and with the Windows system. You set it by using the DirectInputDevice.SetCooperativeLevel method, as in the following code example:

diDevice.SetCooperativeLevel(hWnd,

 DISCL_NONEXCLUSIVE Or DISCL_FOREGROUND)

The parameters are the handle to the top-level window associated with the device (generally the application window) and one or more flags. The hWnd property of a form does not become valid until the form is shown. If you are initializing the DirectInput device in the Load method of the application's main form, you must call Show before attempting to set the cooperative level.

Note

Although DirectInput provides a default setting, you should still explicitly set the cooperative level because this is the only way to give DirectInput the window handle. Without this handle, DirectInput cannot react to situations that involve window messages, such as joystick recalibration.

The valid flag combinations are shown in the following table:

Flags�Notes����DISCL_NONEXCLUSIVE�DISCL_BACKGROUND�The default setting��DISCL_NONEXCLUSIVE�DISCL_FOREGROUND� ��DISCL_EXCLUSIVE�DISCL_FOREGROUND� ��DISCL_EXCLUSIVE�DISCL_BACKGROUND�Not valid for keyboard or mouse��

[C++]

For the keyboard, you can also include DISCL_NOWINKEY in combination with DISCL_NONEXCLUSIVE. This flag disables the Windows key so that users cannot inadvertently break out of the application. In exclusive mode, the Windows key is always disabled.

The cooperative level has two main components: whether the device is being used in the foreground or the background, and whether it is being used exclusively or nonexclusively.

Foreground vs. Background

A foreground cooperative level means that the input device is available only when the application is in the foreground or, in other words, has the input focus. If the application moves to the background, the device is automatically unacquired, or made unavailable.

A background cooperative level really means foreground and background. A device with a background cooperative level can be acquired and used by an application at any time.

You will usually want to have foreground access only, since most applications are not interested in input that takes place when another program is in the foreground.

While developing an application, it is useful to employ conditional compilation so that the background cooperative level is always set for debugging. This prevents your application from losing access to the device every time that it moves to the background as you switch to the debugging environment.

Exclusive vs. Nonexclusive

The fact that your application is using a device at the exclusive level does not mean that other applications cannot get data from the device. However, it does mean that no other application can also acquire the device exclusively.

Take the example of a music player that accepts input from a hand-held remote-control device, even when the application is running in the background. If you run a similar application that plays movies in response to signals from the same remote control, what happens when the user presses Play? Both programs start playing, which is probably not what the user wants. To prevent this from happening, each application should have the DISCL_EXCLUSIVE flag set so that only one of them can be running at a time.

To use force-feedback effects, an application must have exclusive access to the device.

Windows itself requires exclusive access to the mouse because mouse events such as a click on an inactive window could force an application to unacquire the device, with potentially harmful results, such as a loss of data from the input buffer. Therefore, when an application has exclusive access to the mouse, Windows is not allowed any access at all. No mouse messages are generated. A further side effect is that the cursor disappears.

When an application has exclusive access to the keyboard, DirectInput suppresses all keyboard messages except CTRL+ALT+DEL and, on Windows 95 and Windows 98, ALT+TAB.

Device Object Enumeration

It might be necessary for your application to determine what buttons or axes are available on a given device. To do this, you enumerate the device objects in much the same way that you enumerate devices.

[C++]

To some extent, IDirectInputDevice7::EnumObjects overlaps the functionality of IDirectInputDevice7::GetCapabilities. Either method can be used to determine how many buttons or axes are available. However, EnumObjects is intended for cataloging all the available objects, rather than checking for a particular one. The DirectInput QuickTest application provided with the DirectX SDK, for example, uses EnumObjects to populate the list on the Objects tabbed page for the selected device.

Like IDirectInput7::EnumDevices, the EnumObjects method has a callback function that allows you to do other processing on each object—for example, adding it to a list or creating a corresponding element on a user interface.

The following code example extracts the name of each object so that it can be added to a string list or array. This standard callback is documented under the placeholder name DIEnumDeviceObjectsCallback, but you can give it any name that you like. Remember, this function is called once for each object enumerated.

char szName[MAX_PATH];

BOOL CALLBACK DIEnumDeviceObjectsCallback(

 LPCDIDEVICEOBJECTINSTANCE lpddoi,

 LPVOID pvRef)

{

 lstrcpy(szName, lpddoi->tszName);

 // Now, add szName to a list or array.

 .

 .

 .

 return DIENUM_CONTINUE;

}

The first parameter points to a structure containing information about the object. This structure is created for you by DirectInput.

The second parameter is an application-defined pointer to data, equivalent to the second parameter to EnumObjects. In the example, this parameter is not used.

The return value in this case indicates that enumeration is to continue as long as there are objects to be enumerated.

The following code example calls the EnumObjects method, which puts the callback function to work.

lpdiMouse->EnumObjects(DIEnumDeviceObjectsCallback,

 NULL, DIDFT_ALL);

The first parameter is the address of the callback function.

The second parameter can be a pointer to any data that you want to use or modify in the callback. The example does not use this parameter and, therefore, passes NULL.

The third parameter is a flag to indicate which type or types of objects are to be included in the enumeration. In the example, all objects are to be enumerated. To restrict the enumeration, you can use one or more of the other DIDFT_* flags listed in IDirectInput7::EnumDevices.

Note

Some of the DIDFT_* flags are combinations of others; for example, DIDFT_AXIS is equivalent to DIDFT_ABSAXIS | DIDFT_RELAXIS.

[Visual Basic]

You enumerate device objects by calling DirectInputDevice.GetDeviceObjectsEnum, which returns an instance of the DirectInputEnumDeviceObjects class representing the collection of available device objects that match the requested parameters.

The following code example enumerates axes on a device:

' diDev is a DirectInputDevice object.

Dim diEnumObjects As DirectInputEnumDeviceObjects

Set diEnumObjects = diDev.GetDeviceObjectsEnum(DIDFT_AXIS)

The parameter is a flag to indicate which type or types of objects are to be included in the enumeration.

Note

Some of the CONST_DIDFTFLAGS flags are combinations of others; for example, DIDFT_AXIS is equivalent to DIDFT_ABSAXIS OR DIDFT_RELAXIS.

To obtain information about a particular device object, call the methods of a DirectInputDeviceObjectInstance object obtained by calling DirectInputEnumDeviceObjects.GetItem. Information available for a device object includes its name, its type, and its offset in the data structure for the device.

The following code example lists the names of the axes enumerated in the previous example:

Dim diDevEnumObjects As DirectInputEnumDeviceObjects

Set diDevEnumObjects = diDev.GetDeviceObjectsEnum(DIDFT_AXIS)

Dim diDevObjInstance As DirectInputDeviceObjectInstance

Dim i As Integer

For i = 1 To diEnumObjects.GetCount

 Set diDevObjInstance = diEnumObjects.GetItem(i)

 Call List1.AddItem(diDevObjInstance.GetName)

Next i

Device Data Formats

Setting the data format for a device is an essential step before you can acquire and begin using the device. This is true even if you do not intend to retrieve immediate (state) data from the device. DirectInput uses the data format in many methods to identify particular device objects.

[C++]

The IDirectInputDevice7::SetDataFormat method tells DirectInput what device objects will be used and how the data will be arranged.

The examples in the reference for the DIDATAFORMAT and DIOBJECTDATAFORMAT structures show how to set up custom data formats for nonstandard devices. Fortunately, this step is not necessary for the joystick, keyboard, and mouse. DirectInput provides five global variables, c_dfDIJoystick, c_dfDIJoystick2, c_dfDIKeyboard, c_dfDIMouse, and c_dfDIMouse2, which can be passed in to SetDataFormat to create a standard data format for these devices.

In the following code example, lpdiMouse is an initialized pointer to the mouse DirectInputDevice object:

lpdiMouse->SetDataFormat(&c_dfDIMouse);

Note

You cannot change the dwFlags member in the predefined DIDATAFORMAT global variables (for example, to change the property of an axis), because they are const variables. To change properties, use the IDirectInputDevice7::SetProperty method after setting the data format, but before acquiring the device.

[Visual Basic]

The DirectInputDevice.SetCommonDataFormat and DirectInputDevice.SetDataFormat methods tell DirectInput what device objects will be used and how the data will be arranged.

For standard devices—the mouse, keyboard, and any game controller whose input data can be described in a DIJOYSTATE or DIJOYSTATE2 type—you can set the data format by calling the SetCommonDataFormat method, passing in a constant from the CONST_DICOMMONDATAFORMATS enumeration. The common data formats are adequate for most applications.

For specialized devices, you must pass a description of the data format to the SetDataFormat method. The following code example sets the data format for a device with two axes, both of which require a Long for their data, and no buttons:

Dim dx As New DirectX7

Dim di As DirectInput

Dim did As DirectInputDevice

Dim fD As DIDATAFORMAT

Dim fDA(1) As DIOBJECTDATAFORMAT

Private Sub Form_Load()

 Set di = dx.DirectInputCreate()

 Set did = di.CreateDevice("GUID_SysMouse")

 fDA(0).lFlags = DIDOI_POLLED

 fDA(0).lOfs = 0

 fDA(0).lType = DIDFT_RELAXIS

 fDA(0).strGuid = "GUID_XAxis"

 fDA(1).lFlags = DIDOI_POLLED

 fDA(1).lOfs = 4

 fDA(1).lType = DIDFT_RELAXIS

 fDA(1).strGuid = "GUID_YAxis"

 fD.dataSize = 8

 fD.lFlags = DIDF_RELAXIS

 fD.lObjSize = 4

 fD.numObjs = 2

 did.SetDataFormat fD, fDA()

End Sub

Device Properties

Properties of DirectInput devices include the size of the data buffer, the range and granularity of values returned from an axis, whether axis data is relative or absolute, and the dead zone and saturation values for a joystick axis, which affect the relationship between the physical position of the stick and the reported data. Specialized devices can have other properties, as well.

With one exception—the gain property of a force-feedback device—properties can be changed only when the device is in an unacquired state.

[C++]

Before calling the IDirectInputDevice7::SetProperty or the IDirectInputDevice7::GetProperty method, set up a property structure, which consists of a DIPROPHEADER structure and one or more elements for data. There are potentially a great variety of properties for input devices, and SetProperty must be able to work with all sorts of structures defining those properties. The purpose of the DIPROPHEADER structure is to define the size of the property structure and how the data is to be interpreted.

DirectInput includes the following predefined property structures:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROPDWORD defines a structure containing a DIPROPHEADER and a DWORD data member for properties that require a single value, such as a buffer size.

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROPRANGE is for range properties, which require two values (maximum and minimum). It consists of a DIPROPHEADER and two LONG data members.

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROPGUIDANDPATH is a specialized property structure allowing applications to perform operations on an HID that are not supported by DirectInput. The structure consists of a DIPROPHEADER, a GUID, and a Unicode string for the path.

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROPSTRING is for Unicode string properties. The structure comprises a DIPROPHEADER and a Unicode string.

For SetProperty, the data members of the property structure are the values that you want to set. For GetProperty, the current value is returned in these members.

Before the call to GetProperty or SetProperty, the DIPROPHEADER structure must be initialized with the following:

�SYMBOL 183 \f "Symbol" \s 11 \h �	The size of the property structure.

�SYMBOL 183 \f "Symbol" \s 11 \h �	The size of the DIPROPHEADER structure itself.

�SYMBOL 183 \f "Symbol" \s 11 \h �	An object identifier.

�SYMBOL 183 \f "Symbol" \s 11 \h �	A dwHow member indicating the way that the object identifier should be interpreted.

When getting or setting properties for a whole device, the object identifier dwObj is 0, and the dwHow member is DIPH_DEVICE. If you want to get or set properties for a device object (for example, a particular axis), the combination of dwObj and dwHow values identifies the object. For details, see DIPROPHEADER structure.

After setting up the property structure, pass the address of its header into GetProperty or SetProperty, along with an identifier for the property that you want to obtain or change.

The following values are used to identify the property passed to SetProperty and GetProperty. For more information, see IDirectInputDevice7::GetProperty.

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROP_BUFFERSIZE. See also Buffered and Immediate Data.

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROP_AXISMODE. See also Relative and Absolute Axis Coordinates.

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROP_CALIBRATIONMODE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROP_GRANULARITY

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROP_FFGAIN

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROP_FFLOAD

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROP_AUTOCENTER

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROP_RANGE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROP_DEADZONE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROP_SATURATION

For more information about the last three properties, see also Interpreting Joystick Axis Data.

The following code example sets the buffer size for a device to hold 10 data items:

DIPROPDWORD dipdw;

HRESULT hres;

dipdw.diph.dwSize = sizeof(DIPROPDWORD);

dipdw.diph.dwHeaderSize = sizeof(DIPROPHEADER);

dipdw.diph.dwObj = 0;

dipdw.diph.dwHow = DIPH_DEVICE;

dipdw.dwData = 10;

hres = lpdiDevice->SetProperty(DIPROP_BUFFERSIZE, &dipdw.diph);

[Visual Basic]

The DirectInputDevice.SetProperty or DirectInputDevice.GetProperty methods take two parameters: a GUID alias in string form that identifies the property being set, and data of type Any. The data is passed in one of the following types:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROPLONG is for properties that require a single value, such as a buffer size. The property data consists of a single Long.

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROPRANGE is for range properties, which require two values (maximum and minimum). The property data consists of two Long data members.

For SetProperty, the data members of the property types are the values that you want to set. For GetProperty, the current value is returned in these members.

In addition to the actual property data, both these types contain three other members: lHow, lObj, and lSize.

The values in lHow and lObj work together, with lHow signifying the system that is used to identify the device object whose property is being set or retrieved, and lObj identifying the device object.

If lHow is DIPH_BYID, the device object is described by a unique numerical identifier in lObj. This ID can be extracted from the value returned by DirectInputDeviceObjectInstance.GetType after device objects have been enumerated.

For most applications, it is simpler to identify the device object by its offset within the data structure established by DirectInputDevice.SetCommonDataFormat or DirectInputDevice.SetDataFormat. In this case, lHow is DIPH_BYOFFSET, and lObj is the offset, in bytes. For the keyboard, mouse, and any game controller whose data can be returned in a DIJOYSTATE type, the device object can be identified by a predefined constant. See CONST_DIKEYFLAGS, CONST_DIMOUSEOFS, and CONST_DIJOYSTICKOFS.

The lHow member can also contain DIPH_DEVICE, which means that the property belongs to the entire device, rather than a single device object. Buffer size is an example of such a property. When lHow is DIPH_DEVICE, lObj is 0.

Finally, the lSize member of the property type must be initialized to the size of the type. This step is necessary because GetProperty or SetProperty do not know what type is being passed.

The following strings are used to identify the property passed to SetProperty and GetProperty. For more information, see DirectInputDevice.GetProperty.

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROP_AXISMODE. See also Relative and Absolute Axis Coordinates.

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROP_BUFFERSIZE. See also Buffered and Immediate Data.

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROP_DEADZONE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROP_GRANULARITY

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROP_RANGE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROP_SATURATION

For more information about dead zone, range, and saturation, see also Interpreting Joystick Axis Data.

The following code example sets the buffer size for a device:

' diDev is a DirectInputDevice whose data format has been set.

Dim diProp As DIPROPLONG

diProp.lHow = DIPH_DEVICE

diProp.lObj = 0

diProp.lData = 10

diProp.lSize = Len(diProp)

Call diDev.SetProperty("DIPROP_BUFFERSIZE", diProp)

Acquiring Devices

Acquiring a DirectInput device means giving your application access to it. As long as a device is acquired, DirectInput is making its data available to your application. If the device is not acquired, you can manipulate its characteristics, but not obtain any data.

Acquisition is not permanent. Your application can acquire and unacquire a device many times.

In certain cases, depending on the cooperative level, a device can be unacquired automatically whenever the application moves to the background. The mouse is automatically unacquired when the user clicks on a menu, because at this point Windows takes over the device.

You must unacquire a device before changing its properties. The only exception is that you can change the gain for a force-feedback device while it is in an acquired state.

The acquisition mechanism is needed for two reasons:

First, DirectInput must be able to tell the application when the flow of data from the device has been interrupted by the system. For instance, if the user has switched to another application with ALT+TAB and used the input device in that application, your application needs to know that the input no longer belongs to it and that the state of the buffers might have changed. Consider an application with the DISCL_FOREGROUND cooperative level. The user presses the SHIFT key, and while continuing to press it, switches to another application. Then, the user releases the key and switches back to the first application. As far as the first application is concerned, the SHIFT key is still down. The acquisition mechanism, by telling the application that input was lost, allows it to recover from these conditions.

Second, because your application can alter the properties of the device, without safeguards DirectInput would have to check the properties each time that you wanted to retrieve data. This would be very inefficient. Even worse, this could cause a hardware interrupt accessing a data buffer when the buffer size is being changed. Therefore, DirectInput requires your application to unacquire the device before changing properties. When you reacquire it, DirectInput checks the properties and decides on the optimal way of transferring data from the device to the application. This is done only once, so the data retrieval methods can be very fast.

[C++]

Since the most common cause of losing a device is that your application moves to the background, you might want to reacquire devices whenever your application is activated. Be careful, however, about relying on a WM_ACTIVATE handler at startup time. The first WM_ACTIVATE message will probably arrive when your window is being initialized, before DirectInput has been set up. To ensure that the device is acquired at startup, call IDirectInputDevice7::Acquire as soon as the device has been initialized.

Even acquiring the device on activation of your program window might not cover all cases in which a device is unacquired, especially for devices other than the standard mouse or keyboard. Because your application might unacquire a device unexpectedly, you need a mechanism for checking the acquisition state before attempting to get data from the device. The Scrawl sample application does this in the Scrawl_OnMouseInput function, in which a DIERR_INPUTLOST error triggers a message to reacquire the mouse. (See also Tutorial 2: Using the Mouse.)

[Visual Basic]

Because your application might unacquire a device unexpectedly, especially if you have set the exclusive cooperative level, ensure that the application tracks the state of acquisition. One technique is to check for the DIERR_INPUTLOST error after attempting to retrieve data. If this error is raised, you know the device has been unacquired. If your application is getting input in response to event notification, an event is signaled when acquisition is lost.

See the ScrawlB sample for more information about how to manage device acquisition in exclusive mode.

Attempting to reacquire a device that is already acquired does no harm. Redundant calls to Acquire are ignored, and the device can always be unacquired with a single call to Unacquire.

[C++]

Windows does not have access to the mouse when your application is using it in exclusive mode. If you want to let Windows have the mouse, you must release it. There is an example in the Scrawl sample that responds to a click of the right button by unacquiring the mouse, putting the Windows cursor in the same spot as its own, popping up a context menu, and letting Windows handle the input until a menu choice is made.

[Visual Basic]

Windows does not have access to the mouse when your application is using it in exclusive mode. If you want to let Windows have the mouse, you must release it. There is an example in the ScrawlB sample that responds to a click of the right button by unacquiring the mouse, putting the Windows cursor in the same spot as its own, popping up a context menu, and letting Windows handle the input until a menu choice is made.

Recognizing Device Changes

[Visual Basic]

This topic pertains only to applications written in C++.

[C++]

Because universal serial bus (USB) devices can be added to and removed from the system without rebooting, you might want your application to be able to respond to a new configuration of input devices. For example, you might allow a new player to join a game in progress by plugging in another controller.

To receive a message when a device is changed, you must first register for notification, as in the following code example:

PVOID hNotifyDevNode;

void RegisterForDevChange(HWND hDlg, PVOID *hNotifyDevNode)

{

 DEV_BROADCAST_DEVICEINTERFACE *pFilterData =

 (DEV_BROADCAST_DEVICEINTERFACE*)

 _alloca(sizeof(DEV_BROADCAST_DEVICEINTERFACE));

 ASSERT (pFilterData);

 ZeroMemory(pFilterData, sizeof(DEV_BROADCAST_DEVICEINTERFACE));

 pFilterData->dbcc_size = sizeof(DEV_BROADCAST_DEVICEINTERFACE);

 pFilterData->dbcc_devicetype = DBT_DEVTYP_DEVICEINTERFACE;

 pFilterData->dbcc_classguid = GUID_CLASS_INPUT;

 *hNotifyDevNode = RegisterDeviceNotification(hDlg, pFilterData,� DEVICE_NOTIFY_WINDOW_HANDLE);

}

Then, in your main window procedure, check for messages announcing that a device has been attached, is about to be removed, or has been removed, as follows:

MyWindowProc(HWND hWnd, UINT nMsg, WPARAM wParam, LPARAM lParam)

{

 switch (nMsg)

 {

 case WM_DEVICECHANGE:

 {

 switch (wParam)

 {

 case DBT_DEVICEARRIVAL:

 // Handle device arrival

 break;

 case DBT_DEVICEQUERYREMOVE:

 // Handle device removal request

 break;

 case DBT_DEVICEREMOVECOMPLETE:

 // Handle device removal

 break;

 }

 }

.

.

.

 }

}

In response to a DBT_DEVICEARRIVAL event, obtain the instance GUID of the device by using IDirectInput7::FindDevice, and pass this value to IDirectInput7::CreateDeviceEx.

For more information, see Device Management in the the Platform SDK.

DirectInput Device Data

This section covers the basic concepts of getting data from DirectInput devices.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Buffered and Immediate Data

�SYMBOL 183 \f "Symbol" \s 11 \h �	Time Stamps and Sequence Numbers

�SYMBOL 183 \f "Symbol" \s 11 \h �	Polling and Events

�SYMBOL 183 \f "Symbol" \s 11 \h �	Relative and Absolute Axis Coordinates

Specific details about mouse, keyboard, and joystick input data, and about output data, are given in the following sections:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Mouse Data

�SYMBOL 183 \f "Symbol" \s 11 \h �	Keyboard Data

�SYMBOL 183 \f "Symbol" \s 11 \h �	Joystick Data

�SYMBOL 183 \f "Symbol" \s 11 \h �	Output Data

Buffered and Immediate Data

DirectInput supplies two types of data: buffered and immediate. Buffered data is a record of events that are stored until an application retrieves them. Immediate data is a snapshot of the current state of a device.

You might use immediate data in an application that is concerned only with the current state of a device—for example, a flight combat simulation that responds to the current position of the joystick and the state of one or more buttons. Buffered data might be the better choice where events are more important than states—for example, in an application that responds to movement of the mouse and button clicks. You can also use both types of data, as you might for example if you wanted to get immediate data for joystick axes but buffered data for the buttons.

The DirectInput QuickTest application supplied with the DirectX SDK lets you see both immediate and buffered data from a device. After you create the device in the application window, set its properties on the Mode tabbed page. On the Data tabbed page, you then see immediate data on the left and buffered data on the right.

[C++]

An application retrieves immediate data by calling the IDirectInputDevice7::GetDeviceState method. As the name implies, this method returns the current state of the device: for example, whether each button is up or down. The method provides no data about what has happened with the device since the last call, apart from implicit information that you can derive by comparing the current state with the last one. If the user has pressed and released a button between two calls to GetDeviceState, your application does not know anything about it. On the other hand, if the user is holding a button down, GetDeviceState continues reporting button down until the user releases it.

This way of reporting the device state is different from the way that Windows reports events with one-time messages such as WM_LBUTTONDOWN; it is more like the results from the Win32 GetKeyboardState function. If you are polling a device with GetDeviceState, you are responsible for determining what constitutes a button click, a double-click, a single keystroke, and so on, and for ensuring that your application does not keep responding to a button-down or key-down state when it is not appropriate to do so.

With buffered data, events are stored until you are ready to deal with them. Every time a button or key is pressed or an axis is moved, information about the event is placed in a DIDEVICEOBJECTDATA structure in the buffer. If the buffer overflows, new data is lost. Your application reads the buffer with a call to IDirectInputDevice7::GetDeviceData. You can read any number of items at a time.

Reading an item normally deletes it from the buffer, but you also have the choice of peeking without deleting.

To get buffered data, you must first set the buffer size with the IDirectInputDevice7::SetProperty method. (See the example in Device Properties.) Set the buffer size before acquiring the device for the first time. For reasons of efficiency, the default size of the buffer is 0, and you cannot obtain buffered data unless you change this value. The size of the buffer is measured in items of data for that type of device, not in bytes or WORDs.

Check the value of the pdwInOut parameter after a call to the GetDeviceData method. The number of items retrieved from the buffer is returned in this variable.

Note

For devices that do not generate interrupts, such as analog joysticks, DirectInput does not obtain any data until you call the IDirectInputDevice7::Poll method. For more information, see Polling and Events.

For examples of retrieving buffered data, see IDirectInputDevice7::GetDeviceData.

[Visual Basic]

An application retrieves immediate data by calling one of the following methods:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInputDevice.GetDeviceStateKeyboard. For devices that retrieve data in a DIKEYBOARDSTATE type. (For this and the following three methods, the data format must have been set by using DirectInputDevice.SetCommonDataFormat.)

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInputDevice.GetDeviceStateMouse. For devices that retrieve data in a DIMOUSESTATE type.

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInputDevice.GetDeviceStateJoystick. For devices that retrieve data in a DIJOYSTATE type.

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInputDevice.GetDeviceStateJoystick2. For devices that retrieve data in a DIJOYSTATE2 type.

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInputDevice.GetDeviceState. For devices that use custom data formats, as set by using DirectInputDevice.SetDataFormat.

As the names imply, each of these methods returns the current state of the device: for example, whether each button is up or down. The method provides no data about what has happened with the device since the last call, apart from implicit information that you can derive by comparing the current state with the last one. If the user has pressed and released a button between two calls to the method, your application does not know anything about it. On the other hand, if the user is holding a button down, the method continues reporting button down until the user releases it.

This way of reporting the device state is different from the way Visual Basic reports events with one-time events like Click and Keydown. If you are polling a device with one of the GetDeviceState methods, you are responsible for determining what constitutes a button click, a double-click, a single keystroke, and so on, and for ensuring that your application does not keep responding to a button-down or key-down state when it is not appropriate to do so.

With buffered data, events are stored until you are ready to deal with them. Every time a button or key is pressed or an axis is moved, information about the event is placed in a DIDEVICEOBJECTDATA type in the buffer. Your application reads the buffer with a call to DirectInputDevice.GetDeviceData. You can read any number of items at a time.

Reading an item normally deletes it from the buffer, but you also have the choice of retrieving without deleting by setting the DIGDD_PEEK flag.

To get buffered data, you must first set the buffer size by using the DirectInputDevice.SetProperty method. (See the example under Device Properties.) Set the buffer size before acquiring the device for the first time. For reasons of efficiency, the default size of the buffer is 0, and you cannot obtain buffered data unless you change this value. The size of the buffer is measured in items of data for that type of device, not in bytes or WORDs.

The return value of GetDeviceData tells you the number of items retrieved from the buffer. If the buffer has overflowed, no data is returned, and GetDeviceData raises an error, which the application should trap.

Note

For devices that do not generate interrupts, such as analog joysticks, DirectInput does not obtain any data until you call the DirectInputDevice.Poll method. For more information, see Polling and Events.

See also:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Time Stamps and Sequence Numbers

�SYMBOL 183 \f "Symbol" \s 11 \h �	Mouse Data

�SYMBOL 183 \f "Symbol" \s 11 \h �	Keyboard Data

�SYMBOL 183 \f "Symbol" \s 11 \h �	Joystick Data

Time Stamps and Sequence Numbers

[C++]

When DirectInput input data is buffered (see Buffered and Immediate Data), each DIDEVICEOBJECTDATA structure contains not only information about the type of event and the device object associated with it, but also a time stamp and a sequence number.

The dwTimeStamp member contains the system time, in milliseconds, at which the event took place. This is equivalent to the value that would have been returned by the Win32 GetTickCount function, but at a higher resolution.

The dwSequence member contains a sequence number assigned by DirectInput. The DirectInput system keeps a single sequence counter, which is incremented by each nonsimultaneous buffered event from any device. Use this number to compare events from different devices and see which came first. The DISEQUENCE_COMPARE macro takes wrap around into account.

[Visual Basic]

When DirectInput input data is buffered (see Buffered and Immediate Data), each DIDEVICEOBJECTDATA type contains not only information about the type of event and the device object associated with it, but also a time stamp and a sequence number.

The lTimeStamp member contains the system time, in milliseconds, at which the event took place. This is equivalent to the value that would have been returned by the Win32 GetTickCount function, but at a higher resolution.

The lSequence member contains a sequence number assigned by DirectInput. The DirectInput system keeps a single sequence counter, which is incremented by each nonsimultaneous buffered event from any device. Use this number to compare events from different devices and see which came first.

Simultaneous events are assigned the same sequence number. If a mouse or joystick is moved diagonally, for example, the changes in the x-axis and the y-axis have the same sequence number.

Note

Events are always placed in the buffer in chronological order, so you do not need to check the sequence numbers to sort the events from a single device.

Polling and Events

There are two ways to find out whether input data is available: polling and event notification.

Polling a device means regularly getting the current state of the device objects or checking the contents of the event buffer. Polling is typically used by real-time games that are never idle, but are constantly updating and rendering the game world.

[C++]

In a C++ application, polling would typically be done within the message loop.

Event notification is suitable for applications like the Scrawl sample that wait for input before doing anything. To use event notification, set up a thread-synchronization object with the Win32 CreateEvent function, and then associate this event with the device by passing its handle to the IDirectInputDevice7::SetEventNotification method. The event is then signaled by DirectInput whenever the state of the device changes. Your application can receive notification of the event with a Win32 function such as WaitForSingleObject, and then respond by checking the input buffer to find out what the event was. For code examples, see the Scrawl sample and IDirectInputDevice7::SetEventNotification.

Some joysticks and other game devices, or particular objects on them, do not generate hardware interrupts and do not return any data or signal any events until you call the IDirectInputDevice7::Poll method. (This behind-the-scenes polling is not to be confused with the kind of application polling just discussed. Poll does not retrieve any data, but merely makes data available.)

To find out whether it is necessary to call Poll each time that you want to retrieve data, first set the data format for the device, then call the IDirectInputDevice7::GetCapabilities method, and check for the DIDC_POLLEDDATAFORMAT flag in the DIDEVCAPS structure.

Do not confuse the DIDC_POLLEDDATAFORMAT flag with the DIDC_POLLEDDEVICE flag. The latter is set if any object on the device requires polling. You can then find out whether this is the case for a particular object by calling the IDirectInputDevice7::GetObjectInfo method and checking for the DIDOI_POLLED flag in the DIDEVICEOBJECTINSTANCE structure.

The DIDC_POLLEDDEVICE flag describes the worst case for the device, not the actual situation. For example, an HID mouse with software-controllable resolution might be marked as DIDC_POLLEDDEVICE because reading the resolution information requires polling. Polling the device under these conditions is pointless if all that you want is the standard button and axis data.

Nevertheless, it does not hurt to call the IDirectInputDevice7::Poll method for any input device. If the call is unnecessary, it has no effect and is very fast.

[Visual Basic]

In a Visual Basic application, polling would typically be done in the Sub Main procedure.

Event notification is suitable for applications such as the ScrawlB sample that wait for input before doing anything. To use event notification, implement DirectXEvent in the form or module in which you want to retrieve data. Then, create an event handle by using DirectX7.CreateEvent, and pass this handle to DirectInputDevice.SetEventNotification. Now, whenever an input event occurs on the device, the DirectXEvent.DXCallback method is called, and in your implementation of this method you can retrieve either the device state or buffered data as you would if you were doing so in Sub Main.

Some joysticks and other game devices, or particular objects on them, do not generate hardware interrupts and do not return any data or signal any events until you call the DirectInputDevice.Poll method. (This behind-the-scenes polling is not to be confused with the kind of application polling just discussed. Poll does not retrieve any data, but merely makes data available.)

To find out whether it is necessary to call Poll each time that you want to retrieve data, first set the data format for the device, then call the DirectInputDevice.GetCapabilities method, and check for the DIDC_POLLEDDATAFORMAT flag in the DIDEVCAPS type.

Do not confuse the DIDC_POLLEDDATAFORMAT flag with the DIDC_POLLEDDEVICE flag. The latter is set if any object on the device requires polling. You can then find out whether this is the case for a particular object by calling the IDirectInputDevice7::GetObjectInfo method to get a DirectInputDeviceObjectInstance object, and then checking for the DIDOI_POLLED flag in the valued returned by DirectInputDeviceObjectInstance.GetFlags.

The DIDC_POLLEDDEVICE flag describes the worst case for the device, not the actual situation. For example, an HID mouse with software-controllable resolution might be marked as DIDC_POLLEDDEVICE because reading the resolution information requires polling. Polling the device under these conditions is pointless if all that you want is the standard button and axis data.

Nevertheless, it does not hurt to call the Poll method for any input device. If the call is unnecessary, it has no effect and is very fast.

Relative and Absolute Axis Coordinates

Axis coordinates can be returned as relative values—that is, the amount by which they have changed since the application last retrieved the device state or, in the case of buffered input, since the last item was put in the buffer.

Absolute axis coordinates are a running total of all the relative coordinates returned by the system since the device was acquired; in other words, they show the position of the axis in relation to a fixed point.

By default, mouse axes are reported as relative coordinates and joystick axes as absolute coordinates. You can change the coordinate system for a device by setting a property. For more information, see Device Properties.

Mouse Data

[C++]

To set up the mouse device for data retrieval, first call the IDirectInputDevice7::SetDataFormat method with the c_dfDIMouse or c_dfDIMouse2 global variable as the parameter value. Use c_dfDIMouse2 if you want to support more than four mouse buttons.

For maximum performance in a full-screen application, set the cooperative level to DISCL_EXCLUSIVE | DISCL_FOREGROUND. The exclusive setting causes the Windows cursor to disappear. The DISCL_FOREGROUND setting causes the application to lose access to the mouse when you switch to a debugging window. Changing to DISCL_BACKGROUND allows you to debug the application more easily, at a cost in performance.

[Visual Basic]

To set up the mouse device for data retrieval, first call the DirectInputDevice.SetCommonDataFormat method with DIFORMAT_MOUSE as the parameter value.

For maximum performance in a full-screen application, set the cooperative level to DISCL_EXCLUSIVE Or DISCL_FOREGROUND. The exclusive setting causes the Windows cursor to disappear. The DISCL_FOREGROUND setting causes the application to lose access to the mouse when you switch to the Visual Basic development environment. Changing to DISCL_BACKGROUND allows you to debug the application more easily, at a cost in performance.

The following sections give more information about getting and interpreting immediate and buffered mouse data:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Immediate Mouse Data

�SYMBOL 183 \f "Symbol" \s 11 \h �	Buffered Mouse Data

�SYMBOL 183 \f "Symbol" \s 11 \h �	Interpreting Mouse Axis Data

�SYMBOL 183 \f "Symbol" \s 11 \h �	Checking for Lost Mouse Input

See also

Device Data Formats, Cooperative Levels

Immediate Mouse Data

[C++]

To retrieve the current state of the mouse, call IDirectInputDevice7::GetDeviceState with a pointer to a DIMOUSESTATE or a DIMOUSESTATE2 structure, depending on the data format. The mouse state returned in the structure includes axis data and the state of each of the buttons.

The first three members of the structure hold the axis coordinates. (See Interpreting Mouse Axis Data.)

The rgbButtons member is an array of bytes, one for each of four or eight buttons. For a traditional mouse, the first element in the array is generally the left button, the second is the right button, and the third is the middle button. The high bit is set if the button is down, and clear if the button is up or not present.

[Visual Basic]

To retrieve the current state of the mouse, call DirectInputDevice.GetDeviceStateMouse, passing in a DIMOUSESTATE type. The mouse state returned in the type includes axis data and the state of each of the buttons.

The x, y, and z members of the DIMOUSESTATE type hold the axis coordinates. (See Interpreting Mouse Axis Data.) The buttons member is an array of bytes, one for each of four buttons. The first element in the array is generally the left button, the second is the right button, the third is the middle button, and the fourth is any other button. The high bit is set if the button is down, and clear if the button is up or not present.

See also

Buffered and Immediate Data

Buffered Mouse Data

To retrieve buffered data from the mouse, you must first set the buffer size (see Device Properties). The default size of the buffer is 0, so this step is essential.

[C++]

You must also declare an array of DIDEVICEOBJECTDATA structures. This array can have up to the same number of elements as the buffer size. You do not have to retrieve the entire contents of the buffer with a single call; if you want, you can have just one element in the array and retrieve events one at a time until the buffer is empty.

After acquiring the device, you can examine and flush events in the buffer at any time by using the IDirectInputDevice7::GetDeviceData method. (See Buffered and Immediate Data.) On return, each element in the DIDEVICEOBJECTDATA array represents a change in state for a single object on the mouse. For example, if the user presses button 0 and moves the mouse diagonally, the array passed to GetDeviceData (if it has at least three elements, and pdwInOut is at least 3) has three elements filled in—an element for button 0 being pressed, an element for the change in the x-axis, and an element for the change in the y-axis—and the value of pdwInOut is set to 3.

You can determine which object an element in the array refers to by checking the dwOfs member of the DIDEVICEOBJECTDATA structure against the values returned by the following macros:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIMOFS_BUTTON0 to DIMOFS_BUTTON3

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIMOFS_X

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIMOFS_Y

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIMOFS_Z

Each of these values is derived from the offset of the data for the object in a DIMOUSESTATE or DIMOUSESTATE2 structure. For example, DIMOFS_BUTTON0 is equivalent to the offset of rgbButtons[0] in the DIMOUSESTATE structure. With the macros you can use simple comparisons to determine which device object is associated with an item in the buffer. For example:

DIDEVICEOBJECTDATA *lpdidod;

int n;

.

.

.

/* MouseBuffer is an array of DIDEVICEOBJECTDATA structures

 that has been set by a call to GetDeviceData.

 n is incremented in a loop that examines all filled elements

 in the array. */

lpdidod = &MouseBuffer[n];

if (((int) lpdidod->dwOfs == DIMOFS_BUTTON0)

 && (lpdidod->dwData & 0x80))

{

 ; // Do something in response to left button press.

}

The data for the change of state of the device object is located in the dwData member of the DIDEVICEOBJECTDATA structure. For axes, the coordinate value is returned in this member. For button objects, only the low byte of dwData is significant; the high bit of this byte is set if the button was pressed, and clear if the button was released. In other words, the button was pressed if (dwData & 0x80) is nonzero.

For more information on the other members of the DIDEVICEOBJECTDATA structure, see Time Stamps and Sequence Numbers.

[Visual Basic]

You must also declare an array of DIDEVICEOBJECTDATA types. This array can have up to the same number of elements as the buffer size. You do not have to retrieve the entire contents of the buffer with a single call; if you want, you can have just one element in the array and retrieve events one at a time until the buffer is empty.

After acquiring the device, you can examine and flush the buffer at any time by using the DirectInputDevice.GetDeviceData method. (See Buffered and Immediate Data.) On return, each element in the DIDEVICEOBJECTDATA array represents a change in state for a single object on the mouse. For instance, if the user presses button 0 and moves the mouse diagonally, the array passed to GetDeviceData (if it has at least three elements) has three elements filled in—an element for button 0 being pressed, an element for the change in the x-axis, and an element for the change in the y-axis—and the return value of the method is 3.

You can determine which object an element in the array refers to by checking the lOfs member of the DIDEVICEOBJECTDATA type against the constants in the CONST_DIMOUSEOFS enumeration. Each of these values is derived from the offset of the data for the object in a DIMOUSESTATE type. For example, DIMOFS_BUTTON0 is equivalent to the offset of buttons(0) in the DIMOUSESTATE type.

The data for the change of state of the device object is located in the lData member of the DIDEVICEOBJECTDATA type. For axes, the coordinate value is returned in this member. For button objects, only the low byte of lData is significant; the high bit of this byte is set if the button was pressed, and clear if the button was released. In other words, the button was pressed if (lData & 0x80) is nonzero.

For more information on the other members of the DIDEVICEOBJECTDATA type, see Time Stamps and Sequence Numbers.

The following code example retrieves the entire contents of the buffer (which contains BufferSize elements) and responds to various events:

' objDIDev is a DirectInputDevice object.

Dim diDeviceData(1 To BufferSize) As DIDEVICEOBJECTDATA

Dim NumEvents As Integer

Dim i As Integer

NumEvents = objDIDev.GetDeviceData(diDeviceData, 0)

For i = 1 To NumEvents

 Select Case diDeviceData(i).lOfs

 Case DIMOFS_X

 ' Respond to x-axis movement.

 Case DIMOFS_Y

 ' Respond to y-axis movement.

 Case DIMOFS_BUTTON0

 If diDeviceData(i).lData And &H80 Then

 ' Respond to left button pressed.

 Else

 ' Respond to left button released.

 End If

 End Select

Next i

Interpreting Mouse Axis Data

The data returned for the x-axis and y-axis of a mouse indicates the movement of the mouse itself, not the cursor. The units of measurement are based on the values returned by the mouse hardware and have nothing to do with pixels or any other form of screen measurement. Because DirectInput communicates directly with the mouse driver, the values for mouse speed and acceleration set by the user in Control Panel do not affect this data.

Axis data returned from the mouse can be either relative or absolute. (See Relative and Absolute Axis Coordinates.) Because a mouse is a relative device—unlike a joystick, it does not have a home position—relative data is returned by default.

[C++]

The axis mode, which specifies whether relative or absolute data should be returned, is a property that can be changed before the device is acquired. (See Device Properties.) To set the axis mode to absolute, call IDirectInputDevice7::SetProperty with the DIPROP_AXISMODE value in the rguidProp parameter and with DIPROPAXISMODE_ABS in the dwData member of the DIPROPDWORD structure.

[Visual Basic]

The axis mode, which specifies whether relative or absolute data should be returned, is a property that can be changed before the device is acquired. (See Device Properties.) To set the axis mode to absolute, call DirectInputDevice.SetProperty with "DIPROP_AXISMODE" in the guid parameter and with DIPROPAXISMODE_ABS in the lData member of the DIPROPLONG type.

When the axis mode for the mouse is set to relative, the axis coordinate represents the number of units that the device has been moved along the axis since the last value was returned. A negative value indicates that the mouse was moved to the left for the x-axis, or away from the user for the y-axis, or that the z-axis (the wheel) was rotated toward the user. Positive values indicate movement in the opposite direction.

When the axis mode is set to absolute, the coordinates are simply a running total of all relative motions received by DirectInput. The axis coordinates are not initialized to any particular value when the device is acquired, so your application should treat absolute values as relative to an unknown origin. You can record the current absolute position whenever the device is acquired and save it as the virtual origin. This virtual origin can then be subtracted from subsequent absolute coordinates retrieved from the device to compute the relative distance that the mouse has moved from the point of acquisition.

The data returned for the axis coordinates is also affected by the granularity property of the device. For the x-axis and y-axis of the mouse, granularity is normally 1, meaning that the minimum change in value is 1. For the wheel axis, it can be larger.

Checking for Lost Mouse Input

[C++]

Because Windows might force your application to unacquire the mouse when you have set the cooperative level to DISCL_FOREGROUND and the focus switches to another application, or even to the menu in your own application, you should check for the DIERR_INPUTLOST return value from the IDirectInputDevice7::GetDeviceData or the IDirectInputDevice7::GetDeviceState method, and attempt to reacquire the mouse if necessary. (See Acquiring Devices.)

Note

You should not attempt to reacquire the mouse on getting a DIERR_NOTACQUIRED error. If you do, you could get caught in an infinite loop: acquisition would fail, you would get another DIERR_NOTACQUIRED error, and so on.

[Visual Basic]

Because Windows might force your application to unacquire the mouse when you have set the cooperative level to DISCL_FOREGROUND and the focus switches to another application, or even to the menu in your own application, you should check for the DIERR_INPUTLOST return value from the DirectInputDevice.GetDeviceData or the DirectInputDevice.GetDeviceStateMouse method, and attempt to reacquire the mouse if necessary. (See Acquiring Devices.)

Note

You should not attempt to reacquire the mouse on getting a DIERR_NOTACQUIRED error. If you do, you could get caught in an infinite loop: acquisition would fail, you would get another DIERR_NOTACQUIRED error, and so on.

Keyboard Data

As far as DirectInput is concerned, the keyboard is not a text input device, but a game pad with many buttons. When your application requires text input, do not use DirectInput methods; it is far easier to retrieve the data from the normal Windows messages, in which you can take advantage of services such as character repeat and translation of physical keys to virtual keys. This is particularly important for languages other than English, which can require special translation of key presses.

[C++]

To set up the keyboard device for data retrieval, you must first call the IDirectInputDevice7::SetDataFormat method with the c_dfDIKeyboard global variable as the parameter. (See Device Data Formats.)

[Visual Basic]

To set up the keyboard device for data retrieval, you must first call the DirectInputDevice.SetCommonDataFormat method with DIFORMAT_KEYBOARD as the parameter.

The following sections give more information about obtaining and interpreting keyboard data:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Immediate Keyboard Data

�SYMBOL 183 \f "Symbol" \s 11 \h �	Buffered Keyboard Data

�SYMBOL 183 \f "Symbol" \s 11 \h �	Interpreting Keyboard Data

�SYMBOL 183 \f "Symbol" \s 11 \h �	Checking for Lost Keyboard Input

Immediate Keyboard Data

[C++]

To retrieve the current state of the keyboard, call the IDirectInputDevice7::GetDeviceState method with a pointer to an array of 256 bytes to hold the returned data.

The GetDeviceState method behaves in the same way as the Win32 GetKeyboardState function, returning a snapshot of the current state of the keyboard. Each key is represented by a byte in the array of 256 bytes whose address was passed as the lpvData parameter. If the high bit of the byte is set, the key is down. The array is most conveniently indexed with the DirectInput Keyboard Device Constants. (See also Interpreting Keyboard Data.)

The following code example does something in response to the fact that the ESC key is down:

// LPDIRECTINPUTDEVICE lpdiKeyboard; // previously initialized

 // and acquired

BYTE diKeys[256];

if (lpdiKeyboard->GetDeviceState(256, diKeys) == DI_OK)

{

 if (diKeys[DIK_ESCAPE] & 0x80) DoSomething();

}

[Visual Basic]

To retrieve the current state of the keyboard, call the DirectInputDevice.GetDeviceStateKeyboard method, passing a DIKEYBOARDSTATE type.

The GetDeviceState method returns a snapshot of the current state of the keyboard. Each key is represented by an element in the array of 256 bytes that makes up the DIKEYBOARDSTATE type. If the high bit of the byte is set, the key is down. The array is most conveniently indexed with the members of the CONST_DIKEYFLAGS enumeration. (See also Interpreting Keyboard Data.)

The following code example determines whether the ESC key is currently being pressed:

' objDIDev is a DirectInputDevice object.

Dim dev As DirectInputDevice

Dim KeyState As DIKEYBOARDSTATE

Call objDIDev.GetDeviceStateKeyboard(KeyState)

If (KeyState.Key(DIK_ESCAPE) And &H80) Then

 ' Key is down.

End If

Buffered Keyboard Data

To retrieve buffered data from the keyboard, you must first set the buffer size (see Device Properties). This step is essential because the default size of the buffer is 0.

[C++]

You must also declare an array of DIDEVICEOBJECTDATA structures. This array can have up to the same number of elements as the buffer size. You do not have to retrieve the entire contents of the buffer with a single call; if you want, you can have just one element in the array and retrieve events one at a time until the buffer is empty.

After acquiring the keyboard device, you can examine and flush the buffer at any time by using the IDirectInputDevice7::GetDeviceData method. (See Buffered and Immediate Data.)

Each element in the DIDEVICEOBJECTDATA array represents a change in state for a single key; that is, a press or release. Because DirectInput gets the data directly from the keyboard, any settings for character repeat in Control Panel are ignored. This means that a keystroke is counted only once, no matter how long the key is held down.

You can determine which key an element in the array refers to by checking the dwOfs member of the DIDEVICEOBJECTDATA structure against the DirectInput Keyboard Device Constants. (See also Interpreting Keyboard Data.)

The data for the change of state of the key is located in the dwData member of the DIDEVICEOBJECTDATA structure. Only the low byte of dwData is significant; the high bit of this byte is set if the key was pressed and clear if it was released. In other words, the key was pressed if (dwData & 0x80) is nonzero.

[Visual Basic]

You must also declare an array of DIDEVICEOBJECTDATA types. This array can have up to the same number of elements as the buffer size. You do not have to retrieve the entire contents of the buffer with a single call; if you want, you can have just one element in the array and retrieve events one at a time until the buffer is empty.

After acquiring the keyboard device, you can examine and flush the buffer at any time by using the DirectInputDevice.GetDeviceData method. (See Buffered and Immediate Data.)

Each element in the DIDEVICEOBJECTDATA array represents a change in state for a single key; that is, a press or release. Because DirectInput gets the data directly from the keyboard, any settings for character repeat in Control Panel are ignored. This means that a keystroke is counted only once, no matter how long the key is held down.

You can determine which key an element in the array refers to by checking the lOfs member of the DIDEVICEOBJECTDATA type against the constants in the CONST_DIKEYFLAGS enumeration. (See also Interpreting Keyboard Data.)

The data for the change of state of the key is located in the lData member of the DIDEVICEOBJECTDATA type. Only the low byte of lData is significant; the high bit of this byte is set if the key was pressed and clear if it was released. In other words, the key was pressed if (lData And &H80) is nonzero.

Interpreting Keyboard Data

[C++]

This section covers the identification of keys for which data is reported by the IDirectInputDevice7::GetDeviceState and IDirectInputDevice7::GetDeviceData methods. For more information on interpreting the data from GetDeviceData, see Time Stamps and Sequence Numbers.

[Visual Basic]

This section covers the identification of keys for which data is reported by the DirectInputDevice.GetDeviceState and DirectInputDevice.GetDeviceData methods. For more information on interpreting the data from GetDeviceData, see Time Stamps and Sequence Numbers.

In one important respect, DirectInput differs from other ways of reading the keyboard in Windows. Keyboard data refers not to virtual keys but to the actual physical keys—that is, the scan codes. DIK_ENTER, for example, refers to the ENTER key on the main keyboard, but not to the one on the numerical keypad.

DirectInput defines a constant for each key on the enhanced keyboard, as well as the additional keys found on international keyboards. Because NEC keyboards support different scan codes than the PC-enhanced keyboards, DirectInput translates NEC key scan codes into PC-enhanced scan codes where possible.

Not all PC-enhanced keyboards have the Windows keys (DIK_LWIN, DIK_RWIN, and DIK_APPS). There is no way to determine whether the keys are physically available.

Laptops and other small computers often do not implement a full set of keys. Instead, some keys (typically numeric keypad keys) are multiplexed with other keys, selected by an auxiliary mode key, which does not generate a separate scan code.

If the keyboard subtype indicates a PC XT or PC AT keyboard, the following keys are not available: DIK_F11, DIK_F12, and all the extended keys (DIK_* values greater than 0x7F). Furthermore, the PC XT keyboard lacks DIK_SYSRQ.

Japanese keyboards, particularly the NEC PC-98 keyboards, contain a substantially different set of keys than U.S. keyboards. For more information, see DirectInput and Japanese Keyboards.

Checking for Lost Keyboard Input

[C++]

Because Windows might force your application to unacquire the keyboard when you have set the cooperative level to DISCL_FOREGROUND and the focus switches to another application, you should check for the DIERR_INPUTLOST return value from the IDirectInputDevice7::GetDeviceData or IDirectInputDevice7::GetDeviceState methods and attempt to reacquire the keyboard, if necessary. (See Acquiring Devices.)

Note

You should not attempt to reacquire the keyboard on getting a DIERR_NOTACQUIRED error. If you do, you could get caught in an infinite loop: acquisition would fail, you would get another DIERR_NOTACQUIRED error, and so on.

[Visual Basic]

Because Windows might force your application to unacquire the keyboard when you have set the cooperative level to DISCL_FOREGROUND and the focus switches to another application, you should check for the DIERR_INPUTLOST return value from the DirectInputDevice.GetDeviceData or the DirectInputDevice.GetDeviceStateKeyboard method and attempt to reacquire the keyboard, if necessary. (See Acquiring Devices.)

Note

You should not attempt to reacquire the keyboard on getting a DIERR_NOTACQUIRED error. If you do, you could get caught in an infinite loop: acquisition would fail, you would get another DIERR_NOTACQUIRED error, and so on.

Joystick Data

[C++]

To set up the joystick device for data retrieval, first call the IDirectInputDevice7::SetDataFormat method with the c_dfDIJoystick or the c_dfDIJoystick2 global variable as the parameter value. (See Device Data Formats.)

Because some device drivers do not notify DirectInput of changes in state until explicitly asked to do so, you should always call the IDirectInputDevice7::Poll method before attempting to retrieve data from the joystick. For more information, see Polling and Events.

[Visual Basic]

To set up the joystick device for data retrieval, first call the DirectInputDevice.SetCommonDataFormat method with DIFORMAT_JOYSTICK or DIFORMAT_JOYSTICK2 as the parameter value. (See Device Data Formats.)

Because some device drivers do not notify DirectInput of changes in state until explicitly asked to do so, you should always call the DirectInputDevice.Poll method before attempting to retrieve data from the joystick. For more information, see Polling and Events.

The following sections cover getting and interpreting data from a joystick or other similar input device, such as a game pad or steering wheel:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Immediate Joystick Data

�SYMBOL 183 \f "Symbol" \s 11 \h �	Buffered Joystick Data

�SYMBOL 183 \f "Symbol" \s 11 \h �	Interpreting Joystick Axis Data

�SYMBOL 183 \f "Symbol" \s 11 \h �	Checking for Lost Joystick Input

Immediate Joystick Data

[C++]

To retrieve the current state of the joystick, call the IDirectInputDevice7::GetDeviceState method with a pointer to a DIJOYSTATE or a DIJOYSTATE2 structure, depending on whether the data format was set with c_dfDIJoystick or c_dfDIJoystick2. (See Device Data Formats.) The joystick state returned in the structure includes the coordinates of the axes, the state of the buttons, and the state of the point-of-view controllers.

The first seven members of the DIJOYSTATE structure hold the axis coordinates. The last of these seven, rglSlider, is an array of two values. (See Interpreting Joystick Axis Data.)

The rgdwPOV member contains the position of up to four point-of-view controllers in hundredths of a degree clockwise from north (or forward). The center position is reported as –1. For controllers that have only five positions, the position is one of the following values:

�SYMBOL 183 \f "Symbol" \s 11 \h �	–1

�SYMBOL 183 \f "Symbol" \s 11 \h �	0

�SYMBOL 183 \f "Symbol" \s 11 \h �	90 * DI_DEGREES

�SYMBOL 183 \f "Symbol" \s 11 \h �	180 * DI_DEGREES

�SYMBOL 183 \f "Symbol" \s 11 \h �	270 * DI_DEGREES.

Some drivers report a value of 65,535, instead of –1, for the neutral position. You should check for a centered POV indicator as follows:

BOOL POVCentered = (LOWORD(dwPOV) == 0xFFFF);

The rgbButtons member is an array of bytes, one for each of 32 or 128 buttons, depending on the data format. For each button, the high bit is set if the button is down, and clear if the button is up or not present.

The DIJOYSTATE2 structure has additional members for information about the velocity, acceleration, force, and torque of the axes.

[Visual Basic]

To retrieve the current state of the joystick, call the DirectInputDevice.GetDeviceStateJoystick or the DirectInputDevice.GetDeviceStateJoystick2 method, depending on whether the data format was set with DIFORMAT_JOYSTICK or DIFORMAT_JOYSTICK2. (See Device Data Formats.) The joystick state returned in the state parameter includes the coordinates of the axes, the state of the buttons, and the state of the point-of-view controllers.

The POV member of the DIJOYSTATE or the DIJOYSTATE2 type contains the position of up to four point-of-view controllers in hundredths of a degree clockwise from north (or forward). The center position is reported as –1. For controllers that have only five positions, the position is one of the following values:

�SYMBOL 183 \f "Symbol" \s 11 \h �	–1

�SYMBOL 183 \f "Symbol" \s 11 \h �	0

�SYMBOL 183 \f "Symbol" \s 11 \h �	9000

�SYMBOL 183 \f "Symbol" \s 11 \h �	18000

�SYMBOL 183 \f "Symbol" \s 11 \h �	27000

Some drivers report a value of 65,535, instead of –1, for the neutral position. You should check for a centered POV indicator as follows:

Dim POVCentered As Boolean

POVCentered = (dwPOV And &HFFFF) = &HFFFF;

The buttons member is an array of bytes, one for each of 32 or 128 buttons, depending on the data type. For each button, the high bit is set if the button is down, and clear if the button is up or not present.

The DIJOYSTATE2 type has additional members for information about the velocity, acceleration, force, and torque of the axes.

For more information, see Interpreting Joystick Axis Data.

See also

Buffered and Immediate Data

Buffered Joystick Data

[C++]

To retrieve buffered data from the joystick, first set the buffer size (see Device Properties), and declare an array of DIDEVICEOBJECTDATA structures. This array can have up to the same number of elements as the buffer size. You do not have to retrieve the entire contents of the buffer with a single call; if you want, you can have just one element in the array and retrieve events one at a time until the buffer is empty.

After acquiring the device, you can examine and flush the buffer at any time with the IDirectInputDevice7::GetDeviceData method. (See Buffered and Immediate Data.)

Each element in the DIDEVICEOBJECTDATA array represents a change in state for a single object on the joystick. For instance, if the user presses button 0 and moves the stick diagonally, the array passed to GetDeviceData (if it has at least three elements, and pdwInOut is at least 3) has three elements filled in—an element for button 0 being pressed, an element for the change in the x-axis, and an element for the change in the y-axis—and the value of pdwInOut is set to 3.

You can determine which object an element in the array refers to by checking the dwOfs member of the DIDEVICEOBJECTDATA structure against the following values:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIJOFS_X

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIJOFS_Y

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIJOFS_Z

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIJOFS_Rx

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIJOFS_Ry

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIJOFS_Rz

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIJOFS_BUTTON0 to DIJOFS_BUTTON31 or DIJOFS_BUTTON(n)

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIJOFS_POV(n)

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIJOFS_SLIDER(n)

Each of these values is equivalent to the offset of the data for the object in a DIJOYSTATE structure. For example, DIJOFS_BUTTON0 is equivalent to the offset of rgbButtons[0] in the DIJOYSTATE structure. You can use simple comparisons to determine which device object is associated with an item in the buffer. For example:

DIDEVICEOBJECTDATA *lpdidod;

int n;

.

.

.

/* JoyBuffer is an array of DIDEVICEOBJECTDATA structures

 that has been set by a call to GetDeviceData.

 n is incremented in a loop that examines all filled elements

 in the array. */

lpdidod = &JoyBuffer[n];

if (((int) lpdidod->dwOfs == DIJOFS_BUTTON0)

 && (lpdidod->dwData & 0x80))

{

 ; // Do something in response to press of primary button.

}

If the data format was set with c_dfDIJoystick2, you can use the predefined offsets for all the device objects that exist in DIJOYSTATE, but you must supply your own offsets for device objects represented in the extra members of DIJOYSTATE2.

The data for the change of state of the device object is located in the dwData member of the DIDEVICEOBJECTDATA structure. For axes, the coordinate value is returned in this member. For button objects, only the low byte of dwData is significant; the high bit of this byte is set if the button is pressed, and clear if the button is released.

For the other members, see Time Stamps and Sequence Numbers.

[Visual Basic]

To retrieve buffered data from the joystick, first set the buffer size (see Device Properties), and declare an array of DIDEVICEOBJECTDATA types. This array can have up to the same number of elements as the buffer size. You do not have to retrieve the entire contents of the buffer with a single call; if you want, you can have just one element in the array and retrieve events one at a time until the buffer is empty.

After acquiring the device, you can examine and flush the buffer at any time with the DirectInputDevice.GetDeviceData method. (See Buffered and Immediate Data.)

Each element in the DIDEVICEOBJECTDATA array represents a change in state for a single object on the joystick. For instance, if the user presses button 0 and moves the stick diagonally, the array passed to GetDeviceData (if it has at least three elements) has three elements filled in—an element for button 0 being pressed, an element for the change in the x-axis, and an element for the change in the y-axis—and the return value of the method is 3.

You can determine which object an element in the array refers to by checking the lOfs member of the DIDEVICEOBJECTDATA type against the constants of the CONST_DIJOYSTICKOFS enumeration. Each of these values is equivalent to the offset of the data for the object in a DIJOYSTATE type. For example, DIJOFS_BUTTON0 is equivalent to the offset of buttons(0) in the DIJOYSTATE type.

If the data format was set with DIFORMAT_JOYSTICK2, you can use the offset constants for all the device objects that exist in DIJOYSTATE, but you must supply your own offsets for device objects represented in the extra members of DIJOYSTATE2. The internal organization of this type is the same as that of the equivalent C++ structure in the Dinput.h header file.

The data for the change of state of the device object is located in the lData member of the DIDEVICEOBJECTDATA type. For axes, the coordinate value is returned in this member. For button objects, only the low byte of lData is significant; the high bit of this byte is set if the button is pressed, and clear if the button is released.

For the other members, see Time Stamps and Sequence Numbers.

Interpreting Joystick Axis Data

Axis values for the joystick are like those for the mouse: the value returned for the x-axis is greater as the stick moves to the right, and the value for the y-axis increases as the stick moves toward the user.

Data is in arbitrary units determined by the range property of the axis. For example, if the range for the stick's x-axis is from 0 through 10,000, a unit is one ten-thousandth of the stick's left-right travel, and the center position is 5,000. For some axes, the granularity property might be greater than 1, in which case values are rounded off. For example, if the granularity is 10, values are reported as 0, 10, 20, and so on.

Axis data is also affected by the dead zone, a region around the center position in which motion is ignored. The dead zone provides tolerance for a slight deviation from the true center position for either or both axes of the stick. An axis value within the range of the dead zone is reported as true center.

The saturation property of an axis is a zone of tolerance at the minimum and maximum of the range. An axis value within this zone is reported as the minimum or maximum value. The purpose of the saturation property is to allow for slight differences between, for example, the minimum x-axis value reported at the top left and bottom left positions of the stick.

The following illustration shows the effect of the dead zone and the saturation zones. The vertical axis represents the returned axis values, where min and max are the lower and upper limits of the reported range and ctr is the reported center. The horizontal axis shows the physical position of the stick, where pmin and pmax are the extremes of the physical range, pctr is neutral position of the axis, dmin and dmax are the limits of the dead zone, and smin and smax are the boundaries of the lower and upper saturation zones. The lower saturation zone lies between pmin and smin, the upper saturation zone lies between smax and pmax, and the dead zone lies between dmin and dmax.

�

[C++]

For more information on joystick properties, see the following:

�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirectInputDevice7::GetProperty

�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirectInputDevice7::SetProperty

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROPRANGE

[Visual Basic]

For more information on joystick properties, see the following:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInputDevice.GetProperty

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInputDevice.SetProperty

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROPRANGE

Axis coordinates from the joystick can be either relative or absolute. (See Relative and Absolute Axis Coordinates.) Because a joystick is an absolute device–unlike a mouse, it cannot travel infinitely far along any axis–absolute data is returned by default. When the axis mode for the joystick is set to relative, the axis coordinate represents the number of units of movement along the axis since the last value was returned.

[C++]

The axis mode, which specifies whether relative or absolute data should be returned, is a property that can be changed before the device is acquired. (See Device Properties.) To set the axis mode to relative, call the IDirectInputDevice7::SetProperty method with the DIPROP_AXISMODE value in the rguidProp parameter and with DIPROPAXISMODE_REL in the dwData member of the DIPROPDWORD structure.

[Visual Basic]

The axis mode, which specifies whether relative or absolute data should be returned, is a property that can be changed before the device is acquired. (See Device Properties.) To set the axis mode to absolute, call DirectInputDevice.SetProperty with "DIPROP_AXISMODE" in the guid parameter and with DIPROPAXISMODE_ABS in the lData member of the DIPROPLONG type.

Checking for Lost Joystick Input

If you are using the joystick in foreground mode (see Cooperative Levels), you might lose the device when the focus shifts to another application.

[C++]

You should check for the DIERR_INPUTLOST return value from the IDirectInputDevice7::GetDeviceData or the IDirectInputDevice7::GetDeviceState method and attempt to reacquire the joystick, if necessary. (See Acquiring Devices.)

Note

You should not attempt to reacquire the joystick on getting a DIERR_NOTACQUIRED error. If you do, you could get caught in an infinite loop: acquisition would fail, you would get another DIERR_NOTACQUIRED error, and so on.

Because access to the joystick is not lost except when your application moves to the background—unlike the mouse and keyboard, the joystick is never used by the Windows system—an alternative method is to reacquire the device in response to a WM_ACTIVATE message.

[Visual Basic]

You should check for the DIERR_INPUTLOST return value from the DirectInputDevice.GetDeviceData or the DirectInputDevice.GetDeviceStateKeyboard method and attempt to reacquire the keyboard, if necessary. (See Acquiring Devices.)

Note

You should not attempt to reacquire the keyboard on getting a DIERR_NOTACQUIRED error. If you do, you could get caught in an infinite loop: acquisition would fail, you would get another DIERR_NOTACQUIRED error, and so on.

Output Data

[C++]

Human Interface Devices can accept output, as well as generating input. The IDirectInputDevice7::SendDeviceData method is used to send packets of data to such devices.

SendDeviceData can be viewed as IDirectInputDevice7::GetDeviceData in reverse. Like that method, it uses the DIDEVICEOBJECTDATA structure as the basic unit of data. In this case, however, the dwOfs member contains the instance ID of the device object associated with the data, rather than its offset in the data format for the device. (Because offset identifiers exist only for device objects that provide input in the selected data format, an object that accepts only output might not even have an offset.) The dwData member contains whatever data is appropriate for the object. The dwTimeStamp and dwSequence members are not used and must be set to 0.

To send data to the device, first set up an array of DIDEVICEOBJECTDATA structures, fill the required number of elements with data, and then pass its address and the number of elements used to SendDeviceData. Data for different device objects is combined into a single packet that is then sent to the device.

The form of the data packet is specific to the device, as is the treatment of unused fields in the packet. Some devices treat fields as optional, meaning that if no data is supplied, the state of the object remains unchanged. More commonly, all fields are significant, even when you do not specifically supply data for them. For example, if you send data to a single keyboard LED, it is assumed that the data for the other two LEDs is 0, and they are turned off. However, you can override this behavior by using the DISDD_CONTINUE flag, in which case the data for the other two LEDs is the value you most recently sent them.

The following code example, when run repeatedly, causes the LEDs on the keyboard, as represented by the IDirectInputDevice7 interface pdev, to flash in a recurring pattern. The device object identifiers, NumLockID, CapsLockID, and ScrollLockID, have previously been obtained from the dwType member of the DIDEVICEOBJECTINSTANCE structure, either during enumeration of device objects or by calling IDirectInputDevice7::GetObjectInfo. It is assumed that the high bit of the data byte determines the state of the LED.

void FlashLEDs(void)

 {

 static int rgiBits[] = { 1, 2, 4, 2 };

 static int iLooper = 0;

 DWORD cdod = 3; // Number of items

 DIDEVICEOBJECTDATA rgdod[3];

 HRESULT hres;

 // Must clear dwTimeStamp and dwSequence

 ZeroMemory(rgdod, sizeof(rgdod));

 rgdod[0].dwOfs = NumLockID;

 rgdod[1].dwOfs = CapsLockID

 rgdod[2].dwOfs = ScrollLockID;

 rgdod[0].dwData = (rgiBits[iLooper] & 1) ? 0x80 : 0;

 // 1,0,0,0,...

 rgdod[1].dwData = (rgiBits[iLooper] & 2) ? 0x80 : 0;

 // 0,1,0,1,...

 rgdod[2].dwData = (rgiBits[iLooper] & 4) ? 0x80 : 0;

 // 0,0,1,0,...

 iLooper = (iLooper + 1) % ARRAYSIZE(rgiBits); // Loops from 0 to 3

 hres = IDirectInputDevice7_SendDeviceData(pdev,

 sizeof(DIDEVICEOBJECTDATA),

 rgdod, &cdod, 0);

 }

[Visual Basic]

Human Interface Devices can accept output, as well as generating input. The DirectInputDevice.SendDeviceData method is used to send packets of data to such devices.

SendDeviceData can be viewed as DirectInputDevice.GetDeviceData in reverse. Like that method, it uses the DIDEVICEOBJECTDATA type as the basic unit of data. In this case, however, the lOfs member contains the instance ID of the device object associated with the data, rather than its offset in the data format for the device. This ID can be extracted from the value returned by DirectInputDeviceObjectInstance.GetType after device objects have been enumerated. (Because offset identifiers exist only for device objects that provide input in the selected data format, an object that accepts only output might not even have an offset.) The lData member contains whatever data is appropriate for the object. The lTimeStamp and lSequence members are not used and must be set to 0.

To send data to the device, first set up an array of DIDEVICEOBJECTDATA types, fill the required number of elements with data, and then pass its address and the number of elements used to SendDeviceData. Data for different device objects is combined into a single packet that is then sent to the device.

The form of the data packet is specific to the device, as is the treatment of unused fields in the packet. Some devices treat fields as optional, meaning that if no data is supplied, the state of the object remains unchanged. More commonly, all fields are significant, even when you do not specifically supply data for them. For example, if you send data to a single keyboard LED, it is assumed that the data for the other two LEDs is 0, and they are turned off. However, you can override this behavior by using the DISDD_CONTINUE flag, in which case the data for the other two LEDs is the value you most recently sent them.

Force Feedback

Force feedback is the generation of push or resistance in an input/output device, for example by motors mounted in the base of a joystick. DirectInput allows you to generate force-feedback effects for devices that have compatible drivers.

The following sections introduce the elements of force feedback:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Basic Concepts of Force Feedback

�SYMBOL 183 \f "Symbol" \s 11 \h �	Effect Enumeration

�SYMBOL 183 \f "Symbol" \s 11 \h �	Loading Effects from a File

�SYMBOL 183 \f "Symbol" \s 11 \h �	Information About a Supported Effect

�SYMBOL 183 \f "Symbol" \s 11 \h �	Creating an Effect

�SYMBOL 183 \f "Symbol" \s 11 \h �	Effect Direction

�SYMBOL 183 \f "Symbol" \s 11 \h �	Envelopes and Offsets

�SYMBOL 183 \f "Symbol" \s 11 \h �	Effect Playback

�SYMBOL 183 \f "Symbol" \s 11 \h �	Downloading and Unloading Effects

�SYMBOL 183 \f "Symbol" \s 11 \h �	Changing an Effect

�SYMBOL 183 \f "Symbol" \s 11 \h �	Gain

�SYMBOL 183 \f "Symbol" \s 11 \h �	Force-Feedback State

�SYMBOL 183 \f "Symbol" \s 11 \h �	Effect Object Enumeration

�SYMBOL 183 \f "Symbol" \s 11 \h �	Effect Types

Basic Concepts of Force Feedback

A particular instance of force feedback is called an effect, and the push or resistance is called the force. Most effects fall into one of the following categories:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Constant force. A steady force in a single direction.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Ramp force. A force that steadily increases or decreases in magnitude.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Periodic effect. A force that pulsates according to a defined wave pattern.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Condition. A force that occurs only in response to input by the user. Two examples are a friction effect that generates resistance to movement of the joystick, and a spring effect that tends to move the stick back to a certain position after it has been moved from that position.

The strength of the force is called its magnitude. Magnitude is measured in units ranging from 0 (no force) through 10,000 (maximum force for the device, defined for C/C++ in Dinput.h as DI_FFNOMINALMAX). A negative value indicates force in the opposite direction. Magnitudes are linear: a force of 10,000 is twice as great as one of 5,000.

Ramp forces have a beginning and ending magnitude. For a periodic effect, the basic magnitude is the force at the peak of the wave.

The direction of a force is the direction from which it comes; a positive force on a given axis pushes from the positive toward the negative.

Effects also have duration, measured in microseconds. Periodic effects have a period, or the duration of one cycle, also measured in microseconds. The phase of a periodic effect is the point along the wave at which playback begins.

The following illustration represents a sawtooth periodic effect with a magnitude of 5,000, or half the maximum force for the device. The horizontal axis represents the duration of the effect, and the vertical axis represents the magnitude. Points above the center line represent positive force in the direction defined for the effect, and points below the center line represent negative force, or force in the opposite direction.

�

A force can be further shaped by an envelope. An envelope defines an attack value and a fade value, which modify the beginning and ending magnitude of the effect. Attack and fade also have duration, which determines how long the magnitude takes to reach or fall away from the sustain value, the magnitude in the middle portion of the effect.

The following illustration shows an envelope. The attack level is set to 8,000, and the fade level to 1,000. The sustain level is defined by the basic magnitude of the force to which the envelope is being applied; in the example, it is 5,000. In this case, the attack is greater than the sustain, giving the effect an initial strong kick. Both the attack and the fade level can be either greater or less than the sustain level.

�

The following illustration shows the result of the envelope being applied to the periodic effect in the first illustration. The envelope is mirrored on the negative side of the magnitude. An attack value of 8,000 means that the initial magnitude of the force in either direction is 80 percent of the maximum possible.

�

Periodic effects and conditions can also be modified by the addition of an offset, which defines the amount by which the waveform is shifted up or down from the base level. The practical effect of applying a positive offset to the sawtooth example would be to strengthen the positive force and weaken the negative one—in other words, the force would peak more strongly in one direction than in the other.

Finally, the overall magnitude of an effect can be scaled by gain, which is analogous to a volume control in audio. A single gain value can be applied to all effects for a device; you might want to do this to compensate for stronger or weaker forces on different hardware or to accommodate the user's preferences.

Effect Enumeration

[C++]

The IDirectInputDevice7::EnumEffects method returns information about the support offered by the device for various kinds of effects.

It is important to distinguish between supported effects and created effects, or effect objects. A supported effect might be a constant force that can be shaped by an envelope. However, this effect has no properties such as magnitude, direction, duration, attack, or fade. You set these properties when you create an effect object in your application. A supported effect can be represented by many effect objects, each with different parameters—for example, several constant forces, each with different duration, magnitude, and direction.

For information on enumerating created effects, see Effect Object Enumeration.

Like other DirectInput enumerations, the IDirectInputDevice7::EnumEffects method requires a callback function; this is documented with the placeholder name DIEnumEffectsCallback, but you can use a different name if you want. This function is called for each effect enumerated. Within the function, you can obtain the GUID for each effect, get information about the extent of hardware support, and create one or more effect objects whose methods you can use to manipulate the effect.

The following code example calls the IDirectInputDevice7::EnumEffects method that sets the enumeration in motion. The pvRef parameter of the callback can be any 32-bit value; in this case, it is a pointer to the device interface, used for getting information about effects supported by the device and for creating effect objects.

HRESULT hr;

// LPDIRECTINPUTDEVICE lpdid2; // already initialized

BOOL CALLBACK DIEnumEffectsCallback(LPCDIEFFECTINFO pdei,

 LPVOID pvRef)

{

 LPDIRECTINPUTDEVICE2 lpdid = pvRef; // Pointer to calling device

 LPDIRECTINPUTEFFECT lpdiEffect; // Pointer to created effect

 DIEFFECT diEffect; // Params for created effect

 DICONSTANTFORCE diConstantForce; // Type-specific parameters

 // for diEffect

 if (DIEF_GETTYPE(pdei->dwEffType) == DIEFFT_CONSTANTFORCE)

 {

 /* Here you can extract information about support for the

 effect type (from pdei), and tailor your effects

 accordingly. For example, the device might not support

 envelopes for this type of effect. */

 .

 .

 .

 // Create one or more constant force effects.

 // For each, you have to initialize a DICONSTANTFORCE

 // and a DIEFFECT structure.

 // See detailed example at Creating an Effect.

 .

 .

 .

 hr = pdid->CreateEffect(pdei->guid,

 &diEffect,

 &lpdiEffect,

 NULL);

 .

 .

 .

 }

 // And so on for other types of effect

 .

 .

 .

 return DIENUM_CONTINUE;

} // End of callback

.

.

.

// Set the callback in motion.

hr = lpdid2->EnumEffects(&EnumEffectsCallback,

 lpdid2, DIEFT_ALL);

For more information on how to initialize an effect, see Creating an Effect.

[Visual Basic]

The DirectInputDevice.GetEffectsEnum method enumerates effects supported by the device. It returns a DirectInputEnumEffects object representing the collection of supported effects. Methods of DirectInputEnumEffects can be used to get information about a particular effect.

It is important to distinguish between supported effects and created effects, or effect objects. A supported effect might be a constant force that can be shaped by an envelope. However, this effect has no properties such as magnitude, direction, duration, attack, or fade. You set these properties when you create an effect object in your application. A supported effect can be represented by many effect objects, each with different parameters—for example, several constant forces, each with different duration, magnitude, and direction.

The following code example shows how an application could enumerate hardware-specific effects, looking for a particular one supported by the Microsoft® SideWinder® joystick. If the desired effect is not found, the application substitutes one of the standard effects:

Const BasketballDribble = _

 "{E84CD1AC-81FA-11D0-94AB-0080C74C7E95}"

Dim diEnumEffects as DirectInputEnumEffects

Dim EffGuid As String

Dim i as Integer

' diDev is a DirectInputDevice object.

Set diEnumEffects = didev.GetEffectsEnum(DIEFT_HARDWARE)

For i = 1 To diEnumEffects.GetCount

 If diEnumEffects.GetEffectGuid(i) = BasketballDribble Then

 EffGuid = BasketballDribble

 Exit For

 End If

Next i

If EffGuid <> BasketballDribble Then

 EffGuid = "GUID_Sine"

 ' Set parameters for emulated dribble here

End If

' Ultimately pass EffGuid to DirectInputDevice.CreateEffect.

Loading Effects from a File

[Visual Basic]

This topic pertains only to applications developed in C++. DirectX for Visual Basic does not support effect files.

[C++]

Using the Force Editor supplied with the DirectX SDK, or another application that uses the same file format, you can design effects and save them in a file. You can then use these effects in any application by loading them at run time.

To load effects, call the IDirectInputDevice7::EnumEffectsInFile method. By default, the enumeration is limited to the standard DirectInput effects, but you can enumerate other effects by setting the DIFEF_INCLUDENONSTANDARD flag. By setting the DIFEF_MODIFYIFNEEDED flag, you can also instruct DirectInput to modify the parameters of effects, if necessary, so that they work on the device. (For example, an effect authored for two axes can be made to work on a single-axis steering wheel.)

In the following code example, the first three standard effects are loaded from a file and created as DirectInputEffect objects.

// g_lpdid7 is a valid IDirectInputDevice7 pointer to a

// force feedback device.

// The array of effect pointers is declared globally.

LPDIRECTINPUTEFFECT pEff[3];

.

.

.

g_lpdid7->EnumEffectsInFile("FEdit1.ffe", EnumEffectsInFileProc,

 NULL, DIFEF_MODIFYIFNEEDED);

.

.

.

The following callback procedure is called once for each effect in the file or until it returns DIENUM_STOP.

BOOL CALLBACK EnumEffectsInFileProc(LPCDIFILEEFFECT lpdife,

 LPVOID pvRef)

 {

 HRESULT hr;

 static int i;

// Because the DIFEF_MODIFYIFNEEDED flag was passed, the

// effect parameters might be modified in lpdife->lpDiEffect.

 hr = g_lpdid7->CreateEffect(lpdife->GuidEffect,

 lpdife->lpDiEffect,

 &pEff[i], NULL);

 if (FAILED(hr))

 {

 // Error handling

 }

 if (++i > 2) return DIENUM_STOP;

 else return DIENUM_CONTINUE;

 }

Information About a Supported Effect

[C++]

The IDirectInputDevice7::GetEffectInfo method can be used to retrieve information about the device's support for an effect whose GUID is known. It retrieves the same information that is returned in the DIEFFECTINFO structure during enumeration. For more information, see Effect Enumeration.

The following code example fetches information about an effect whose GUID is stored in the EffectGuid variable and determines whether the direction of the effect can be changed without stopping and restarting it:

DIEFFECTINFO diEffectInfo;

diEffectInfo.dwSize = sizeof(DIEFFECTINFO);

lpdid2->GetEffectInfo(&diEffectInfo, EffectGuid);

if (diEffectInfo.dwDynamicParams & DIEP_DIRECTION)

{

 // Can reset parameter dynamically

}

[Visual Basic]

In DirectX for Visual Basic, information about a supported effect must be obtained from the DirectInputEnumEffects enumeration object. See Effect Enumeration.

The following code example gets information about the first enumerated effect and determines whether the direction of the effect can be changed without stopping and restarting it:

' diEnumEffects is an initialized DirectInputEnumEffects object.

Dim params As Long

params = diEnumEffects.GetDynamicParams(1)

If params And DIEP_DIRECTION Then

 Debug.Print "Direction is dynamic."

End If

Creating an Effect

[C++]

Create an effect object by using the IDirectInputDevice7::CreateEffect method, as in the following code example, where pdev2 points to an instance of the interface. This example creates a very simple effect that pulls the joystick away from the user at full force for half a second.

HRESULT hr;

LPDIRECTINPUTEFFECT lpdiEffect; // receives pointer to created effect

DIEFFECT diEffect; // parameters for created effect

DWORD dwAxes[2] = { DIJOFS_X, DIJOFS_Y };

LONG lDirection[2] = { 18000, 0 };

DICONSTANTFORCE diConstantForce;

diConstantForce.lMagnitude = DI_FFNOMINALMAX; // Full force

diEffect.dwSize = sizeof(DIEFFECT);

diEffect.dwFlags = DIEFF_POLAR | DIEFF_OBJECTOFFSETS;

diEffect.dwDuration = 0.5 * DI_SECONDS;

diEffect.dwSamplePeriod = 0; // = default

diEffect.dwGain = DI_FFNOMINALMAX; // No scaling

diEffect.dwTriggerButton = DIEB_NOTRIGGER; // Not a button response

diEffect.dwTriggerRepeatInterval = 0; // Not applicable

diEffect.cAxes = 2;

diEffect.rgdwAxes = &dwAxes;

diEffect.rglDirection = &lDirection;

diEffect.lpEnvelope = NULL;

diEffect.cbTypeSpecificParams = sizeof(DICONSTANTFORCE);

diEffect.lpvTypeSpecificParams = &diConstantForce;

hr = pdev2->CreateEffect(GUID_ConstantForce,

 &diEffect,

 &lpdiEffect,

 NULL);

In the method call, the first parameter identifies the supported effect with which the created effect is to be associated. The example uses one of the predefined GUIDs found in Dinput.h. If you use a predefined GUID, the call fails if the device does not support the effect.

The second parameter sets the parameters as specified in the DIEFFECT structure.

The third parameter receives a pointer to the effect object if the call is successful.

The DIEFF_POLAR flag specifies the type of coordinates used for the direction of the force. (See Effect Direction.) It is combined with DIEFF_OBJECTOFFSETS, which indicates that any buttons or axes used in other members are identified by their offsets within the DIDATAFORMAT structure for the device. The alternative is to use the DIEFF_OBJECTIDS flag, signifying that buttons and axes are identified by the dwType member of the DIDEVICEOBJECTINSTANCE structure returned for the object when it was enumerated with the IDirectInputDevice7::EnumObjects method.

For more information on the members of the DIEFFECT structure, see Effect Direction.

[Visual Basic]

You create an effect object by using the DirectInputDevice.CreateEffect method, as in the following code example, where didev is a DirectInputDevice object. This example creates a very simple effect that pulls the joystick away from the user at full force for half a second.

Dim effectInfo As DIEFFECT

Dim objDIEffect As DirectInputEffect

With effectInfo

 .constantForce.lMagnitude = 10000

 .lGain = 10000

 .lDuration = 500000

 .x = 18000

 .lTriggerButton = -1 ' No trigger button

End With

didev.Acquire

Set objDIEffect = didev.CreateEffect("GUID_ConstantForce", effectInfo)

The first parameter can be one of the predefined GUID aliases, or an actual GUID in string form known from hardware documentation or retrieved for an enumerated effect by using the DirectInputEnumEffects.GetEffectGuid method.

The relevant members of the DIEFFECT type vary according to the kind of effect. Constant forces are the simplest kind, requiring only a single type-specific parameter. The lGain, lDuration, and lTriggerButton members should be set for all effects, since the default values of 0 are not usually suitable.

By default, the direction of the effect is expressed in polar coordinates, meaning that DIEFFECT.x holds the direction from which the force comes, in hundredths of a degree, and DIEFFECT.y must be 0.

Effects are automatically downloaded to the device when created, provided the device is not full and is acquired at the exclusive cooperative level.

Effect Direction

[C++]

Directions can be defined for one or more axes. As with the mouse and joystick, the x-axis increases from left to right, and the y-axis increases from far to near. For three-dimensional devices, the z-axis increases from up to down.

The direction of an effect is the direction from which it comes. An effect with a direction along the negative y-axis tends to push the stick along the positive y-axis (toward the user). It is somewhat easier to visualize the axis values of a direction if you imagine the user exerting a counteracting force on the device. If the user must push the stick toward the left to counteract an effect, the effect has a left direction; that is, it lies on the negative x-axis.

Direction can be expressed in polar, spherical, or Cartesian coordinates.

Polar coordinates are expressed as a single angle, in hundredths of a degree clockwise from whatever zero-point, or true north, has been established for the effect. Normally this is the negative y-axis; that is, away from the user. Thus an effect with a polar coordinate of 9,000 normally has a direction of east, or to the user's right, and the user must exert force to the right to counteract it.

Spherical coordinates are also in hundredths of a degree, but can contain two or more angles; for each angle, the direction is rotated in the positive direction of the next axis. For a 3-D device, the first angle would normally be rotated from the positive x-axis toward the positive y-axis (clockwise from east), and the second angle would be rotated toward the positive z-axis (down). Thus a force with a direction of (0, 0) would be to the user's right and parallel to the tabletop. A direction of 27,000 for the first angle and 4,500 for the second would be directly away from the user (270 degrees clockwise from east) and angling toward the floor (45 degrees downward from the tabletop); to counteract a force with this direction, the user would have to push forward and down.

Cartesian coordinates are similar to 3-D vectors. If you draw a straight line on graph paper with an origin of (0, 0) at the center of the page, the direction of the line can be defined by the coordinates of any intersection that it crosses, regardless of the distance from the origin. A direction of (1, –2) and a direction of (5, –10) are exactly the same.

Note

The coordinates used in creating force-feedback effects define only direction, not magnitude or distance.

When an effect is created or modified, the cAxes, rgdwAxes, and rglDirection members of the DIEFFECT structure are used to specify the direction of the force.

The cAxes member specifies the number of elements in the arrays pointed to by the next two members.

The array pointed to by rgdwAxes identifies the axes. If the DIEFF_OBJECTOFFSETS flag has been set, the axes are identified by the offsets within the data format structure. These offsets are most readily identified by using the DIJOFS_* defines. (For a list of these values, see Joystick Device Constants.)

Finally, the rglDirection member specifies the direction of the force.

Note

The cAxes and rgdwAxes members cannot be modified once they have been set. An effect always has the same axis list.

Regardless of whether you are using Cartesian, polar, or spherical coordinates, you must provide exactly as many elements in rglDirection as there are axes in the array pointed to by rgdwAxes.

In the polar coordinate system, north (0 degrees) lies along the vector (0, –1), where the elements of the vector correspond to the elements in the axis list pointed to by rgdwAxes. Normally those axes are x and y, so north is directly along the negative y-axis; that is, away from the user. The last element of rglDirection must be 0.

In the example in Creating an Effect, the direction of a two-dimensional force is defined in polar coordinates. The force has a south direction—it comes from the direction of the user, so the user has to pull the stick to counteract it. The direction is 180 degrees clockwise from north, and can be assigned as follows:

LONG lDirection[2] = { 18000, 0 };

For greater clarity, the assignment could also be expressed as follows:

LONG lDirection[2] = { 180 * DI_DEGREES, 0 };

For spherical coordinates, presuming that you are working with a three-axis device, the same direction is assigned as follows:

LONG lDirection[3] = { 90 * DI_DEGREES, 0, 0 }

In the DIEFFECT structure, the first angle is measured in hundredths of a degree from the (1, 0) direction, rotated in the direction of (0, 1); the second angle is measured in hundredths of a degree toward (0, 0, 1). The elements of the vector notation again correspond to elements in the array pointed to by the rgdwAxes member. Assume that the elements of this array represent the x, y, and z axes, in that order. The point of origin is at x = 1 and y = 0; that is, to the user's right. The direction of rotation is toward the positive y-axis (0, 1); that is, toward the user, or clockwise. The force in the example is 90 degrees clockwise from the right; that is, south. Because the second element of lDirection is 0, there is no rotation on the third axis.

How do you accomplish the same thing with Cartesian coordinates? Presuming that you have used the DIEFF_CARTESIAN flag in the dwFlags member, you would specify the direction as follows:

LONG lDirection[2] = { 0, 1 };

Here again, the elements of the array correspond to the axes listed in the array pointed to by rgdwAxes. The example sets the x-axis to 0 and the y-axis to 1; that is, the direction lies directly along the positive y-axis, or to the south.

The theory of effect directions can be difficult to grasp, but the practice is fairly straightforward. For code examples, see Examples of Setting Effect Direction.

[Visual Basic]

DirectX for Visual Basic supports two-axis effects on the x-axis and y-axis.

The direction of an effect is the direction from which it comes. An effect with a direction along the negative y-axis tends to push the stick along the positive y-axis (toward the user). It is somewhat easier to visualize the axis values of a direction if you imagine the user exerting a counteracting force on the device. If the user must push the stick toward the left in order to counteract an effect, the effect has a left direction; that is, it lies on the negative x-axis.

Direction can be expressed in polar or Cartesian coordinates. By default, polar coordinates are used, and the direction is specified in the x member of the DIEFFECT type, with y always 0. To use Cartesian coordinates, you must specify DIEFF_CARTESIAN in the lFlags member and supply values in both x and y.

Polar coordinates are expressed as a single angle, in hundredths of a degree clockwise from whatever zero-point, or true north, has been established for the effect. Normally, this is the negative y-axis; that is, away from the user. Thus an effect with a polar coordinate of 9,000 normally has a direction of east, or to the user's right, and the user must exert force to the right to counteract it.

Cartesian coordinates are similar to 3-D vectors and are most useful for matching a force to the user's orientation in a 3-D environment. If you draw a straight line on graph paper with an origin of (0, 0) at the center of the page, the direction of the line can be defined by the coordinates of any intersection that it crosses, regardless of the distance from the origin. A direction of (1, –2) and a direction of (5, –10) are exactly the same.

Note

Cartesian coordinates used in creating force-feedback effects define only direction, not magnitude or distance.

The following code example reverses the direction of a force represented by the DirectInputEffect object dieff, which was created using the global DIEFFECT type effectinfo:

effectinfo.lFlags = DIEFF_CARTESIAN

effectinfo.X = effectinfo.X * -1

effectinfo.Y = effectinfo.Y * -1

Call dieff.SetParameters(effectinfo, DIEP_DIRECTION)

DirectX for Visual Basic does not support setting direction for conditions.

Examples of Setting Effect Direction

[Visual Basic]

This topic pertains only to applications developed in C++.

[C++]

Single-Axis Effects

Setting up the direction for a single-axis effect is extremely simple because there is really nothing to specify. Put the DIEFF_CARTESIAN flag in the dwFlags member of the DIEFFECT structure, and set rglDirection to point to a single LONG containing the value 0.

The following code example sets up the direction and axis parameters for an x-axis effect:

DIEFFECT eff;

LONG lZero = 0; // No direction

DWORD dwAxis = DIJOFS_X; // X-axis effect

ZeroMemory(&eff, sizeof(DIEFFECT));

eff.cAxes = 1; // One axis

eff.dwFlags =

 DIEFF_CARTESIAN | DIEFF_OBJECTOFFSETS; // Flags

eff.rglDirection = &lZero; // Direction

eff.rgdwAxes = &dwAxis; // Axis for effect

Two-Axis Effects with Polar Coordinates

Setting up the direction for a polar two-axis effect is only a little more complicated. Set the DIEFF_POLAR flag in dwFlags, and set rglDirection to point to an array of two LONGs. The first element in this array is the direction from which you want the effect to come. The second element in the array must be 0.

The following code example sets up the direction and axis parameters for a two-axis effect coming from the east:

DIEFFECT eff;

LONG rglDirection = { 90 * DI_DEGREES, 0 }; // 90 degrees from

 // north, that is, east

DWORD rgdwAxes[2] = { DIJOFS_X, DIJOFS_Y }; // X- and y-axis

ZeroMemory(&eff, sizeof(DIEFFECT));

eff.cAxes = 2; // Two axes

eff.dwFlags =

 DIEFF_POLAR | DIEFF_OBJECTOFFSETS; // Flags

eff.rglDirection = rglDirection; // Direction

eff.rgdwAxes = rgdwAxes; // Axis for effect

Two-Axis Effects with Cartesian Coordinates

Setting up the direction for a Cartesian two-axis effect is a little more complicated. Set the DIEFF_CARTESIAN flag in dwFlags, and again set rglDirection to point to an array of two LONGs. This time the first element in the array is the x-coordinate of the direction vector, and the second is the y-coordinate.

The following code example sets up the direction and axis parameters for a two-axis effect coming from the east:

DIEFFECT eff;

LONG rglDirection = { 1, 0 }; // Positive x = east

DWORD rgdwAxes[2] = { DIJOFS_X, DIJOFS_Y }; // X- and y-axis

ZeroMemory(&eff, sizeof(DIEFFECT));

eff.cAxes = 2; // Two axes

eff.dwFlags =

 DIEFF_CARTESIAN | DIEFF_OBJECTOFFSETS; // Flags

eff.rglDirection = rglDirection; // Direction

eff.rgdwAxes = rgdwAxes; // Axis for effect

Envelopes and Offsets

You can modify the basic magnitude of some effects by applying an envelope and an offset. For an overview, see Basic Concepts of Force Feedback.

[C++]

To apply an envelope when creating or modifying an effect, initialize a DIENVELOPE structure, and put a pointer to it in the lpEnvelope member of the DIEFFECT structure.

The device driver determines which effects support envelopes. Typically, you can apply an envelope to a constant force, a ramp force, or a periodic effect, but not to a condition. To determine whether a particular effect supports an envelope, call the IDirectInputDevice7::GetEffectInfo method, and check for the DIEP_ENVELOPE flag in the dwStaticParams member of the DIEFFECTINFO structure.

To apply an offset, set the lOffset member of the DIPERIODIC or the DICONDITION structure pointed to by the lpvTypeSpecificParams member of the DIEFFECT structure. For periodic effects, the absolute value of the offset plus the magnitude of the effect must not exceed DI_FFNOMINALMAX.

You cannot apply an offset to a constant force or ramp force. In these cases, the same effect can be achieved by altering the magnitude.

[Visual Basic]

To apply an envelope when creating or modifying an effect, set the bUseEnvelope member of the DIEFFECT type to True, and initialize the envelope member, which is a DIENVELOPE type.

The device driver determines which effects support envelopes. Typically, you can apply an envelope to a constant force, a ramp force, or a periodic effect, but not to a condition. To determine whether a particular effect supports an envelope, call the DirectInputEnumEffects.GetStaticParams method, and check for the DIEP_ENVELOPE flag in the returned value.

To apply an offset, set the lOffset member of the DIPERIODICFORCE or the DICONDITION type used in the periodic or condition member of DIEFFECT. For periodic effects, the absolute value of the offset plus the magnitude of the effect must not exceed 10,000.

You cannot apply an offset to a constant force or ramp force. In these cases, the same effect can be achieved by altering the magnitude.

Effect Playback

[C++]

There are two principal ways to start playback of an effect: manually by a call to the IDirectInputEffect::Start method, or automatically in response to a button press. Playback also starts when you change an effect by calling the IDirectInputEffect::SetParameters method with the DIEP_START flag.

Passing INFINITE in the dwIterations parameter has the effect of playing the effect repeatedly, with the envelope being applied each time. If you want to repeat an effect without repeating the envelope—for example, to begin with a strong kick, then settle down to a steady throb—set dwIterations to 1, and set the dwDuration member of the DIEFFECT structure to INFINITE. (This is the structure passed to the IDirectInputDevice7::CreateEffect method.)

Note

Some devices do not support multiple iterations of an effect and accept only the value 1 in the dwIterations parameter to the Start method. Always check the return value from Start to be sure the effect played successfully.

To associate an effect with a button press, set the dwTriggerButton member of the DIEFFECT structure. Also set the dwTriggerRepeatInterval member to the desired delay between playbacks when the button is held down; this is the interval, in microseconds, between the end of one playback and the start of the next.

Note

On some devices, multiple effects cannot be triggered by the same button; if you associate more than one effect with a button; the last effect downloaded is the one triggered. Also, trigger repeat interval might not be supported.

To dissociate an effect from its trigger button, either call the IDirectInputEffect::Unload method, or set the parameters for the effect with dwTriggerButton set to DIEB_NOTRIGGER.

Triggered effects, like all others, are lost when the application loses access to the device. To make them active again, download them as soon as the application reacquires the device. This step is not necessary for effects not associated with a trigger because they are automatically downloaded if necessary whenever the Start method is called.

If an effect has a finite duration and is started by a call to the Start method, it stops playing when the time has elapsed. If its duration was set to INFINITE, playback ends only when the IDirectInputEffect::Stop method is called. An effect associated with a trigger button starts when the button is pressed, and stops when the button is released or the duration has elapsed, whichever comes sooner.

[Visual Basic]

There are two principal ways to start playback of an effect: manually by a call to the DirectInputEffect.Start method, or automatically in response to a button press. Playback also starts when you change an effect by calling the DirectInputEffect.SetParameters method with the DIEP_START flag.

Passing –1 in the iterations parameter of Start has the effect of playing the effect repeatedly, with the envelope being applied each time. If you want to repeat an effect without repeating the envelope—for example, to begin with a strong kick, then settle down to a steady throb—set iterations to 1, and set the lDuration member of the DIEFFECT type to –1. (This is the type passed to the DirectInputDevice.CreateEffect method.)

Note

Some devices do not support multiple iterations of an effect and accept only the value 1 in the iterations parameter to the Start method.

To associate an effect with a button press, set the lTriggerButton member of the DIEFFECT type. Also set the lTriggerRepeatInterval member to the desired delay between playbacks when the button is held down; this is the interval, in microseconds, between the end of one playback and the start of the next.

Note

On some devices, multiple effects cannot be triggered by the same button; if you associate more than one effect with a button; the last effect downloaded is the one triggered. Also, trigger repeat interval might not be supported.

To dissociate an effect from its trigger button, either call the DirectInputEffect.Unload method, or set the parameters for the effect with lTriggerButton set to -1.

Triggered effects, like all others, are lost when the application loses access to the device. To make them active again, download them as soon as the application reacquires the device. This step is not necessary for effects not associated with a trigger because they are automatically downloaded if necessary whenever the Start method is called.

If an effect has a finite duration and is started by a call to the Start method, it stops playing when the time has elapsed. If its duration was set to –1, playback ends only when the DirectInputEffect.Stop method is called. An effect associated with a trigger button starts when the button is pressed, and stops when the button is released or the duration has elapsed, whichever comes sooner.

Downloading and Unloading Effects

Before an effect can be played, it must be downloaded to the device. Downloading an effect means telling the driver to prepare the effect for playback. It is entirely up to the driver to determine how this is done. Generally the driver places the parameters of the effect in hardware memory to minimize the subsequent transfer of data between the device and the system. The consequent reduction in latency is particularly important for conditions and for effects played in response to a trigger, such as a fire button. Ideally the device does not have to communicate with the system at all to respond to axis movements and button presses.

Downloading is done automatically when you create an effect, provided the device is not full and is acquired at the exclusive cooperative level. By default, it is also done when you start the effect or change its parameters.

[C++]

If you specify the DIEP_NODOWNLOAD flag when changing parameters, you must subsequently use the IDirectInputEffect::Download method to download or update the effect.

When the device is unacquired—for example, when it has been acquired with the exclusive foreground cooperative level and the application moves to the background—effects are unloaded and must be downloaded again when the application regains the foreground. As previously stated, this is done automatically when you call the IDirectInputEffect::Start method, but you can choose to download all effects immediately on reacquiring the device. You always have to download effects associated with a trigger button, since the Start method is not normally called for such effects.

If your application gets the DIERR_DEVICEFULL error when downloading an effect, you must make room for the new effect by unloading an old one. You can remove an effect from the device by calling the IDirectInputEffect::Unload method. You can also remove all effects by resetting the device through a call to the IDirectInputDevice7::SendForceFeedbackCommand method.

[Visual Basic]

If you specify the DIEP_NODOWNLOAD flag when changing parameters, you must subsequently use the DirectInputEffect.Download method to download or update the effect.

When the device is unacquired—for example, when it has been acquired with the exclusive foreground cooperative level and the application moves to the background—effects are unloaded and must be downloaded again when the application regains the foreground. As previously stated, this is done automatically when you call the DirectInputEffect.Start method, but you can choose to download all effects immediately on reacquiring the device. You always have to download effects associated with a trigger button, since the Start method is not normally called for such effects.

If your application gets the DIERR_DEVICEFULL error when downloading an effect, you must make room for the new effect by unloading an old one. You can remove an effect from the device by calling the DirectInputEffect.Unload method. You can also remove all effects by resetting the device through a call to the DirectInputDevice.SendForceFeedbackCommand method.

When you create a force-feedback device, the hardware and driver are reset, so any existing effects are cleared.

Changing an Effect

[C++]

You can modify the parameters of an effect, in some cases even while the effect is playing. You do this by using the IDirectInputEffect::SetParameters method.

The dwDynamicParams member of the DIEFFECTINFO structure tells you which effect parameters can be changed while an effect is playing. If you attempt to modify an effect parameter that cannot be modified while the effect is playing and the effect is still playing, DirectInput normally stops the effect, updates the parameters, and restarts the effect. You can override this default behavior by passing the DIEP_NORESTART flag.

The following code example changes the magnitude of the constant force that was set in the example under Creating an Effect.

DIEFFECT diEffect; // Parameters for effect

DICONSTANTFORCE diConstantForce;

 // type-specific parameters.

diConstantForce.lMagnitude = 5000;

diEffect.dwSize = sizeof(DIEFFECT);

diEffect.cbTypeSpecificParams = sizeof(DICONSTANTFORCE);

diEffect.lpvTypeSpecificParams = &diConstantForce;

hr = lpdiEffect->SetParameters(&diEffect, DIEP_TYPESPECIFICPARAMS);

The flag ensures that the transfer of data from the DIEFFECT structure is restricted to the relevant members so that you do not have to initialize the entire structure and so that the minimum possible amount of data needs to be sent to the device.

[Visual Basic]

You can modify the parameters of an effect, in some cases even while the effect is playing. You do this by using the DirectInputEffect.SetParameters method.

To find out which effect parameters can be changed while an effect is playing, call the DirectInputEnumEffects.GetDynamicParams method.

If you attempt to modify an effect parameter that cannot be modified while the effect is playing and the effect is still playing, DirectInput normally stops the effect, updates the parameters, and restarts the effect. You can override this default behavior by passing the DIEP_NORESTART flag to SetParameters.

The following code example changes the magnitude of a constant force represented by the DirectInputEffect object dieff, which was created using the global DIEFFECT type effectinfo:

effectinfo.constantForce.lMagnitude = 5000

Call dieff.SetParameters(effectinfo, DIEP_TYPESPECIFICPARAMS)

You must set the DIEP_TYPESPECIFICPARAMS flag if you are changing the condition, constantforce, periodicforce, or rampforce members of DIEFFECT.

Gain

You might want to scale the force of your effects according to the force exerted by different devices. For example, if an application's effects feel right on a device that puts out a maximum force of n Newtons on a given axis, you might want to adjust the gain for a device that puts out more force. (You cannot use the gain to increase the maximum force of the axis, so you should set the basic effect magnitudes to values suitable for devices that put out less force.)

Gain can also be used to decrease the magnitude of a hardware-defined effect.

[C++]

The force generated by a device object such as an axis or button is returned in the dwFFMaxForce member of the DIDEVICEOBJECTINSTANCE structure when objects are enumerated. (See Device Object Enumeration.)

You can set the gain for the entire device by using the IDirectInputDevice7::SetProperty method.

You must set the gain for individual effects when creating them by putting a value in the dwGain member of the DIEFFECT structure. (If dwGain is 0, the effect is not felt.) You can change this value later by using IDirectInputEffect::SetParameters, passing DIEP_GAIN in the dwFlags parameter.

[Visual Basic]

You can set the gain for the entire device by using the DirectInputDevice.SetProperty method.

You must set the gain for individual effects when creating them by putting a value in the lGain member of the DIEFFECT type. (If lGain is 0, the effect is not felt.) You can change this value later by using DirectInputEffect.SetParameters, passing DIEP_GAIN in the flags parameter.

The purpose of setting the device gain is to allow your application to have control over the strength of all effects all at once. For example, you might have a slider control in your application to allow the user to specify how strong the force-feedback effects should be, like the master volume control on a sound mixer. When the device gain is set, your application does not need to adjust the gain of each individual effect to suit the user's preferences.

A gain value can be in the range from 0 through 10,000, where 10,000 indicates that magnitudes are not to be scaled, 7,500 means that forces are to be scaled to 75 percent of their nominal magnitudes, and so on.

Force-Feedback State

[C++]

The IDirectInputDevice7::SendForceFeedbackCommand method allows you to turn off the device's actuators (effectively causing it to ignore any effects that are being played), pause or stop playback of effects, and reset the device so that all downloaded effects are removed.

To retrieve the current force-feedback state, use the IDirectInputDevice7::GetForceFeedbackState method. This method returns information about whether the actuators are active, whether playback is paused, and whether the device has been reset. It also retrieves information about various switches and about whether the device is currently powered.

[Visual Basic]

The DirectInputDevice.SendForceFeedbackCommand method allows you to turn off the device's actuators (effectively causing it to ignore any effects that are being played), pause or stop playback of effects, and reset the device so that all downloaded effects are removed.

To retrieve the current force-feedback state, use the DirectInputDevice.GetForceFeedbackState method. This method returns information about whether the actuators are active, whether playback is paused, and whether the device has been reset. It also retrieves information about various switches and about whether the device is currently powered.

Effect Object Enumeration

[Visual Basic]

This topic pertains only to applications developed in C++. DirectX for Visual Basic does not support enumeration of created effects.

[C++]

Whenever you need to examine or manipulate all the effects you have created, use the IDirectInputDevice7::EnumCreatedEffectObjects method. Since no flags are currently defined for this method, you cannot restrict the enumeration to particular kinds of effects; all effects are enumerated.

Note

This method enumerates created effects, not effects supported by a device. For more information on the distinction between the two, see Effect Enumeration.

Like other DirectInput enumerations, the EnumCreatedEffectObjects method requires a callback function. This standard callback is documented with the placeholder name DIEnumCreatedEffectObjectsCallback, but you can use a different name. The function is called for each effect enumerated. Within the function you can perform any processing that you want; however, it is not safe to create a new effect while enumeration is going on.

The following is a code example of the callback function and the call to the EnumCreatedEffectObjects method. The pvRef parameter of the callback can be any 32-bit value; in this case, it is a pointer to the device interface.

HRESULT hr;

// LPDIRECTINPUTDEVICE lpdid; // already initialized

BOOL CALLBACK DIEnumCreatedEffectObjectsCallback(

 LPDIRECTINPUTEFFECT peff, LPVOID pvRef);

{

 LPDIRECTINPUTDEVICE pdid = pvRef; // Pointer to calling device

 DIEFFECT diEffect; // Params for created effect

 diEffect.dwSize = sizeof(DIEFFECTINFO);

 peff->GetParameters(&diEffect, DIEP_ALLPARAMS);

 // Check or set parameters, or do anything else.

 .

 .

 .

} // End of callback

// Set the callback in motion.

hr = lpdid->EnumCreatedEffectObjects(&EnumCreatedEffectObjectsCallback,

 &lpdid, 0);

Effect Types

This section contains information specific to the following types of force-feedback effects:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Constant Forces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Ramp Forces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Periodic Effects

�SYMBOL 183 \f "Symbol" \s 11 \h �	Conditions

�SYMBOL 183 \f "Symbol" \s 11 \h �	Custom Forces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Device-Specific Effects

Constant Forces

A constant force is a force with a defined magnitude and duration.

You can apply an envelope to a constant force to give it shape. For example, suppose you have an effect with a nominal magnitude of 2,000 and a duration of 2 seconds. Then you apply an envelope with the following values:

Attack time�0.5 second��Initial attack level�5,000��Fade time�1 second��Fade level� 0��

When you play the effect, you get the following:

Elapsed time�Magnitude����0.0�5,000��0.1�4,400��0.2�3,800��0.3�3,200��0.4�2,600��0.5�2,000��(Duration of sustain)�2,000��1.0:�2,000��1.1�1,800��1.2�1,600��1.3�1,400��1.4�1,200��1.5�1,000��1.6�800��1.7�600��1.8�400��1.9�200��2.0�0��

You cannot apply an offset to a constant force.

[C++]

To create a constant force, pass GUID_ConstantForce to the IDirectInputDevice7::CreateEffect method. You can also pass any other GUID obtained by the IDirectInputDevice7::EnumEffects method, provided the low byte of the dwEffType member of the DIEFFECTINFO structure (DIEFT_GETTYPE(dwEfftype)) is equal to DIEFT_CONSTANTFORCE. In this way, you can use hardware-specific forces designed by the manufacturer, such as a "constant" force that actually varies in magnitude in a seemingly random fashion to simulate turbulence.

A constant force uses a DICONSTANTFORCE structure to define the magnitude. A negative magnitude has the effect of reversing the direction of the force.

[Visual Basic]

To create a constant force, pass "GUID_ConstantForce" to the DirectInputDevice.CreateEffect method. You can also pass any other GUID obtained by the DirectInputEnumEffects.GetEffectGuid method, provided the low byte of the value returned by DirectInputEnumEffects.GetType is equal to DIEFT_CONSTANTFORCE. In this way, you can use hardware-specific forces designed by the manufacturer, such as a "constant" force that actually varies in magnitude in a seemingly random fashion to simulate turbulence.

The magnitude of a constant force is contained in a DICONSTANTFORCE type in the constantForce member of DIEFFECT. A negative magnitude has the effect of reversing the direction of the force.

Ramp Forces

A ramp force is a force with defined starting and ending magnitudes and a finite duration. A ramp force can continue in a single direction, or it can start as a strong push in one direction, weaken, stop, and then strengthen in the opposite direction.

The following illustration shows a ramp force that starts at a magnitude of -5,000 and ends at 5,000:

�

You can apply an envelope to a ramp force to shape it further. The following diagram shows the effect of applying an envelope, shown in green, to the ramp force in the previous diagram.

�

During the sustain portion of the envelope, the magnitude of the effect follows the same straight line as before the envelope was applied. For the duration of the attack and fade, the slope of the ramp is modified by the attack and fade levels.

You cannot apply an offset to a ramp force.

[C++]

To create a ramp force, pass GUID_RampForce to the IDirectInputDevice7::CreateEffect method. You can also pass any other GUID obtained by the IDirectInputDevice7::EnumEffects method, provided the low byte of the dwEffType member of the DIEFFECTINFO structure (DIEFT_GETTYPE(dwEfftype)) is equal to DIEFT_RAMPFORCE. In this way, you can use hardware-specific ramp forces designed by the manufacturer.

A ramp force uses a DIRAMPFORCE structure to define the starting and ending magnitude of the force, whereas the duration is taken from the DIEFFECT structure. Duration must never be set to INFINITE.

[Visual Basic]

To create a ramp force, pass "GUID_RampForce" to the DirectInputDevice.CreateEffect method. You can also pass any other GUID obtained by the DirectInputEnumEffects.GetEffectGuid method, provided the low byte of the value returned by DirectInputEnumEffects.GetType is equal to DIEFT_RAMPFORCE. In this way, you can use hardware-specific ramp forces designed by the manufacturer.

The starting and ending magnitude of the force are defined in a DIRAMPFORCE type in the rampForce member of DIEFFECT. The duration cannot be infinite, and therefore DIEFFECT.lDuration must be a positive value.

Periodic Effects

Periodic effects are waveform effects. DirectInput defines the following forms:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Square.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Sine.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Cosine.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Triangle.

�SYMBOL 183 \f "Symbol" \s 11 \h �	SawtoothUp. The waveform drops vertically after it reaches maximum positive force. See the example in Basic Concepts of Force Feedback.

�SYMBOL 183 \f "Symbol" \s 11 \h �	SawtoothDown. The waveform rises vertically after it reaches maximum negative force.

An envelope can be applied to periodic effects. See the example at Basic Concepts of Force Feedback.

The phase of a periodic effect is the point along the waveform where the effect begins. Phase is measured in hundredths of a degree, from 0 to 35,999. The following table indicates where selected phase values (in degrees) lie along the various waveforms. Max is the top (+) or bottom (–) of the wave and Mid is the midpoint, at which no force is applied in either direction.

�0�90�180�270����Square�+Max�+Max�–Max�–Max��Sine� Mid�+Max� Mid�–Max��Triangle�+Max� Mid�–Max� Mid��SawtoothUp�–Max�–Max/2� Mid�+Max/2 (reaches�+Max just before the cycle repeats)��SawtoothDown�+Max�+Max/2� Mid�–Max/2 (reaches�–Max just before the cycle repeats)��

A driver can round off a phase value to the nearest supported value. For example, for a sine effect some drivers support only values in the range from 0 through 9,000 (to create a cosine); for other effects, only values in the range from 0 through 18,000 are supported.

[C++]

To create a periodic force, pass one of the following values in the rguid parameter of the IDirectInputDevice7::CreateEffect method:

�SYMBOL 183 \f "Symbol" \s 11 \h �	GUID_Square

�SYMBOL 183 \f "Symbol" \s 11 \h �	GUID_Sine

�SYMBOL 183 \f "Symbol" \s 11 \h �	GUID_Triangle

�SYMBOL 183 \f "Symbol" \s 11 \h �	GUID_SawtoothUp

�SYMBOL 183 \f "Symbol" \s 11 \h �	GUID_SawtoothDown

You can also pass any other GUID obtained by the IDirectInputDevice7::EnumEffects method, provided the low byte of the dwEffType member of the DIEFFECTINFO structure (DIEFT_GETTYPE(dwEfftype)) is equal to DIEFT_PERIODIC. In this way, you can use hardware-specific forces designed by the manufacturer. For example, a hardware device might support a periodic effect that rotates the stick in a small circle.

The type-specific structure for periodic effects is DIPERIODIC.

Do not confuse the period of a periodic effect (DIPERIODIC.dwPeriod) with the sample period (DIEFFECT.dwSamplePeriod). The period is the length of time that it takes to go through a complete wave cycle. The sample period, as for all effects, is the minimum time between actual adjustments of magnitude.

[Visual Basic]

To create a periodic force, pass one of the following values in the guid parameter of the DirectInputDevice.CreateEffect method:

�SYMBOL 183 \f "Symbol" \s 11 \h �	"GUID_Square"

�SYMBOL 183 \f "Symbol" \s 11 \h �	"GUID_Sine"

�SYMBOL 183 \f "Symbol" \s 11 \h �	"GUID_Triangle"

�SYMBOL 183 \f "Symbol" \s 11 \h �	"GUID_SawtoothUp"

�SYMBOL 183 \f "Symbol" \s 11 \h �	"GUID_SawtoothDown"

You can also pass any other GUID obtained by the DirectInputEnumEffects.GetEffectGuid method, provided the low byte of the value returned by DirectInputEnumEffects.GetType is equal to DIEFT_PERIODIC. In this way, you can use hardware-specific periodic forces designed by the manufacturer.

The type-specific parameters for periodic effects are contained in a DIPERIODICFORCE type in the periodicForce member of DIEFFECT.

Do not confuse the period of a periodic effect (DIEFFECT.periodic.lPeriod) with the sample period (DIEFFECT.lSamplePeriod). The period is the length of time it takes to go through a complete wave cycle. The sample period, as for all effects, is the minimum time between actual adjustments of magnitude.

Conditions

Conditions are forces applied in response to current sensor values within the device. In other words, conditions require information about device motion, such as position or velocity of a joystick handle.

In general, conditions are not associated with individual events during a game or other application. They represent ambient phenomena, such as the stiffness or looseness of a flight stick, or the tendency of a steering wheel to return to a straight-ahead position.

A condition does not have a predefined magnitude; the magnitude is scaled in proportion to the movement or position of the input object.

DirectInput defines the following types of condition effects:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Friction. The force is applied when the axis is moved and depends on the defined friction coefficient.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Damper. The force increases in proportion to the velocity with which the user moves the axis.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Inertia. The force increases in proportion to the acceleration of the axis.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Spring. The force increases in proportion to the distance of the axis from a defined neutral point.

Most hardware devices do not support the application of envelopes to conditions.

Conditions have the following type-specific parameters:

Offset

The offset from the 0 reading of the appropriate sensor value at which the condition begins to be applied. For a spring effect, the neutral point—that is, the point along the axis at which the spring would be considered at rest—would be defined by the offset for the condition. For a damper, the offset would define the greatest velocity value for which damping force is 0. Offset is not normally used for inertia or friction effects.

Coefficient

A multiplier that scales the effect. For some devices, you can set separate coefficients for the positive and negative direction along the axis associated with the condition. For example, a flight stick controlling a damaged aircraft might move more easily to the right than to the left.

Saturation

In force feedback, saturation is an expression of the maximum possible force for an effect. For example, suppose a flight stick has a spring condition on the x-axis. The offset is 0, and the coefficient is 10,000, so the maximum force is normally exerted when the stick is furthest from the center. But if you define a positive and negative saturation of 5,000, the force does not increase after the stick has been moved halfway to the right or left.

Not all devices support saturation.

Deadband

The deadband is a zone around the offset of an axis at which the condition is not active. In the case of a spring that is at rest in the middle of an axis, the deadband enlarges this area of rest.

Not all devices support saturation.

Conditions can have duration, although in most cases, you would probably want to set the duration to infinite (–1) and stop the effect only in response to some event in the application.

[C++]

To create a condition, pass one of the following values in the rguid parameter of the IDirectInputDevice7::CreateEffect method:

�SYMBOL 183 \f "Symbol" \s 11 \h �	GUID_Spring

�SYMBOL 183 \f "Symbol" \s 11 \h �	GUID_Damper

�SYMBOL 183 \f "Symbol" \s 11 \h �	GUID_Inertia

�SYMBOL 183 \f "Symbol" \s 11 \h �	GUID_Friction

You can also pass any other GUID obtained by the IDirectInputDevice7::EnumEffects method, provided the low byte of the dwEffType member of the DIEFFECTINFO structure (DIEFT_GETTYPE(dwEfftype)) is equal to DIEFT_CONDITION. In this way, you can use hardware-specific conditions designed by the manufacturer.

The type-specific structure for conditions is DICONDITION. For multiple-axis conditions, you can provide an array of such structures, one for each axis, or a single structure that defines the condition in the specified direction. In either case, you must set the cbTypeSpecificParams member of the DIEFFECT structure to the number of bytes used; that is, to sizeof(DICONDITION) * n, where n is the number of structures provided. For more information on how to use either single or multiple structures, see the Remarks for the DICONDITION structure.

An application should call the IDirectInputDevice7::GetEffectInfo method or the IDirectInputDevice7::EnumEffects method and examine the dwEffectType member of the DIEFFECTINFO structure to determine whether both a positive and a negative coefficient and saturation for the effect are supported on the device. If the effect does not return the DIEFT_POSNEGCOEFFICIENTS flag, it ignores the value in the lNegativeCoefficient member, and the value in lPositiveCoefficient is applied to the entire axis. Likewise, if the effect does not return the DIEFT_POSNEGSATURATION flag, it ignores the value in dwNegativeSaturation, and the value in dwPositiveSaturation is used as the negative saturation level. Finally, if the effect does not return the DIEFT_SATURATION flag, it ignores both the dwPositiveSaturation and dwNegativeSaturation values, and no saturation is applied.

You can set a coefficient to a negative value, and this has the effect of generating the force in the opposite direction. For example, for a spring effect, it would cause the spring to push away from the offset point, rather than pulling toward it.

You should also check DIEFFECTINFO.dwEffectType for the DIEFT_DEADBAND flag, to see if deadband is supported for the condition. If it is not supported, the value in the lDeadBand member of the DICONDITION structure is ignored.

[Visual Basic]

To create a condition, pass one of the following values in the rguid parameter of the IDirectInputDevice7::CreateEffect method:

�SYMBOL 183 \f "Symbol" \s 11 \h �	"GUID_Spring"

�SYMBOL 183 \f "Symbol" \s 11 \h �	"GUID_Damper"

�SYMBOL 183 \f "Symbol" \s 11 \h �	"GUID_Inertia"

�SYMBOL 183 \f "Symbol" \s 11 \h �	"GUID_Friction"

You can also pass any other GUID obtained by the DirectInputEnumEffects.GetEffectGuid method, provided the low byte of the value returned by DirectInputEnumEffects.GetType is equal to DIEFT_CONDITION. In this way, you can use hardware-specific conditions designed by the manufacturer.

The type-specific parameters for a condition are described in a DICONDITION type in the condition member of the DIEFFECT type.

An application should call the DirectInputEnumEffects.GetType method and examine the return value member to determine whether both a positive and a negative coefficient and saturation for the effect are supported on the device. If the effect does not return the DIEFT_POSNEGCOEFFICIENTS flag, it ignores the value in DICONDITION.lNegativeCoefficient, and the value in lPositiveCoefficient is applied to the entire axis. Likewise, if the effect does not return the DIEFT_POSNEGSATURATION flag, it ignores the value in lNegativeSaturation, and the value in lPositiveSaturation is used as the negative saturation level. Finally, if the effect does not return the DIEFT_SATURATION flag, it ignores both the lPositiveSaturation and lNegativeSaturation values, and no saturation is applied.

You can set a coefficient to a negative value, and this has the effect of generating the force in the opposite direction. For example, for a spring effect, it would cause the spring to push away from the offset point, rather than pulling toward it.

You should also check the value returned by GetType for the DIEFT_DEADBAND flag, to see if deadband is supported for the condition. If it is not supported, the value in the lDeadBand member of the DICONDITION type is ignored.

To create a single-axis effect, set the coefficients for the unused axis to 0 in the conditionX or conditionY member of the DIEFFECT type.

DirectX for Visual Basic does not support rotation of conditions.

Custom Forces

Application writers can create their own effects by creating a custom force. A custom force is an array of constant force values played back by the device.

[C++]

The type-specific structure for custom waveform effects is DICUSTOMFORCE.

Set the dwSamplePeriod member of the DICUSTOMFORCE structure and the dwSamplePeriod member of the DIEFFECT structure to the same value. This is the length of time, in milliseconds, for which each element in the array of forces is played.

The custom force is played repeatedly until the time set in the dwDuration member of the DIEFFECT structure has elapsed.

[Visual Basic]

To create a custom force, first define an array of magnitudes, all in the range from –10,000 through 10,000. Then pass this array to the DirectInputDevice.CreateCustomEffect method.

Set the samplePeriod parameter and the lSamplePeriod member of the DIEFFECT type to the same value. This is the length of time, in milliseconds, for which each element in the array of forces is played.

The custom force is played repeatedly until the time set in the DIEFFECT.lDuration has elapsed.

Device-Specific Effects

Hardware drivers can support special effects that do not fit into the categories defined by DirectInput. The type-specific parameters for these effects can be hard-coded or modifiable by the application.

[C++]

If type-specific parameters are modifiable, the application developer must obtain a header file declaring the data structure required by the effect.

The hardware vendor must provide a GUID identifying the device-specific effect and might provide a custom structure for the type-specific parameters of the effect. Your application then must initialize a DIEFFECT structure and a type-specific structure, as with any other effect. You then call the IDirectInputDevice7::CreateEffect method, passing the device-specific GUID and a pointer to the DIEFFECT structure.

When you obtain information about a device-specific effect in a DIEFFECTINFO structure, the low byte of the dwEffType member (DIEFT_GETTYPE(dwEfftype)) indicates into which of the predefined DirectInput effect categories (constant force, ramp force, periodic, or condition) the effect falls. If it does not fall into any of the predefined categories, the value is DIEFT_HARDWARE.

If a device-specific effect falls into one of the predefined categories, the lpvTypeSpecificParams member of the DIEFFECT structure must point to the corresponding DICONSTANTFORCE, DIRAMPFORCE, DIPERIODIC, or DICONDITION structure, and the cbTypeSpecificParams member must be equal to the size of that structure.

If the (DIEFT_GETTYPE(dwEfftype) == DIEFT_HARDWARE), the values of the lpvTypeSpecificParams and cbTypeSpecificParams members depend on whether the effect requires custom type-specific parameters. If it does, these values must refer to the appropriate structure defined in the manufacturer's header file and declared and initialized by your application. If the effect does not require custom parameters—that is, if the dwStaticParms member of the DIEFFECTINFO structure for the hardware effect does not have the DIEP_TYPESPECIFICPARAMS flag—lpvTypeSpecificParams must be NULL and cbTypeSpecificParams must be 0.

DirectInput passes the GUID and the DIEFFECT structure to the device driver for verification. If the GUID is unknown, the device returns DIERR_DEVICENOTREG. If the GUID is known but the type-specific data is incorrect for that effect, the device returns DIERR_INVALIDPARAM.

[Visual Basic]

DirectX for Visual Basic does not support hardware effects that require custom type-specific parameters.

The hardware vendor must provide a GUID identifying the device-specific effect. Your application then must initialize a DIEFFECT type, as with any other effect. You then pass this type, along with the GUID, to the DirectInputDevice.CreateEffect method.

When you obtain information about a device-specific effect in a DirectInputEnumEffects enumeration, the low byte of the return value of DirectInputEnumEffects.GetType indicates into which of the predefined DirectInput effect categories (constant force, ramp force, periodic, or condition) the effect falls. If it does not fall into any of the predefined categories, the value is DIEFT_HARDWARE.

If a device-specific effect falls into one of the predefined categories, the DIEFFECT type must be initialized, as it would be for a standard force of that category. For example, if the effect type is DIEFT_CONSTANTFORCE, the constantForce member must be initialized.

DirectInput passes the GUID and the DIEFFECT structure to the device driver for verification. If the GUID is unknown, the device returns DIERR_DEVICENOTREG. If the GUID is known but the type-specific data is incorrect for that effect, the device returns DIERR_INVALIDPARAM.

Designing for Previous Versions of DirectInput

[Visual Basic]

This topic pertains only to applications developed in C++.

[C++]

In several places, DirectInput requires you to pass a version number to a method. This parameter specifies which version of DirectX the DirectInput subsystem should emulate.

Applications designed for the latest version of DirectInput should pass the value DIRECTINPUT_VERSION as defined in Dinput.h.

Applications designed to run under previous versions should pass a value corresponding to the version of DirectInput for which they were designed, with the main version number in the high-order byte. For example, an application that was designed to run on DirectInput 3 should pass a value of 0x0300.

If you define DIRECTINPUT_VERSION as 0x0300 before including the Dinput.h header file, the header file generates structure definitions compatible with DirectInput 3.0.

If you do not define DIRECTINPUT_VERSION before including the Dinput.h header file, the header file generates structure definitions compatible with the current version of DirectInput. However, the DirectX 3–compatible structures are available under the same names with "_DX3" appended. For example, the DirectX 3–compatible DIDEVCAPS structure is called DIDEVCAPS_DX3.

You must also use the appropriate versions of the DirectInput and DirectInputDevice interfaces. For versions of DirectX prior to DirectX 7.0, you must use IDirectInput and either IDirectInputDevice or IDirectInputDevice2 (the latter is available for DirectX 5.0 or later.)

DirectInput Reference

This section contains reference information for the application programming interface (API) elements provided by Microsoft® DirectInput® in C/C++ and Microsoft® Visual Basic® development systems. Reference material is organized by language:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInput C/C++ Reference

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInput Visual Basic Reference

DirectInput C/C++ Reference

Reference material for the DirectInput C/C++ API is divided into the following categories:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Interfaces

�SYMBOL 183 \f "Symbol" \s 11 \h �	Functions

�SYMBOL 183 \f "Symbol" \s 11 \h �	Callback Functions

�SYMBOL 183 \f "Symbol" \s 11 \h �	Macros

�SYMBOL 183 \f "Symbol" \s 11 \h �	Structures

�SYMBOL 183 \f "Symbol" \s 11 \h �	Device Constants

�SYMBOL 183 \f "Symbol" \s 11 \h �	Return Values

Interfaces

This section contains references for methods of the following DirectInput interfaces:

�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirectInput7

�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirectInputDevice7

�SYMBOL 183 \f "Symbol" \s 11 \h �	IDirectInputEffect

Note

All DirectInput methods have corresponding macros that expand to C or C++ syntax depending on which language is defined. These macros are found in the Dinput.h header file and are not documented separately.

IDirectInput7

Applications use the methods of the IDirectInput7 interface to enumerate, create, and retrieve the status of DirectInput devices, initialize the DirectInput object, and invoke an instance of the Windows Control Panel.

The IDirectInput7 interface is obtained by using the DirectInputCreateEx function.

IDirectInput7 supersedes the IDirectInput interface used in earlier versions of DirectX.

The methods of the IDirectInput7 interface can be organized into the following groups.

Device Management �CreateDevice ���CreateDeviceEx���EnumDevices ���FindDevice���GetDeviceStatus ��Miscellaneous �Initialize ���RunControlPanel ��

The IDirectInput interface, like all COM interfaces, inherits the IUnknown interface methods. The IUnknown interface supports the following three methods:

IUnknown �AddRef ���QueryInterface ���Release ��

The LPDIRECTINPUT type is defined as a pointer to the IDirectInput7 interface:

typedef struct IDirectInput7 *LPDIRECTINPUT7;

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInput7::CreateDevice

The IDirectInput7::CreateDevice method creates and initializes an instance of a device based on a given GUID, and obtains an IDirectInputDevice interface. This method has been superseded by IDirectInput7::CreateDeviceEx.

HRESULT CreateDevice(

 REFGUID rguid,

 LPDIRECTINPUTDEVICE *lplpDirectInputDevice,

 LPUNKNOWN pUnkOuter

);

Parameters

rguid

Reference to (C++) or address of (C) the instance GUID for the desired input device (see Remarks). The GUID is retrieved through the IDirectInput7::EnumDevices method, or it can be one of the following predefined GUIDs:

GUID_SysKeyboard

The default system keyboard.

GUID_SysMouse

The default system mouse.

For the preceding GUID values to be valid, your application must define INITGUID before all other preprocessor directives at the beginning of the source file, or link to Dxguid.lib.

lplpDirectInputDevice

Address of a variable to receive the IDirectInputDevice interface pointer if successful.

pUnkOuter

Address of the controlling object's IUnknown interface for COM aggregation, or NULL if the interface is not aggregated. Most callers pass NULL.

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be one of the following:

DIERR_DEVICENOTREG ��DIERR_INVALIDPARAM ��DIERR_NOINTERFACE ��DIERR_NOTINITIALIZED ��DIERR_OUTOFMEMORY ��

Remarks

In C++ the rguid parameter must be passed by reference; in C, which does not permit passing by reference, it must be passed by address. The following is an example of a C++ call:

lpdi->CreateDevice(GUID_SysKeyboard, &pdev, NULL);

The following shows the same call in C:

lpdi->lpVtbl->CreateDevice(lpdi, &GUID_SysKeyboard, &pdev, NULL);

Calling this method with pUnkOuter = NULL is equivalent to creating the object by CoCreateInstance(&CLSID_DirectInputDevice, NULL, CLSCTX_INPROC_SERVER, riid, lplpDirectInputDevice) and then initializing it with Initialize.

Calling this method with pUnkOuter != NULL is equivalent to creating the object by CoCreateInstance(&CLSID_DirectInputDevice, punkOuter, CLSCTX_INPROC_SERVER, &IID_IUnknown, lplpDirectInputDevice). The aggregated object must be initialized manually.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInput7::CreateDeviceEx

The IDirectInput7::CreateDeviceEx method creates and initializes an instance of a device based on a given GUID, and obtains an IDirectInputDevice, IDirectInputDevice2, or IDirectInputDevice7 interface.

HRESULT CreateDeviceEx(

 REFGUID rguid,

 REFIID riid,

 LPVOID *pvOut,

 LPUNKNOWN pUnkOuter

);

Parameters

rguid

Reference to (C++) or address of (C) the instance GUID for the desired input device (see Remarks). The GUID is retrieved through the IDirectInput7::EnumDevices method, or it can be one of the following predefined GUIDs:

GUID_SysKeyboard

The default system keyboard.

GUID_SysMouse

The default system mouse.

For the preceding GUID values to be valid, your application must define INITGUID before all other preprocessor directives at the beginning of the source file, or link to Dxguid.lib.

riid

Unique identifier for the desired interface. Currently accepted values are IID_IDirectInputDevice, IID_IDirectInputDevice2, and IID_IDirectInputDevice7.

pvOut

Address of a variable to receive the interface pointer if successful.

pUnkOuter

Address of the controlling object's IUnknown interface for COM aggregation, or NULL if the interface is not aggregated. Most callers pass NULL.

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be one of the following:

DIERR_DEVICENOTREG ��DIERR_INVALIDPARAM ��DIERR_NOINTERFACE ��DIERR_NOTINITIALIZED ��DIERR_OUTOFMEMORY ��

Remarks

In C++ the rguid parameter must be passed by reference; in C, which does not permit passing by-reference, it must be passed by address. The following is an example of a C++ call:

lpdi->CreateDevice(GUID_SysKeyboard, &pdev, NULL);

The following shows the same call in C:

lpdi->lpVtbl->CreateDevice(lpdi, &GUID_SysKeyboard, &pdev, NULL);

Most applications will want to pass IID_IDirectInputDevice7 in the riid parameter to obtain the IDirectInputDevice7 interface.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInput7::EnumDevices

The IDirectInput7::EnumDevice method enumerates devices that are either currently attached or could be attached to the computer.

HRESULT EnumDevices(

 DWORD dwDevType,

 LPDIENUMCALLBACK lpCallback,

 LPVOID pvRef,

 DWORD dwFlags

);

Parameters

dwDevType

Device type filter. If this parameter is 0, all device types are enumerated. Otherwise, it is a DIDEVTYPE_* value (see DIDEVICEINSTANCE), indicating the device type that should be enumerated.

lpCallback

Address of a callback function to be called with a description of each DirectInput device.

pvRef

Application-defined 32-bit value to be passed to the enumeration callback each time it is called.

dwFlags

Flag value that specifies the scope of the enumeration. This parameter can be one or more of the following values:

DIEDFL_ALLDEVICES

All installed devices are enumerated. This is the default behavior.

DIEDFL_ATTACHEDONLY

Only attached and installed devices.

DIEDFL_FORCEFEEDBACK

Only devices that support force feedback.

DIEDFL_INCLUDEALIASES

Include devices that are aliases for other devices.

DIEDFL_INCLUDEPHANTOMS

Include phantom (placeholder) devices.

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be one of the following error values:

DIERR_INVALIDPARAM ��DIERR_NOTINITIALIZED ��

Remarks

All installed devices can be enumerated, even if they are not present. For example, a flight stick might be installed on the system, but not currently plugged into the computer. Set the dwFlags parameter to indicate whether only attached or all installed devices should be enumerated. If the DIEDFL_ATTACHEDONLY flag is not present, all installed devices are enumerated.

A preferred device type can be passed as a dwDevType filter so that only the devices of that type are enumerated.

The lpCallback parameter specifies the address of a callback function of the type documented as DIEnumDevicesCallback. DirectInput calls this function for every device that is enumerated. In the callback, the device type and friendly name, and the product GUID and friendly name, are given for each device. If a single input device can function as more than one DirectInput device type, it is returned for each device type that it supports. For example, a keyboard with a built-in mouse is enumerated as a keyboard and as a mouse. The product GUID would be the same for each device, however.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInput7::FindDevice

The IDirectInput7::FindDeviceStatus method retrieves the instance GUID of a device that has been newly attached to the system. It is called in response to a Win32 device management notification.

HRESULT FindDevice(

 REFGUID rguidClass,

 LPCTSTR ptszName,

 LPGUID pguidInstance

);

Parameters

rguidClass

Unique identifier of the device class for the device that the application is to locate. The application obtains the class GUID from the device arrival notification. (See the documentation for the DBT_DEVICEARRIVAL event in the Platform SDK.)

ptszName

Name of the device. The application obtains the name from the device arrival notification.

pguidInstance

Address of a variable to receive the instance GUID for the device, if the device is found. This value can be passed to IDirectInput7::CreateDeviceEx.

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be DIERR_DEVICENOTREG. Failure results if the GUID and name do not correspond to a device class that is registered with DirectInput. For example, they might refer to a storage device, rather than an input device.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

See Also

Recognizing Device Changes

IDirectInput7::GetDeviceStatus

The IDirectInput7::GetDeviceStatus method retrieves the status of a specified device.

HRESULT GetDeviceStatus(

 REFGUID rguidInstance

);

Parameters

rguidInstance

Instance identifier of the device whose status is being checked.

Return Values

If the method succeeds, the return value is DI_OK if the device is attached to the system, or DI_NOTATTACHED otherwise.

If the method fails, the return value can be one of the following error values:

DIERR_GENERIC ��DIERR_INVALIDPARAM ��DIERR_NOTINITIALIZED ��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInput7::Initialize

The IDirectInput7::Initialize method initializes a DirectInput object. The DirectInputCreate and DirectInputCreateEx functions automatically initialize the DirectInput object after creating it. Applications normally do not need to call this method.

HRESULT Initialize(

 HINSTANCE hinst,

 DWORD dwVersion

);

Parameters

hinst

Instance handle to the application or dynamic-link library (DLL) that is creating the DirectInput object. DirectInput uses this value to determine whether the application or DLL has been certified and to establish any special behaviors that might be necessary for backwards compatibility.

It is an error for a DLL to pass the handle of the parent application. For example, an ActiveX control embedded in a Web page that uses DirectInput must pass its own instance handle, and not the handle of the Web browser. This ensures that DirectInput recognizes the control and can enable any special behaviors that might be necessary.

dwVersion

Version number of DirectInput for which the application is designed. This value is normally DIRECTINPUT_VERSION. Passing the version number of a previous version causes DirectInput to emulate that version. For more information, see Designing for Previous Versions of DirectInput.

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be one of the following error values:

DIERR_BETADIRECTINPUTVERSION ��DIERR_OLDDIRECTINPUTVERSION ��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInput7::RunControlPanel

The IDirectInput7::RunControlPanel method runs Control Panel to allow the user to install a new input device or modify configurations.

HRESULT RunControlPanel(

 HWND hwndOwner,

 DWORD dwFlags

);

Parameters

hwndOwner

Handle of the window to be used as the parent window for the subsequent user interface. If this parameter is NULL, no parent window is used.

dwFlags

Currently not used and must be set to 0.

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be one of the following error values:

DIERR_INVALIDPARAM ��DIERR_NOTINITIALIZED ��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

See Also

IDirectInputDevice7::RunControlPanel

IDirectInputDevice7

Applications use the methods of the IDirectInputDevice7 interface to gain and release access to DirectInput devices, manage device properties and information, set behavior, perform initialization, create and play force-feedback effects, and invoke a device's control panel.

The IDirectInputDevice7 interface is obtained by using the IDirectInput7::CreateDeviceEx method. For an example, see Creating a DirectInput Device.

IDirectInputDevice7 supersedes the IDirectInputDevice and IDirectInputDevice2 interfaces used in previous versions of DirectX.

The methods of the IDirectInputDevice7 interface can be organized into the following groups.

Accessing input devices �Acquire ���Unacquire ��Device information �GetCapabilities ���GetDeviceData ���GetDeviceInfo ���GetDeviceState ���Poll���SetDataFormat ���SetEventNotification ��Device objects �EnumObjects ���GetObjectInfo ��Device properties �GetProperty ���SetCooperativeLevel ���SetProperty ��Force feedback�CreateEffect���EnumCreatedEffectObjects���EnumEffects���EnumEffectsInFile���Escape���GetEffectInfo���GetForceFeedbackState���SendForceFeedbackCommand���WriteEffectToFile��Miscellaneous �Initialize ���RunControlPanel ���SendDeviceData��

The IDirectInputDevice7 interface, like all COM interfaces, inherits the IUnknown interface methods. The IUnknown interface supports the following three methods:

IUnknown �AddRef ���QueryInterface ���Release ��

The LPDIRECTINPUTDEVICE7 type is defined as a pointer to the IDirectInputDevice interface:

typedef struct IDirectInputDevice7 *LPDIRECTINPUTDEVICE7;

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

See Also

IDirectInputDevice7

IDirectInputDevice7::Acquire

The IDirectInputDevice7::Acquire method obtains access to the input device.

HRESULT Acquire();

Parameters

None.

Return Values

If the method succeeds, the return value is DI_OK or S_FALSE.

If the method fails, the return value can be one of the following error values:

DIERR_INVALIDPARAM ��DIERR_NOTINITIALIZED ��DIERR_OTHERAPPHASPRIO ��

If the method returns S_FALSE, the device has already been acquired.

Remarks

Before a device can be acquired, a data format must be set by using the IDirectInputDevice7::SetDataFormat method.

Devices must be acquired before calling the IDirectInputDevice7::GetDeviceState or IDirectInputDevice7::GetDeviceData methods for that device.

Device acquisition does not use a reference count. Therefore, if an application calls the IDirectInputDevice7::Acquire method twice, then calls the IDirectInputDevice7::Unacquire method once, the device is unacquired.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInputDevice7::CreateEffect

The IDirectInputDevice7::CreateEffect method creates and initializes an instance of an effect identified by the effect GUID.

HRESULT CreateEffect(

 REFGUID rguid,

 LPCDIEFFECT lpeff,

 LPDIRECTINPUTEFFECT * ppdeff,

 LPUNKNOWN punkOuter

);

Parameters

rguid

Identity of the effect to be created. This can be a predefined effect GUID, or it can be a GUID obtained from IDirectInputDevice7::EnumEffects.

The following effect GUIDs are defined:

�SYMBOL 183 \f "Symbol" \s 11 \h �	GUID_ConstantForce

�SYMBOL 183 \f "Symbol" \s 11 \h �	GUID_RampForce

�SYMBOL 183 \f "Symbol" \s 11 \h �	GUID_Square

�SYMBOL 183 \f "Symbol" \s 11 \h �	GUID_Sine

�SYMBOL 183 \f "Symbol" \s 11 \h �	GUID_Triangle

�SYMBOL 183 \f "Symbol" \s 11 \h �	GUID_SawtoothUp

�SYMBOL 183 \f "Symbol" \s 11 \h �	GUID_SawtoothDown

�SYMBOL 183 \f "Symbol" \s 11 \h �	GUID_Spring

�SYMBOL 183 \f "Symbol" \s 11 \h �	GUID_Damper

�SYMBOL 183 \f "Symbol" \s 11 \h �	GUID_Inertia

�SYMBOL 183 \f "Symbol" \s 11 \h �	GUID_Friction

�SYMBOL 183 \f "Symbol" \s 11 \h �	GUID_CustomForce

lpeff

DIEFFECT structure that provides parameters for the created effect. This parameter is optional. If it is NULL, the effect object is created without parameters. The application must then call the IDirectInputEffect::SetParameters method to set the parameters of the effect before it can download the effect.

ppdeff

Address of a variable to receive a pointer to the IDirectInputEffect interface if successful.

punkOuter

Controlling unknown for COM aggregation. The value is NULL if the interface is not aggregated. Most callers pass NULL.

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be one of the following error values:

DIERR_DEVICENOTREG ��DIERR_DEVICEFULL ��DIERR_INVALIDPARAM ��DIERR_NOTINITIALIZED ��

If the return value is S_OK, the effect was created, and the parameters of the effect were updated, but the effect was not necessarily downloaded. For it to be downloaded, the device must be acquired in exclusive mode.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInputDevice7::EnumCreatedEffectObjects

The IDirectInputDevice7::EnumCreatedEffectObjects method enumerates all the currently created effects for this device. Effects created by IDirectInputDevice7::CreateEffect are enumerated.

HRESULT EnumCreatedEffectObjects(

 LPDIENUMCREATEDEFFECTOBJECTSCALLBACK lpCallback,

 LPVOID pvRef,

 DWORD fl

);

Parameters

lpCallback

Address of an application-defined callback function. DirectInput provides the prototype function DIEnumCreatedEffectObjectsCallback.

pvRef

Reference data (context) for callback.

fl

No flags are currently defined. This parameter must be 0.

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be one of the following error values:

DIERR_INVALIDPARAM ��DIERR_NOTINITIALIZED ��

Remarks

The results are unpredictable if you create or destroy an effect while an enumeration is in progress. However, the callback function can safely release the effect passed to it.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInputDevice7::EnumEffects

The IDirectInputDevice7::EnumEffects method enumerates all the effects supported by the force-feedback system on the device. The enumerated GUIDs can represent predefined effects, as well as effects peculiar to the device manufacturer.

HRESULT EnumEffects(

 LPDIENUMEFFECTSCALLBACK lpCallback,

 LPVOID pvRef,

 DWORD dwEffType

);

Parameters

lpCallback

Address of an application-defined callback function. The declaration of this function must conform to that of the DIEnumEffectsCallback prototype.

pvRef

A 32-bit application-defined value to be passed to the callback function. This parameter can be any 32-bit type; it is declared as LPVOID for convenience.

dwEffType

Effect type filter. Use one of the DIEFT_* values to indicate the effect type to be enumerated, or DIEFT_ALL to enumerate all effect types. For a list of these values, see DIEFFECTINFO.

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be one of the following error values:

DIERR_INVALIDPARAM ��DIERR_NOTINITIALIZED ��

If the callback stops the enumeration prematurely, the enumeration is considered to have succeeded.

Remarks

An application can use the dwEffType member of the DIEFFECTINFO structure to obtain general information about the effect, such as its type and which envelope and condition parameters are supported by the effect.

To exploit an effect to its fullest, contact the device manufacturer to obtain information on the semantics of the effect and its effect-specific parameters.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInputDevice7::EnumEffectsInFile

The IDirectInputDevice7::EnumEffectsInFile method enumerates all the effects in a file created by the Force Editor utility or another application using the same file format.

HRESULT EnumEffectsInFile(

 LPCSTR lpszFileName,

 LPENUMEFFECTSINFILECALLBACK pec,

 LPVOID pvRef,

 DWORD dwFlags

);

Parameters

lpszFileName

Name of the RIFF file.

pec

Address of an application-defined callback function. The declaration of this function must conform to that of the DIEnumEffectsInFileCallback prototype.

pvRef

Application-defined value to be passed to the callback function. This parameter can be any 32-bit type.

dwFlags

Can be DIFEF_DEFAULT (= 0) or one or both of the following values:

DIFEF_INCLUDENONSTANDARD

Include effect types that are not defined by DirectInput.

DIFEF_MODIFYIFNEEDED

Instruct DirectInput to modify the authored effect, if necessary, so that it plays on the current device. For example, by default, an effect authored for two axes does not play on a single-axis device. Setting this flag allows the effect to play on a single axis. The parameters are modified in the DIEFFECT structure pointed to by the lpDiEffect member of the DIFILEEFFECT structure passed to the callback.

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be one of the following error values:

DIERR_INVALIDPARAM ��DIERR_NOTINITIALIZED ��

If the callback stops the enumeration prematurely, the enumeration is considered to have succeeded.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

See Also

IDirectInputDevice7::WriteEffectToFile, Loading Effects from a File

IDirectInputDevice7::EnumObjects

The IDirectInputDevice7::EnumObjects method enumerates the input and force-feedback objects available on a device.

HRESULT EnumObjects(

 LPDIENUMDEVICEOBJECTSCALLBACK lpCallback,

 LPVOID pvRef,

 DWORD dwFlags

);

Parameters

lpCallback

Address of a callback function that receives DirectInputDevice objects. DirectInput provides a prototype of this function as DIEnumDeviceObjectsCallback.

pvRef

Reference data (context) for callback.

dwFlags

Flags specifying the types of object to be enumerated. Each of the following values restricts the enumeration to objects of the described type:

DIDFT_ABSAXIS

An absolute axis.

DIDFT_ALL

All objects.

DIDFT_AXIS

An axis, either absolute or relative.

DIDFT_BUTTON

A push button or a toggle button.

DIDFT_COLLECTION

An HID link collection. HID link collections do not generate data of their own.

DIDFT_ENUMCOLLECTION(n)

An object that belongs to HID link collection number n.

DIDFT_FFACTUATOR

An object that contains a force-feedback actuator. In other words, forces can be applied to this object.

DIDFT_FFEFFECTTRIGGER

An object that can be used to trigger force-feedback effects.

DIDFT_NOCOLLECTION

An object that does not belong to any HID link collection; in other words, an object for which the wCollectionNumber member of the DIDEVICEOBJECTINSTANCE structure is 0.

DIDFT_NODATA

An object that does not generate data.

DIDFT_OUTPUT

An object to which data can be sent by using the IDirectInputDevice7::SendDeviceData method.

DIDFT_POV

A point-of-view controller.

DIDFT_PSHBUTTON

A push button. A push button is reported as down when the user presses it and as up when the user releases it.

DIDFT_RELAXIS

A relative axis.

DIDFT_TGLBUTTON

A toggle button. A toggle button is reported as down when the user presses it and remains so until the user presses the button a second time.

DIDFT_VENDORDEFINED

An object of a type defined by the manufacturer.

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be one of the following error values:

DIERR_INVALIDPARAM ��DIERR_NOTINITIALIZED ��

Remarks

The DIDFT_FFACTUATOR and DIDFT_FFEFFECTTRIGGER flags in the dwFlags parameter restrict enumeration to objects that meet all the criteria defined by the included flags. For all the other flags, an object is enumerated if it meets the criterion defined by any included flag in this category. For example, (DIDFT_FFACTUATOR | DIDFT_FFEFFECTTRIGGER) restricts enumeration to force-feedback trigger objects, and (DIDFT_FFEFFECTTRIGGER | DIDFT_TGLBUTTON | DIDFT_PSHBUTTON) restricts enumeration to buttons of any kind that can be used as effect triggers.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInputDevice7::Escape

The IDirectInputDevice7::Escape method sends a hardware-specific command to the force-feedback driver.

HRESULT Escape(

 LPDIEFFESCAPE pesc

);

Parameters

pesc

DIEFFESCAPE structure that describes the command to be sent. On success, the cbOutBuffer member contains the number of bytes of the output buffer actually used.

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be one of the following error values:

DIERR_DEVICEFULL ��DIERR_NOTINITIALIZED ��

Other device-specific error codes are also possible. Ask the hardware manufacturer for details.

Remarks

Since each driver implements different escapes, it is the application's responsibility to ensure that it is sending the escape to the correct driver by comparing the value of the guidFFDriver member of the DIDEVICEINSTANCE structure against the value the application is expecting.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInputDevice7::GetCapabilities

The IDirectInputDevice7::GetCapabilities method obtains the capabilities of the DirectInputDevice object.

HRESULT GetCapabilities(

 LPDIDEVCAPS lpDIDevCaps

);

Parameters

lpDIDevCaps

Address of a DIDEVCAPS structure to be filled with the device capabilities. The dwSize member of this structure must be initialized before calling this method.

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be one of the following error values:

DIERR_INVALIDPARAM ��DIERR_NOTINITIALIZED ��

Remarks

For compatibility with DirectX 3, it is also valid to pass a DIDEVCAPS_DX3 structure with the dwSize member initialized to sizeof(DIDEVCAPS_DX3). For more information, see Designing for Previous Versions of DirectInput.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInputDevice7::GetDeviceData

The IDirectInputDevice7::GetDeviceData method retrieves buffered data from the device.

HRESULT GetDeviceData(

 DWORD cbObjectData,

 LPDIDEVICEOBJECTDATA rgdod,

 LPDWORD pdwInOut,

 DWORD dwFlags

);

Parameters

cbObjectData

Size of the DIDEVICEOBJECTDATA structure, in bytes.

rgdod

Array of DIDEVICEOBJECTDATA structures to receive the buffered data. The number of elements in this array must be equal to the value of the pdwInOut parameter. If this parameter is NULL, the buffered data is not stored anywhere, but all other side-effects take place.

pdwInOut

On entry, the number of elements in the array pointed to by the rgdod parameter. On exit, the number of elements actually obtained.

dwFlags

Flags that control the manner in which data is obtained. This value can be 0 or the following flag:

DIGDD_PEEK

Do not remove the items from the buffer. A subsequent IDirectInputDevice7::GetDeviceData call will read the same data. Normally, data is removed from the buffer after it is read.

Return Values

If the method succeeds, the return value is DI_OK or DI_BUFFEROVERFLOW.

If the method fails, the return value can be one of the following error values:

DIERR_INPUTLOST ��DIERR_INVALIDPARAM ��DIERR_NOTACQUIRED ��DIERR_NOTBUFFERED ��DIERR_NOTINITIALIZED ��

Remarks

Before device data can be obtained, you must set the data format by using the IDirectInputDevice7::SetDataFormat method, set the buffer size with the IDirectInputDevice7::SetProperty method, and acquire the device by using the IDirectInputDevice7::Acquire method.

The following code example reads up to ten buffered data elements, removing them from the device buffer as they are read.

DIDEVICEOBJECTDATA rgdod[10];

DWORD dwItems = 10;

hres = IDirectInputDevice7_GetDeviceData(

 pdid,

 sizeof(DIDEVICEOBJECTDATA),

 rgdod,

 &dwItems,

 0);

if (SUCCEEDED(hres)) {

 // dwItems = number of elements read (could be zero)

 if (hres == DI_BUFFEROVERFLOW) {

 // Buffer had overflowed.

 }

}

Your application can flush the buffer and retrieve the number of flushed items by specifying NULL for the rgdod parameter and a pointer to a variable containing INFINITE for the pdwInOut parameter. The following code example illustrates how this can be done:

dwItems = INFINITE;

hres = IDirectInputDevice7_GetDeviceData(

 pdid,

 sizeof(DIDEVICEOBJECTDATA),

 NULL,

 &dwItems,

 0);

if (SUCCEEDED(hres)) {

 // Buffer successfully flushed

 // dwItems = number of elements flushed

 if (hres == DI_BUFFEROVERFLOW) {

 // Buffer had overflowed.

 }

}

Your application can query for the number of elements in the device buffer by setting the rgdod parameter to NULL, setting pdwInOut to INFINITE and setting dwFlags to DIGDD_PEEK. The following code example illustrates how this can be done:

dwItems = INFINITE;

hres = IDirectInputDevice7_GetDeviceData(

 pdid,

 sizeof(DIDEVICEOBJECTDATA),

 NULL,

 &dwItems,

 DIGDD_PEEK);

if (SUCCEEDED(hres)) {

 // dwItems = number of elements in buffer

 if (hres == DI_BUFFEROVERFLOW) {

 // Buffer overflow occurred; not all data

 // was successfully captured.

 }

}

To query about whether a buffer overflow has occurred, set the rgdod parameter to NULL and the pdwInOut parameter to 0. The following code example illustrates how this can be done:

dwItems = 0;

hres = IDirectInputDevice7_GetDeviceData(

 pdid,

 sizeof(DIDEVICEOBJECTDATA),

 NULL,

 &dwItems,

 0);

if (hres == DI_BUFFEROVERFLOW) {

 // Buffer overflow occurred

}

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

See Also

IDirectInputDevice7::Poll, Polling and Events

IDirectInputDevice7::GetDeviceInfo

The IDirectInputDevice7::GetDeviceInfo method obtains information about the device's identity.

HRESULT GetDeviceInfo(

 LPDIDEVICEINSTANCE pdidi

);

Parameters

pdidi

Address of a DIDEVICEINSTANCE structure to be filled with information about the device's identity. An application must initialize the structure's dwSize member before calling this method.

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be one of the following error values:

DIERR_INVALIDPARAM ��DIERR_NOTINITIALIZED ��

Remarks

For compatibility with DirectX 3, it is also valid to pass a DIDEVICEINSTANCE_DX3 structure with the dwSize member initialized to sizeof(DIDEVICEINSTANCE_DX3). For more information, see Designing for Previous Versions of DirectInput.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInputDevice7::GetDeviceState

The IDirectInputDevice7::GetDeviceState method retrieves immediate data from the device.

HRESULT GetDeviceState(

 DWORD cbData,

 LPVOID lpvData

);

Parameters

cbData

Size of the buffer in the lpvData parameter, in bytes.

lpvData

Address of a structure that receives the current state of the device. The format of the data is established by a prior call to the IDirectInputDevice7::SetDataFormat method.

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be one of the following error values:

DIERR_INPUTLOST ��DIERR_INVALIDPARAM ��DIERR_NOTACQUIRED ��DIERR_NOTINITIALIZED ��E_PENDING ��

Remarks

Before device data can be obtained, set the cooperative level by using the IDirectInputDevice7::SetCooperativeLevel method, then set the data format by using IDirectInputDevice7::SetDataFormat, and acquire the device by using the IDirectInputDevice7::Acquire method.

The five predefined data formats require corresponding device state structures according to the following table:

Data format�State structure����c_dfDIMouse�DIMOUSESTATE ��c_dfDIMouse2�DIMOUSESTATE2��c_dfDIKeyboard�array of 256 bytes��c_dfDIJoystick�DIJOYSTATE ��c_dfDIJoystick2�DIJOYSTATE2 ��

For example, if you passed the c_dfDIMouse format to the IDirectInputDevice7::SetDataFormat method, you must pass a DIMOUSESTATE structure to the IDirectInputDevice7::GetDeviceState method.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

See Also

IDirectInputDevice7::Poll, Polling and Events, Buffered and Immediate Data

IDirectInputDevice7::GetEffectInfo

The IDirectInputDevice7::GetEffectInfo method obtains information about an effect.

HRESULT GetEffectInfo(

 LPDIEFFECTINFO pdei,

 REFGUID rguid

);

Parameters

pdei

DIEFFECTINFO structure that receives information about the effect. The caller must initialize the dwSize member of the structure before calling this method.

rguid

Identifier of the effect for which information is being requested.

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be one of the following error values:

DIERR_DEVICENOTREG ��DIERR_INVALIDPARAM ��DIERR_NOTINITIALIZED ��

Remarks

In C++, the rguid parameter must be passed by reference; in C, which does not have pass-by-reference, it must be passed by address. The following is an example of a C++ call:

lpdev2->GetEffectInfo(&dei, GUID_Effect);

The following shows the same call in C:

lpdev2->lpVtbl->GetEffectInfo(lpdev2, &dei, &GUID_Effect);

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInputDevice7::GetForceFeedbackState

The IDirectInputDevice7::GetForceFeedbackState method retrieves the state of the device's force-feedback system.

HRESULT GetForceFeedbackState(

 LPDWORD pdwOut

);

Parameters

pdwOut

Location for flags that describe the current state of the device's force-feedback system.

The value is a combination of the following constants:

DIGFFS_ACTUATORSOFF

The device's force-feedback actuators are disabled.

DIGFFS_ACTUATORSON

The device's force-feedback actuators are enabled.

DIGFFS_DEVICELOST

The device suffered an unexpected failure and is in an indeterminate state. It must be reset either by unacquiring and reacquiring the device, or by sending a DISFFC_RESET command.

DIGFFS_EMPTY

The device has no downloaded effects.

DIGFFS_PAUSED

Playback of all active effects has been paused.

DIGFFS_POWEROFF

The force-feedback system is not currently available. If the device cannot report the power state, neither DIGFFS_POWERON nor DIGFFS_POWEROFF is returned.

DIGFFS_POWERON

Power to the force-feedback system is currently available. If the device cannot report the power state, neither DIGFFS_POWERON nor DIGFFS_POWEROFF is returned.

DIGFFS_SAFETYSWITCHOFF

The safety switch is currently off, meaning that the device cannot operate. If the device cannot report the state of the safety switch, neither DIGFFS_SAFETYSWITCHON nor DIGFFS_SAFETYSWITCHOFF is returned.

DIGFFS_SAFETYSWITCHON

The safety switch is currently on, meaning that the device can operate. If the device cannot report the state of the safety switch, neither DIGFFS_SAFETYSWITCHON nor DIGFFS_SAFETYSWITCHOFF is returned.

DIGFFS_STOPPED

No effects are playing, and the device is not paused.

DIGFFS_USERFFSWITCHOFF

The user force-feedback switch is currently off, meaning that the device cannot operate. If the device cannot report the state of the user force-feedback switch, neither DIGFFS_USERFFSWITCHON nor DIGFFS_USERFFSWITCHOFF is returned.

DIGFFS_USERFFSWITCHON

The user force-feedback switch is currently on, meaning that the device can operate. If the device cannot report the state of the user force-feedback switch, neither DIGFFS_USERFFSWITCHON nor DIGFFS_USERFFSWITCHOFF is returned.

Future versions of DirectInput can define additional flags. Applications should ignore any flags that are not currently defined.

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be one of the following error values:

DIERR_INPUTLOST ��DIERR_INVALIDPARAM ��DIERR_NOTEXCLUSIVEACQUIRED ��DIERR_NOTINITIALIZED ��DIERR_UNSUPPORTED ��

Remarks

The device must be acquired at the exclusive cooperative level for this method to succeed.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInputDevice7::GetObjectInfo

The IDirectInputDevice7::GetObjectInfo method retrieves information about a device object, such as a button or axis.

HRESULT GetObjectInfo(

 LPDIDEVICEOBJECTINSTANCE pdidoi,

 DWORD dwObj,

 DWORD dwHow

);

Parameters

pdidoi

Address of a DIDEVICEOBJECTINSTANCE structure to be filled with information about the object. The structure's dwSize member must be initialized before this method is called.

dwObj

Value that identifies the object whose information is to be retrieved. The value set for this parameter depends on the value specified in the dwHow parameter.

dwHow

Value specifying how the dwObj parameter should be interpreted. This value can be one of the following:

Value �Meaning ��DIPH_BYOFFSET �The dwObj parameter is the offset into the current data format of the object whose information is being accessed. ��DIPH_BYID �The dwObj parameter is the object type/instance identifier. This identifier is returned in the dwType member of the DIDEVICEOBJECTINSTANCE structure returned from a previous call to the IDirectInputDevice7::EnumObjects method. ��DIPH_BYUSAGE�The dwObj parameter contains the HID Usage Page and Usage values of the object, combined by the DIMAKEUSAGEDWORD macro.��

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be one of the following error values:

DIERR_INVALIDPARAM ��DIERR_NOTINITIALIZED ��DIERR_OBJECTNOTFOUND ��

Remarks

For compatibility with DirectX 3, it is also valid to pass a DIDEVICEOBJECTINSTANCE_DX3 structure with the dwSize member initialized to sizeof(DIDEVICEOBJECTINSTANCE_DX3). For more information, see Designing for Previous Versions of DirectInput.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInputDevice7::GetProperty

The IDirectInputDevice7::GetProperty method retrieves information about the input device.

HRESULT GetProperty(

 REFGUID rguidProp,

 LPDIPROPHEADER pdiph

);

Parameters

rguidProp

Identifier of the property to be retrieved. This can be one of the predefined values or a pointer to a GUID that identifies the property. The following properties are predefined for an input device:

DIPROP_AUTOCENTER

Specifies whether device objects are self-centering. See IDirectInputDevice7::SetProperty for more information.

DIPROP_AXISMODE

Retrieves the axis mode. The retrieved value (DIPROPAXISMODE_ABS or DIPROPAXISMODE_REL) is set in the dwData member of the associated DIPROPDWORD structure. See the description for the pdiph parameter for more information.

DIPROP_BUFFERSIZE

Retrieves the input-buffer size. The retrieved value is set in the dwData member of the associated DIPROPDWORD structure. See the description for the pdiph parameter for more information.

The buffer size determines the amount of data that the buffer can hold between calls to the IDirectInputDevice7::GetDeviceData method before data is lost. This value can be set to 0 to indicate that the application does not be reading buffered data from the device. If the buffer size in the dwData member of the DIPROPDWORD structure is too large to be supported by the device, the largest possible buffer size is set. To determine whether the requested buffer size was set, retrieve the buffer-size property, and compare the result with the value that you previously attempted to set.

DIPROP_DEADZONE

Retrieves a value for the dead zone of a joystick, in the range from 0 through 10,000, where 0 indicates that there is no dead zone, 5,000 indicates that the dead zone extends over 50 percent of the physical range of the axis on both sides of center, and 10,000 indicates that the entire physical range of the axis is dead. When the axis is within the dead zone, it is reported as being at the center of its range.

DIPROP_FFGAIN

Retrieves the gain of the device. See IDirectInputDevice7::SetProperty for more information.

DIPROP_FFLOAD

Retrieves the memory load for the device. This setting applies to the entire device, rather than to any particular object, so the dwHow member of the associated DIPROPDWORD structure must be DIPH_DEVICE.

The dwData member contains a value in the range from 0 through 100, indicating the percentage of device memory in use.

DIPROP_GRANULARITY

Retrieves the input granularity. The retrieved value is set in the dwData member of the associated DIPROPDWORD structure. See the description of the pdiph parameter for more information.

Granularity represents the smallest distance over which the object reports movement. Most axis objects have a granularity of one, meaning that all values are possible. Some axes have a larger granularity. For example, the wheel axis on a mouse can have a granularity of 20, meaning that all reported changes in position are multiples of 20. In other words, when the user turns the wheel slowly, the device reports a position of 0, then 20, then 40, and so on.

This is a read-only property; you cannot set its value by calling the IDirectInputDevice7::SetProperty method.

DIPROP_GUIDANDPATH

Allows the application to access the class GUID and device interface (path) for the device. This property lets advanced applications perform operations on a HID that are not supported by DirectInput. For more information, see the reference for the DIPROPGUIDANDPATH structure.

DIPROP_INSTANCENAME

Retrieves the friendly instance name of the device. For more information, see IDirectInputDevice7::SetProperty.

DIPROP_PRODUCTNAME

Retrieves the friendly product name of the device. For more information, see IDirectInputDevice7::SetProperty.

DIPROP_RANGE

Retrieves the range of values an object can possibly report. The retrieved minimum and maximum values are set in the lMin and lMax members of the associated DIPROPRANGE structure. See the description of the pdiph parameter for more information.

For some devices, this is a read-only property; you cannot set its value by calling the IDirectInputDevice7::SetProperty method.

DIPROP_SATURATION

Retrieves a value for the saturation zones of a joystick, in the range from 0 through 10,000. The saturation level is the point at which the axis is considered to be at its most extreme position. For example, if the saturation level is set to 9,500, the axis reaches the extreme of its range when it has moved 95 percent of the physical distance from its center position (or from the dead zone).

pdiph

Address of the DIPROPHEADER portion of a larger property-dependent structure that contains the DIPROPHEADER structure as a member. When retrieving object range information, this value is the address of the DIPROPHEADER structure contained within the DIPROPRANGE structure. For most other properties, this value is the address of the DIPROPHEADER structure contained within the DIPROPDWORD structure.

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be one of the following error values:

DIERR_INVALIDPARAM ��DIERR_NOTINITIALIZED ��DIERR_OBJECTNOTFOUND ��DIERR_UNSUPPORTED ��

Remarks

The following C example shows how to obtain the value of the DIPROP_BUFFERSIZE property:

DIPROPDWORD dipdw; // DIPROPDWORD contains a DIPROPHEADER structure.

HRESULT hr;

dipdw.diph.dwSize = sizeof(DIPROPDWORD);

dipdw.diph.dwHeaderSize = sizeof(DIPROPHEADER);

dipdw.diph.dwObj = 0; // device property

dipdw.diph.dwHow = DIPH_DEVICE;

hr = IDirectInputDevice7_GetProperty(pdid, DIPROP_BUFFERSIZE, &dipdw.diph);

if (SUCCEEDED(hr)) {

 // The dipdw.dwData member contains the buffer size.

}

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

See Also

IDirectInputDevice7::SetProperty

IDirectInputDevice7::Initialize

The IDirectInputDevice7::Initialize method initializes a DirectInputDevice object. The IDirectInput7::CreateDevice method automatically initializes a device after creating it; applications normally do not need to call this method.

HRESULT Initialize(

 HINSTANCE hinst,

 DWORD dwVersion,

 REFGUID rguid

);

Parameters

hinst

Instance handle to the application or DLL that is creating the DirectInput device object. DirectInput uses this value to determine whether the application or DLL has been certified and to establish any special behaviors that might be necessary for backward compatibility.

It is an error for a DLL to pass the handle to the parent application. For example, an ActiveX control embedded in a Web page that uses DirectInput must pass its own instance handle, and not the handle to the Web browser. This ensures that DirectInput recognizes the control and can enable any special behaviors that may be necessary.

dwVersion

Version number of DirectInput for which the application is designed. This value is normally DIRECTINPUT_VERSION. Passing the version number of a previous version causes DirectInput to emulate that version. For more information, see Designing for Previous Versions of DirectInput.

rguid

Identifier for the instance of the device with which the interface should be associated. The IDirectInput7::EnumDevices method can be used to determine which instance GUIDs are supported by the system.

Return Values

If the method succeeds, the return value is DI_OK or S_FALSE.

If the method fails, the return value can be one of the following error values:

DIERR_ACQUIRED ��DIERR_DEVICENOTREG ��

If the method returns S_FALSE, the device had already been initialized with the instance GUID passed in though rGUID.

Remarks

If this method fails, the underlying object should be considered to be in an indeterminate state and must be reinitialized before use.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInputDevice7::Poll

The IDirectInputDevice7::Poll method retrieves data from polled objects on a DirectInput device. If the device does not require polling, calling this method has no effect. If a device that requires polling is not polled periodically, no new data is received from the device. Calling this method causes DirectInput to update the device state, generate input events (if buffered data is enabled), and set notification events (if notification is enabled).

HRESULT Poll()

Parameters

None.

Return Values

If the method succeeds, the return value is DI_OK, or DI_NOEFFECT if the device does not require polling.

If the method fails, the return value can be one of the following error values:

DIERR_INPUTLOST ��DIERR_NOTACQUIRED ��DIERR_NOTINITIALIZED ��

Remarks

Before a device data can be polled, the data format must be set by using the IDirectInputDevice7::SetDataFormat method, and the device must be acquired by using the IDirectInputDevice7::Acquire method.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

See Also

Polling and Events

IDirectInputDevice7::RunControlPanel

The IDirectInputDevice7::RunControlPanel method runs the DirectInput control panel associated with this device. If the device does not have a control panel associated with it, the default device control panel is launched.

HRESULT RunControlPanel(

 HWND hwndOwner,

 DWORD dwFlags

);

Parameters

hwndOwner

Parent window handle. If this parameter is NULL, no parent window is used.

dwFlags

Not currently used. Zero is the only valid value.

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be one of the following error values:

DIERR_INVALIDPARAM ��DIERR_NOTINITIALIZED ��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInputDevice7::SendDeviceData

The IDirectInputDevice7::SendDeviceData method sends data to a device that accepts output. The device must be in an acquired state.

HRESULT SendDeviceData(

 DWORD cbObjectData,

 LPCDIDEVICEOBJECTDATA rgdod,

 LPDWORD pdwInOut,

 DWORD fl

);

Parameters

cbObjectData

Size, in bytes, of a single DIDEVICEOBJECTDATA structure.

rgdod

Array of DIDEVICEOBJECTDATA structures containing the data to send to the device. It must consist of *pdwInOut elements.

The dwOfs field of each DIDEVICEOBJECTDATA structure must contain the device object identifier (as obtained from the dwType field of the DIDEVICEOBJECTINSTANCE structure) for the device object to which the data is directed. The dwTimeStamp and dwSequence members must be 0.

pdwInOut

On entry, the variable pointed to by this parameter contains the number of elements in the array pointed to by rgdod. On exit, it contains the number of elements sent to the device.

fl

Flags controlling the manner in which data is sent. This can be 0 or the following value:

DISDD_CONTINUE

The device data sent is overlaid on the previously sent device data. See Remarks.

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be one of the following error values:

DIERR_INPUTLOST ��DIERR_NOTACQUIRED ��DIERR_REPORTFULL ��DIERR_UNPLUGGED ��

Remarks

There is no guarantee that the individual data elements will be sent in a particular order. However, data sent by successive calls to IDirectInputDevice7::SendDeviceData is not interleaved. Furthermore, if multiple pieces of data are sent to the same object with a single call, it is unspecified which piece of data is sent.

Consider, for example, a device that can be sent data in packets, each packet describing two pieces of information; call them A and B. Suppose the application attempts to send three data elements: B = 2, A = 1, and B = 0.

The actual device is sent a single packet. The A field of the packet contains the value 1, and the B field of the packet is either 2 or 0.

If the data must to be sent to the device exactly as specified, three calls to IDirectInputDevice7::SendDeviceData should be performed, each call sending one data element.

In response to the first call, the device is sent a packet in which the A field is blank and the B field contains the value 2.

In response to the second call, the device is sent a packet in which the A field contains the value 1, and the B field is blank.

Finally, in response to the third call, the device is sent a packet in which the A field is blank and the B field contains the value 0.

If the DISDD_CONTINUE flag is set, the device data sent is overlaid on the previously sent device data. Otherwise, the device data sent starts from scratch.

For example, suppose a device supports two button outputs, Button0 and Button1. If an application first calls IDirectInputDevice7::SendDeviceData passing "Button0 pressed", a packet of the form "Button0 pressed, Button1 not pressed" is sent to the device. If the application then makes another call, passing "Button1 pressed" and the DISDD_CONTINUE flag, a packet of the form "Button0 pressed, Button1 pressed" is sent to the device. However, if the application had not passed the DISDD_CONTINUE flag, the packet sent to the device would have been "Button0 not pressed, Button1 pressed".

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInputDevice7::SendForceFeedbackCommand

The IDirectInputDevice7::SendForceFeedbackCommand method sends a command to the device's force-feedback system.

HRESULT SendForceFeedbackCommand(

 DWORD dwFlags

);

Parameters

dwFlags

Single value indicating the desired change in state. The value can be one of the following:

DISFFC_CONTINUE

Paused playback of all active effects is to be continued. It is an error to send this command when the device is not in a paused state.

DISFFC_PAUSE

Playback of all active effects is to be paused. This command also stops the clock-on effects so that they continue playing to their full duration when restarted.

While the device is paused, new effects cannot be started, and existing ones cannot be modified. Doing so can cause the subsequent DISFFC_CONTINUE command to fail to perform properly.

To abandon a pause and stop all effects, use the DISFFC_STOPALL or DISFCC_RESET commands.

DISFFC_RESET

The device's force-feedback system is to be put in its startup state. All effects are removed from the device, are no longer valid, and must be recreated if they are to be used again. The device's actuators are disabled.

DISFFC_SETACTUATORSOFF

The device's force-feedback actuators are to be disabled. While the actuators are off, effects continue to play but are ignored by the device. Using the analogy of a sound playback device, they are muted, rather than paused.

DISFFC_SETACTUATORSON

The device's force-feedback actuators are to be enabled.

DISFFC_STOPALL

Playback of any active effects is to be stopped. All active effects are reset, but are still being maintained by the device and are still valid. If the device is in a paused state, that state is lost.

This command is equivalent to calling the IDirectInputEffect::Stop method for each effect playing.

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be one of the following error values:

DIERR_INPUTLOST ��DIERR_INVALIDPARAM ��DIERR_NOTEXCLUSIVEACQUIRED ��DIERR_NOTINITIALIZED ��DIERR_UNSUPPORTED ��

Remarks

The device must be acquired at the exclusive cooperative level for this method to succeed.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInputDevice7::SetCooperativeLevel

The IDirectInputDevice7::SetCooperativeLevel method establishes the cooperative level for this instance of the device. The cooperative level determines how this instance of the device interacts with other instances of the device and the rest of the system.

HRESULT SetCooperativeLevel(

 HWND hwnd,

 DWORD dwFlags

);

Parameters

hwnd

Window handle to be associated with the device. This parameter must be a valid top-level window handle that belongs to the process. The window associated with the device must not be destroyed while it is still active in a DirectInput device.

dwFlags

Flags that describe the cooperative level associated with the device. The following flags are defined:

DISCL_BACKGROUND

The application requires background access. If background access is granted, the device can be acquired at any time, even when the associated window is not the active window.

DISCL_EXCLUSIVE

The application requires exclusive access. If exclusive access is granted, no other instance of the device can obtain exclusive access to the device while it is acquired. However, nonexclusive access to the device is always permitted, even if another application has obtained exclusive access.

An application that acquires the mouse or keyboard device in exclusive mode should always unacquire the devices when it receives WM_ENTERSIZEMOVE and WM_ENTERMENULOOP messages. Otherwise, the user cannot manipulate the menu or move and resize the window.

DISCL_FOREGROUND

The application requires foreground access. If foreground access is granted, the device is automatically unacquired when the associated window moves to the background.

DISCL_NONEXCLUSIVE

The application requires nonexclusive access. Access to the device does not interfere with other applications that are accessing the same device.

DISCL_NOWINKEY

Disable the Windows key. Setting this flag ensures that the user cannot inadvertently break out of the application

Applications must specify either DISCL_FOREGROUND or DISCL_BACKGROUND; it is an error to specify both or neither. Similarly, applications must specify either DISCL_EXCLUSIVE or DISCL_NONEXCLUSIVE.

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be one of the following error values:

DIERR_INVALIDPARAM ��DIERR_NOTINITIALIZED ��E_HANDLE��

Remarks

If the system mouse is acquired in exclusive mode, the pointer is removed from the screen until the device is unacquired.

Applications must call this method before acquiring the device by using the IDirectInputDevice7::Acquire method.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

See Also

Cooperative Levels

IDirectInputDevice7::SetDataFormat

The IDirectInputDevice7::SetDataFormat method sets the data format for the DirectInput device.

HRESULT SetDataFormat(

 LPCDIDATAFORMAT lpdf

);

Parameters

lpdf

Address of a structure that describes the format of the data that the DirectInputDevice should return. An application can define its own DIDATAFORMAT structure or use one of the following predefined global variables:

�SYMBOL 183 \f "Symbol" \s 11 \h �	c_dfDIKeyboard

�SYMBOL 183 \f "Symbol" \s 11 \h �	c_dfDIMouse

�SYMBOL 183 \f "Symbol" \s 11 \h �	c_dfDIMouse2

�SYMBOL 183 \f "Symbol" \s 11 \h �	c_dfDIJoystick

�SYMBOL 183 \f "Symbol" \s 11 \h �	c_dfDIJoystick2

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be one of the following error values:

DIERR_ACQUIRED ��DIERR_INVALIDPARAM ��DIERR_NOTINITIALIZED ��

Remarks

The data format must be set before the device can be acquired by using the IDirectInputDevice7::Acquire method. It is necessary to set the data format only once. The data format cannot be changed while the device is acquired.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

See Also

IDirectInputDevice7::GetDeviceState

IDirectInputDevice7::SetEventNotification

The IDirectInputDevice7::SetEventNotification method sets the event notification status. This method specifies an event that is to be set when the device state changes. It is also used to turn off event notification.

HRESULT SetEventNotification(

 HANDLE hEvent

);

Parameters

hEvent

Handle to the event that is to be set when the device state changes. DirectInput uses the Win32 SetEvent function on the handle when the state of the device changes. If the hEvent parameter is NULL, notification is disabled.

The application can create the handle as either a manual-reset or autoreset event by using the Win32 CreateEvent function. If the event is created as an autoreset event, the operating system automatically resets the event once a wait has been satisfied. If the event is created as a manual-reset event, it is the application's responsibility to call the Win32 ResetEvent function to reset it. DirectInput does not call the Win32 ResetEvent function for event notification handles. Most applications create the event as an automatic-reset event.

Return Values

If the method succeeds, the return value is DI_OK or DI_POLLEDDEVICE.

If the method fails, the return value can be one of the following error values:

DIERR_ACQUIRED ��DIERR_HANDLEEXISTS ��DIERR_INVALIDPARAM ��DIERR_NOTINITIALIZED ��

Remarks

A device state change is defined as any of the following:

�SYMBOL 183 \f "Symbol" \s 11 \h �	A change in the position of an axis

�SYMBOL 183 \f "Symbol" \s 11 \h �	A change in the state (pressed or released) of a button

�SYMBOL 183 \f "Symbol" \s 11 \h �	A change in the direction of a POV control

�SYMBOL 183 \f "Symbol" \s 11 \h �	Loss of acquisition

Do not call the Win32 CloseHandle function on the event while it has been selected into a DirectInputDevice object. You must call this method with the hEvent parameter set to NULL before closing the event handle.

The event notification handle cannot be changed while the device is acquired. If the function is successful, the application can use the event handle like any other Win32 event handle.

The following code example checks whether the handle is currently set without blocking:

dwResult = WaitForSingleObject(hEvent, 0);

if (dwResult == WAIT_OBJECT_0) {

 // Event is set. If the event was created as

 // autoreset, it has also been reset.

}

The following code example illustrates blocking indefinitely until the event is set. This behavior is strongly discouraged because the thread does not respond to the system until the wait is satisfied. In particular, the thread does not respond to Windows messages.

dwResult = WaitForSingleObject(hEvent, INFINITE);

if (dwResult == WAIT_OBJECT_0) {

 // Event has been set. If the event was created

 // as autoreset, it has also been reset.

}

The following code example illustrates a typical message loop for a message-based application that uses two events:.

HANDLE ah[2] = { hEvent1, hEvent2 };

while (TRUE) {

 dwResult = MsgWaitForMultipleObjects(2, ah, FALSE,

 INFINITE, QS_ALLINPUT);

 switch (dwResult) {

 case WAIT_OBJECT_0:

 // Event 1 has been set. If the event was created as

 // autoreset, it has also been reset.

 ProcessInputEvent1();

 break;

 case WAIT_OBJECT_0 + 1:

 // Event 2 has been set. If the event was created as

 // autoreset, it has also been reset.

 ProcessInputEvent2();

 break;

 case WAIT_OBJECT_0 + 2:

 // A Windows message has arrived. Process

 // messages until there aren't any more.

 while(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)){

 if (msg.message == WM_QUIT) {

 goto exitapp;

 }

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 break;

 default:

 // Unexpected error.

 Panic();

 break;

 }

}

The following code example illustrates a typical application loop for a non-message-based application that uses two events:

HANDLE ah[2] = { hEvent1, hEvent2 };

DWORD dwWait = 0;

while (TRUE) {

 dwResult = MsgWaitForMultipleObjects(2, ah, FALSE,

 dwWait, QS_ALLINPUT);

 dwWait = 0;

 switch (dwResult) {

 case WAIT_OBJECT_0:

 // Event 1 has been set. If the event was

 // created as autoreset, it has also

 // been reset.

 ProcessInputEvent1();

 break;

 case WAIT_OBJECT_0 + 1:

 // Event 2 has been set. If the event was

 // created as autoreset, it has also

 // been reset.

 ProcessInputEvent2();

 break;

 case WAIT_OBJECT_0 + 2:

 // A Windows message has arrived. Process

 // messages until there aren't any more.

 while(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)){

 if (msg.message == WM_QUIT) {

 goto exitapp;

 }

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 break;

 default:

 // No input or messages waiting.

 // Do a frame of the game.

 // If the game is idle, tell the next wait

 // to wait indefinitely for input or a message.

 if (!DoGame()) {

 dwWait = INFINITE;

 }

 break;

 }

}

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

See Also

Polling and Events

IDirectInputDevice7::SetProperty

The IDirectInputDevice7::SetProperty method sets properties that define the device behavior. These properties include input buffer size and axis mode.

HRESULT SetProperty(

 REFGUID rguidProp,

 LPCDIPROPHEADER pdiph

);

Parameters

rguidProp

Identifier of the property to be set. This can be one of the predefined values, or a pointer to a GUID that identifies the property. The following property values are predefined for an input device:

DIPROP_AUTOCENTER

Specifies whether device objects are self-centering. This setting applies to the entire device, rather than to any particular object, so the dwHow member of the associated DIPROPDWORD structure must be DIPH_DEVICE.

The dwData member can be one of the following values:

DIPROPAUTOCENTER_OFF: The device should not automatically center when the user releases the device. An application that uses force feedback should disable the auto-centering spring before playing effects.

DIPROPAUTOCENTER_ON: The device should automatically center when the user releases the device. For example, in this mode, a joystick would engage the self-centering spring.

The use of force-feedback effects can interfere with the auto-centering spring. Some devices disable the auto-centering spring when a force-feedback effect is played.

Not all devices support the auto-center property.

DIPROP_AXISMODE

Sets the axis mode. The value being set (DIPROPAXISMODE_ABS or DIPROPAXISMODE_REL) must be specified in the dwData member of the associated DIPROPDWORD structure. See the description of the pdiph parameter for more information.

This setting applies to the entire device, so the dwHow member of the associated DIPROPDWORD structure must be set to DIPH_DEVICE.

DIPROP_BUFFERSIZE

Sets the input-buffer size. The value being set must be specified in the dwData member of the associated DIPROPDWORD structure. See the description of the pdiph parameter for more information.

This setting applies to the entire device, so the dwHow member of the associated DIPROPDWORD structure must be set to DIPH_DEVICE.

DIPROP_CALIBRATIONMODE

Allows the application to specify whether DirectInput should retrieve calibrated or uncalibrated data from an axis. By default, DirectInput retrieves calibrated data.

Setting the calibration mode for the entire device is equivalent to setting it for each axis individually.

The dwData member of the DIPROPDWORD structure can be one of the following values:

DIPROPCALIBRATIONMODE_COOKED: DirectInput should return data after applying calibration information. This is the default mode.

DIPROPCALIBRATIONMODE_RAW: DirectInput should return raw, uncalibrated data. This mode is typically used only by Control Panel–type applications.

Setting a device into raw mode causes the dead zone, saturation, and range settings to be ignored.

DIPROP_DEADZONE

Sets the value for the dead zone of a joystick, in the range from 0 through 10,000, where 0 indicates that there is no dead zone, 5,000 indicates that the dead zone extends over 50 percent of the physical range of the axis on both sides of center, and 10,000 indicates that the entire physical range of the axis is dead. When the axis is within the dead zone, it is reported as being at the center of its range.

This setting can be applied to either the entire device or to a specific axis.

DIPROP_FFGAIN

Sets the gain for the device. This setting applies to the entire device, rather than to any particular object, so the dwHow member of the associated DIPROPDWORD structure must be DIPH_DEVICE.

The dwData member contains a gain value that is applied to all effects created on the device. The value is an integer in the range from 0 through 10,000, specifying the amount by which effect magnitudes should be scaled for the device. For example, a value of 10,000 indicates that all effect magnitudes are to be taken at face value. A value of 9,000 indicates that all effect magnitudes are to be reduced to 90% of their nominal magnitudes.

Setting a gain value is useful when an application wants to scale down the strength of all force-feedback effects uniformly, based on user preferences.

Unlike other properties, the gain can be set when the device is in an acquired state.

DIPROP_INSTANCENAME

This property exists for advanced applications that want to change the friendly instance name of a device (as returned in the tszInstanceName member of the DIDEVICEINSTANCE structure) to distinguish it from similar devices that are plugged in simultaneously. Most applications should have no need to change the friendly name.

This setting applies to the entire device, so the dwHow member of the associated DIPROPDWORD structure must be set to DIPH_DEVICE.

The pdiph parameter must be a pointer to the diph member of a DIPROPSTRING structure.

DIPROP_PRODUCTNAME

This property exists for advanced applications that want to change the friendly product name of a device (as returned in the tszProductName member of the DIDEVICEINSTANCE structure) to distinguish it from similar devices which are plugged in simultaneously. Most applications should have no need to change the friendly name.

This setting applies to the entire device, so the dwHow member of the associated DIPROPDWORD structure must be set to DIPH_DEVICE.

The pdiph parameter must be a pointer to the diph member of a DIPROPSTRING structure.

DIPROP_RANGE

Sets the range of values an object can possibly report. The minimum and maximum values are taken from the lMin and lMax members of the associated DIPROPRANGE structure.

For some devices, this is a read-only property.

You cannot set a reverse range; lMax must be greater than lMin.

DIPROP_SATURATION

Sets the value for the saturation zones of a joystick, in the range from 0 through 10,000. The saturation level is the point at which the axis is considered to be at its most extreme position. For example, if the saturation level is set to 9,500, the axis reaches the extreme of its range when it has moved 95 percent of the physical distance from its center position (or from the dead zone).

This setting can be applied to either the entire device or a specific axis.

pdiph

Address of the DIPROPHEADER structure contained within the type-specific property structure.

Return Values

If the method succeeds, the return value is DI_OK or DI_PROPNOEFFECT.

If the method fails, the return value can be one of the following error values:

DIERR_INVALIDPARAM ��DIERR_NOTINITIALIZED ��DIERR_OBJECTNOTFOUND ��DIERR_UNSUPPORTED ��

Remarks

The buffer size determines the amount of data that the buffer can hold between calls to the IDirectInputDevice7::GetDeviceData method before data is lost. This value may be set to 0 to indicate that the application does not read buffered data from the device. If the buffer size in the dwData member of the DIPROPDWORD structure is too large to be supported by the device, the largest possible buffer size is set. To determine whether the requested buffer size was set, retrieve the buffer-size property, and compare the result with the value that you previously attempted to set.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

See Also

IDirectInputDevice7::GetProperty

IDirectInputDevice7::Unacquire

The IDirectInputDevice7::Unacquire method releases access to the device.

HRESULT Unacquire();

Parameters

None.

Return Values

The return value is DI_OK is the device was unacquired, or DI_NOEFFECT if the device was not in an acquired state.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInputDevice7::WriteEffectToFile

The IDirectInputDevice7::WriteEffectToFile method saves information about one or more force-feedback effects to a file that can be read by using IDirectInputDevice7::EnumEffectsInFile. This method is chiefly of interest to those wanting to write their own force-authoring applications.

HRESULT WriteEffectToFile(

 LPCSTR lpszFileName,

 DWORD dwEntries,

 LPCDIFILEEFFECT rgDiFileEft,

 DWORD dwFlags

);

Parameters

lpszFileName

Name of the RIFF file.

dwEntries

Number of structures in the rgDiFileEft array.

rgDiFileEft

Array of DIFILEEFFECT structures.

dwFlags

Flags which control how the effect should be written. Can be DIFEF_DEFAULT (= 0) or the following value:

DIFEF_INCLUDENONSTANDARD

Includes effects that are not defined by DirectInput. If this flag is not specified, only effects with GUIDs defined in Dinput.h, such as GUID_ConstantForce, are written.

Return Values

If the method succeeds, it returns DI_OK.

If it fails, the return value can be DIERR_INVALIDPARAM.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

See Also

IDirectInputDevice7::EnumEffectsInFile

IDirectInputEffect

Applications use the methods of the IDirectInputEffect interface to manage effects of force-feedback devices.

The interface is obtained by using the IDirectInputDevice7::CreateEffect method.

The methods of the IDirectInputEffect interface can be organized into the following groups.

Effect information�GetEffectGuid ���GetEffectStatus ���GetParameters ��Effect manipulation�Download ���Initialize ���SetParameters ���Start ���Stop ���Unload ��Miscellaneous�Escape ��

The IDirectInputEffect interface, like all COM interfaces, inherits the IUnknown interface methods. The IUnknown interface supports the following three methods:

IUnknown �AddRef ���QueryInterface ���Release ��

The LPDIRECTINPUTEFFECT type is defined as a pointer to the IDirectInputEffect interface:

typedef struct IDirectInputEffect *LPDIRECTINPUTEFFECT;

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInputEffect::Download

The IDirectinputEffect::Download method places the effect on the device. If the effect is already on the device, the existing effect is updated to match the values set by the IDirectInputEffect::SetParameters method.

HRESULT Download(void);

Parameters

None.

Return Values

If the method succeeds, the return value is DI_OK or S_FALSE.

If the method fails, the return value can be one of the following error values:

DIERR_NOTINITIALIZED ��DIERR_DEVICEFULL ��DIERR_INCOMPLETEEFFECT ��DIERR_INPUTLOST ��DIERR_NOTEXCLUSIVEACQUIRED ��DIERR_INVALIDPARAM ��DIERR_EFFECTPLAYING ��

If the method returns S_FALSE, the effect has already been downloaded to the device.

Remarks

It is valid to update an effect while it is playing. The semantics of such an operation are explained in the reference for IDirectInputEffect::SetParameters.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInputEffect::Escape

The IDirectInputEffect::Escape method sends a hardware-specific command to the driver.

HRESULT Escape(

 LPDIEFFESCAPE pesc

);

Parameters

pesc

DIEFFESCAPE structure that describes the command to be sent. On success, the cbOutBuffer member contains the number of bytes of the output buffer used.

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be one of the following error values:

DIERR_NOTINITIALIZED ��DIERR_DEVICEFULL ��

Other device-specific error codes are also possible. Ask the hardware manufacturer for details.

Remarks

Since each driver implements different escapes, it is the application's responsibility to ensure that it is sending the escape to the correct driver by comparing the value of the guidFFDriver member of the DIDEVICEINSTANCE structure against the value the application is expecting.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInputEffect::GetEffectGuid

The IDirectInputEffect::GetEffectGuid method retrieves the GUID for the effect represented by the IDirectInputEffect object.

HRESULT GetEffectGuid(

 LPGUID pguid

);

Parameters

pguid

GUID structure that is filled by the method.

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be one of the following error values:

DIERR_INVALIDPARAM ��DIERR_NOTINITIALIZED ��

Remarks

Additional information about the effect can be obtained by passing the GUID to IDirectInputDevice7::GetEffectInfo.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInputEffect::GetEffectStatus

The IDirectInputEffect::GetEffectStatus method retrieves the status of an effect.

HRESULT GetEffectStatus(

 LPDWORD pdwFlags

);

Parameters

pdwFlags

Status flags for the effect. The value can be 0 or one or more of the following constants:

DIEGES_PLAYING

The effect is playing.

DIEGES_EMULATED

The effect is emulated.

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be one of the following error values:

DIERR_INVALIDPARAM ��DIERR_NOTINITIALIZED ��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInputEffect::GetParameters

The IDirectInputEffect::GetParameters method retrieves information about an effect.

HRESULT GetParameters(

 LPDIEFFECT peff,

 DWORD dwFlags

);

Parameters

peff

Address of a DIEFFECT structure that receives effect information. The dwSize member must be filled in by the application before calling this method.

dwFlags

Flags specifying which parts of the effect information are to be retrieved. The value can be 0 or one or more of the following constants:

DIEP_ALLPARAMS

The union of all other DIEP_* flags, indicating that all members of the DIEFFECT structure are being requested.

DIEP_ALLPARAMS_DX5

The union of all other DIEP_* flags except the DIEP_STARTDELAY flag.

DIEP_AXES

The cAxes and rgdwAxes members should receive data. The cAxes member on entry contains the size (in DWORDs) of the buffer pointed to by the rgdwAxes member. If the buffer is too small, the method returns DIERR_MOREDATA and sets cAxes to the necessary size of the buffer.

DIEP_DIRECTION

The cAxes and rglDirection members should receive data. The cAxes member on entry contains the size (in DWORDs) of the buffer pointed to by the rglDirection member. If the buffer is too small, the GetParameters method returns DIERR_MOREDATA and sets cAxes to the necessary size of the buffer.

The dwFlags member must include at least one of the coordinate system flags (DIEFF_CARTESIAN, DIEFF_POLAR, or DIEFF_SPHERICAL). DirectInput returns the direction of the effect in one of the coordinate systems you specified, converting between coordinate systems as necessary. On exit, exactly one of the coordinate system flags is set in the dwFlags member, indicating which coordinate system DirectInput used. In particular, passing all three coordinate system flags retrieves the coordinates in exactly the same format in which they were set.

DIEP_DURATION

The dwDuration member should receive data.

DIEP_ENVELOPE

The lpEnvelope member points to a DIENVELOPE structure that should receive data. If the effect does not have an envelope associated with it, the lpEnvelope member is set to NULL.

DIEP_GAIN

The dwGain member should receive data.

DIEP_SAMPLEPERIOD

The dwSamplePeriod member should receive data.

DIEP_STARTDELAY

The dwStartDelay member should receive data.

DIEP_TRIGGERBUTTON

The dwTriggerButton member should receive data.

DIEP_TRIGGERREPEATINTERVAL

The dwTriggerRepeatInterval member should receive data.

DIEP_TYPESPECIFICPARAMS

The lpvTypeSpecificParams member points to a buffer whose size is specified by the cbTypeSpecificParams member. On return, the buffer is filled in with the type-specific data associated with the effect, and the cbTypeSpecificParams member contains the number of bytes copied. If the buffer supplied by the application is too small to contain all the type-specific data, the method returns DIERR_MOREDATA, and the cbTypeSpecificParams member contains the required size of the buffer in bytes.

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be one of the following error values:

DIERR_INVALIDPARAM ��DIERR_MOREDATA ��DIERR_NOTINITIALIZED ��

Remarks

Common errors resulting in a DIERR_INVALIDPARAM error include not setting the dwSize member of the DIEFFECT structure, passing invalid flags, or not setting up the members in the DIEFFECT structure properly in preparation for receiving the effect information. For example, if information is to be retrieved in the dwTriggerButton member, the dwFlags member must be set to either DIEFF_OBJECTIDS or DIEFF_OBJECTOFFSETS so that DirectInput knows how to describe the button.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInputEffect::Initialize

The IDirectInputEffect::Initialize method initializes a DirectInputEffect object.

HRESULT Initialize(

 HINSTANCE hinst,

 DWORD dwVersion,

 REFGUID rguid

);

Parameters

hinst

Instance handle to the application or DLL that is creating the DirectInputEffect object. DirectInput uses this value to determine whether the application or DLL has been certified and to establish any special behaviors that might be necessary for backward compatibility. It is an error for a DLL to pass the handle to the parent application.

dwVersion

Version number of DirectInput for which the application is designed. This value is normally DIRECTINPUT_VERSION. Passing the version number of a previous version causes DirectInput to emulate that version. For more information, see Designing for Previous Versions of DirectInput.

rguid

Identifier of the effect with which the interface is associated. The IDirectInputDevice7::EnumEffects method can be used to determine which effect GUIDs are supported by the device.

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be DIERR_DEVICENOTREG.

Remarks

If this method fails, the underlying object should be considered to be an indeterminate state and needs to be reinitialized before it can be subsequently used.

The IDirectInputDevice7::CreateEffect method automatically initializes the effect after creating it. Applications normally do not need to call the Initialize method.

In C++ the rguid parameter must be passed by reference; in C, which does not have pass-by-reference, it must be passed by address. The following is an example of a C++ call:

lpeff->Initialize(g_hinstDll, DIRECTINPUT_VERSION, GUID_Effect);

The following shows the same call in C:

lpeff->lpVtbl->Initialize(lpeff, g_hinstDll,

 DIRECTINPUT_VERSION, &GUID_Effect);

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInputEffect::SetParameters

The IDirectInputEffect::SetParameters method sets the characteristics of an effect.

HRESULT SetParameters(

 LPCDIEFFECT peff,

 DWORD dwFlags

);

Parameters

peff

DIEFFECT structure that contains effect information. The dwSize member must be filled in by the application before calling this method, as well as any members specified by corresponding bits in the dwFlags parameter.

dwFlags

Flags specifying which portions of the effect information are to be set and how the downloading of the parameters should be handled. The value can be 0 or one or more of the following constants:

DIEP_AXES

The cAxes and rgdwAxes members contain data.

DIEP_DIRECTION

The cAxes and rglDirection members contain data. The dwFlags member specifies (with DIEFF_CARTESIAN or DIEFF_POLAR) the coordinate system in which the values should be interpreted.

DIEP_DURATION

The dwDuration member contains data.

DIEP_ENVELOPE

The lpEnvelope member points to a DIENVELOPE structure that contains data. To detach any existing envelope from the effect, pass this flag and set the lpEnvelope member to NULL.

DIEP_GAIN

The dwGain member contains data.

DIEP_NODOWNLOAD

Suppress the automatic IDirectInputEffect::Download that is normally performed after the parameters are updated. See Remarks.

DIEP_NORESTART

Suppress the stopping and restarting of the effect to change parameters. See Remarks.

DIEP_SAMPLEPERIOD

The dwSamplePeriod member contains data.

DIEP_START

The effect is to be started (or restarted if it is currently playing) after the parameters are updated. By default, the play state of the effect is not altered.

DIEP_STARTDELAY

The dwStartDelay member contains data.

DIEP_TRIGGERBUTTON

The dwTriggerButton member contains data.

DIEP_TRIGGERDELAY

The dwTriggerDelay member contains data.

DIEP_TRIGGERREPEATINTERVAL

The dwTriggerRepeatInterval member contains data.

DIEP_TYPESPECIFICPARAMS

The lpvTypeSpecificParams and cbTypeSpecificParams members of the DIEFFECT structure contain the address and size of type-specific data for the effect.

Return Values

If the method succeeds, the return value is one of the following:

DI_OK ��DI_EFFECTRESTARTED ��DI_DOWNLOADSKIPPED ��DI_TRUNCATED ��DI_TRUNCATEDANDRESTARTED ��

If the method fails, the return value can be one of the following error values:

DIERR_NOTINITIALIZED ��DIERR_INCOMPLETEEFFECT ��DIERR_INPUTLOST ��DIERR_INVALIDPARAM ��DIERR_EFFECTPLAYING ��

Remarks

The dwDynamicParams member of the DIEFFECTINFO structure for the effect specifies which parameters can be dynamically updated while the effect is playing.

The IDirectInputEffect::SetParameters method automatically downloads the effect, but this behavior can be suppressed by setting the DIEP_NODOWNLOAD flag. If automatic download has been suppressed, you can manually download the effect by invoking the IDirectInputEffect::Download method.

If the effect is playing while the parameters are changed, the new parameters take effect as if they were the parameters when the effect started.

For example, suppose a periodic effect with a duration of three seconds is started. After two seconds, the direction of the effect is changed. The effect then continues for one additional second in the new direction. The envelope, phase, amplitude, and other parameters of the effect continue smoothly, as if the direction had not changed.

In the same situation, if after two seconds, the duration of the effect were changed to 1.5 seconds, the effect would stop.

Normally, if the driver cannot update the parameters of a playing effect, the driver is permitted to stop the effect, update the parameters, and then restart the effect. Passing the DIEP_NORESTART flag suppresses this behavior. If the driver cannot update the parameters of an effect while it is playing, the error code DIERR_EFFECTPLAYING is returned, and the parameters are not updated.

No more than one of the DIEP_NODOWNLOAD, DIEP_START, and DIEP_NORESTART flags should be set. (It is also valid to pass none of them.)

These three flags control download and playback behavior as follows:

If DIEP_NODOWNLOAD is set, the effect parameters are updated but not downloaded to the device.

If the DIEP_START flag is set, the effect parameters are updated and downloaded to the device, and the effect is started just as if the IDirectInputEffect::Start method had been called with the dwIterations parameter set to 1 and with no flags. (Combining the update with DIEP_START is slightly faster than calling Start separately, because it requires less information to be transmitted to the device.)

If neither DIEP_NODOWNLOAD nor DIEP_START is set and the effect is not playing, the parameters are updated and downloaded to the device.

If neither DIEP_NODOWNLOAD nor DIEP_START is set and the effect is playing, the parameters are updated if the device supports on-the-fly updating. Otherwise the behavior depends on the state of the DIEP_NORESTART flag. If it is set, the error code DIERR_EFFECTPLAYING is returned. If it is clear, the effect is stopped, the parameters are updated, and the effect is restarted.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInputEffect::Start

The IDirectInputEffect::Start method begins playing an effect. If the effect is already playing, it is restarted from the beginning. If the effect has not been downloaded or has been modified since its last download, it is downloaded before being started. This default behavior can be suppressed by passing the DIES_NODOWNLOAD flag.

HRESULT Start(

 DWORD dwIterations,

 DWORD dwFlags

);

Parameters

dwIterations

Number of times to play the effect in sequence. The envelope is re-articulated with each iteration.

To play the effect exactly once, pass 1. To play the effect repeatedly until explicitly stopped, pass INFINITE. To play the effect until explicitly stopped without re-articulating the envelope, modify the effect parameters with the IDirectInputEffect::SetParameters method, and change the dwDuration member to INFINITE.

dwFlags

Flags that describe how the effect should be played by the device. The value can be 0 or one or more of the following values:

DIES_SOLO

All other effects on the device should be stopped before the specified effect is played. If this flag is omitted, the effect is mixed with existing effects already started on the device.

DIES_NODOWNLOAD

Do not automatically download the effect.

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be one of the following error values:

DIERR_INVALIDPARAM ��DIERR_INCOMPLETEEFFECT ��DIERR_NOTEXCLUSIVEACQUIRED ��DIERR_NOTINITIALIZED ��DIERR_UNSUPPORTED ��

Remarks

The device must be acquired at the exclusive cooperative level for this method to succeed.

Not all devices support multiple iterations.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInputEffect::Stop

The IDirectInputEffect::Stop method stops playing an effect.

HRESULT Stop(void);

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be one of the following error values:

DIERR_NOTEXCLUSIVEACQUIRED ��DIERR_NOTINITIALIZED ��

Remarks

The device must be acquired at the exclusive cooperative level for this method to succeed.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

IDirectInputEffect::Unload

The IDirectInputEffect::Unload method removes the effect from the device. If the effect is playing, it is automatically stopped before it is unloaded.

HRESULT Unload(void);

Return Values

If the method succeeds, the return value is DI_OK.

If the method fails, the return value can be one of the following error values:

DIERR_INPUTLOST ��DIERR_INVALIDPARAM ��DIERR_NOTEXCLUSIVEACQUIRED ��DIERR_NOTINITIALIZED ��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

Functions

This section is a reference for DirectInput functions other than COM interface methods and callback functions.

The following functions fall into this category:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInputCreate is used to create the DirectInput system and obtain an IDirectInput interface. This function is still supported but has been superseded by DirectInputCreateEx.

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInputCreateEx is used to create the DirectInput system and obtain an IDirectInput, IDirectInput2, or IDirectInput7 interface.

DirectInputCreate

The DirectInputCreate function creates a DirectInput object that supports the IDirectInput COM interface.

HRESULT WINAPI DirectInputCreate(

 HINSTANCE hinst,

 DWORD dwVersion,

 LPDIRECTINPUT * lplpDirectInput,

 LPUNKNOWN punkOuter

);

Parameters

hinst

Instance handle to the application or DLL that is creating the DirectInput object. DirectInput uses this value to determine whether the application or DLL has been certified and to establish any special behaviors that may be necessary for backward compatibility.

It is an error for a DLL to pass the handle to the parent application. For example, an ActiveX control embedded in a Web page that uses DirectInput must pass its own instance handle, and not the handle to the Web browser. This ensures that DirectInput recognizes the control and can enable any special behaviors that might be necessary.

dwVersion

Version number of DirectInput for which the application is designed. This value is normally DIRECTINPUT_VERSION. Passing the version number of a previous version causes DirectInput to emulate that version. For more information, see Designing for Previous Versions of DirectInput.

lplpDirectInput

Address of a variable to receive a valid IDirectInput interface pointer if the call succeeds.

punkOuter

Pointer to the address of the controlling object's IUnknown interface for COM aggregation, or NULL if the interface is not aggregated. Most callers pass NULL. If aggregation is requested, the object returned in *lplpDirectInput is a pointer to the IUnknown, rather than an IDirectInput interface, as required by COM aggregation.

Return Values

If the function succeeds, the return value is DI_OK.

If the function fails, the return value can be one of the following error values:

DIERR_BETADIRECTINPUTVERSION ��DIERR_INVALIDPARAM ��DIERR_OLDDIRECTINPUTVERSION ��DIERR_OUTOFMEMORY ��

Remarks

This function has been superseded by DirectInputCreateEx, which can be used to obtain any existing interface to the DirectInput object. It is recommended that you use that function to obtain the IDirectInput7 interface, which has more functionality.

Calling the function with punkOuter = NULL is equivalent to creating the object through CoCreateInstance(&CLSID_DirectInput, punkOuter, CLSCTX_INPROC_SERVER, &IID_IDirectInput, lplpDirectInput), then initializing it with Initialize.

Calling the function with punkOuter != NULL is equivalent to creating the object through CoCreateInstance(&CLSID_DirectInput, punkOuter, CLSCTX_INPROC_SERVER, &IID_IUnknown, lplpDirectInput). The aggregated object must be initialized manually.

There are separate ANSI and Unicode versions of this service. The ANSI version creates an object that supports the IDirectInputA interface, whereas the Unicode version creates an object that supports the IDirectInputW interface. As with other system services that are sensitive to character-set issues, macros in the header file map DirectInputCreate to the appropriate character set variation.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

DirectInputCreateEx

The DirectInputCreateEx function creates a DirectInput object that supports the IDirectInput, IDirectInput2, or IDirectInput7 COM interfaces.

HRESULT WINAPI DirectInputCreateEx(

 HINSTANCE hinst,

 DWORD dwVersion,

 REFIID riidltf,

 LPVOID * ppvOut,

 LPUNKNOWN punkOuter

);

Parameters

hinst

Instance handle to the application or DLL that is creating the DirectInput object. DirectInput uses this value to determine whether the application or DLL has been certified and to establish any special behaviors that might be necessary for backward compatibility.

It is an error for a DLL to pass the handle to the parent application. For example, an ActiveX control embedded in a Web page that uses DirectInput must pass its own instance handle, and not the handle to the Web browser. This ensures that DirectInput recognizes the control and can enable any special behaviors that might be necessary.

dwVersion

Version number of DirectInput for which the application is designed. This value is normally DIRECTINPUT_VERSION. Passing the version number of a previous version causes DirectInput to emulate that version. For more information, see Designing for Previous Versions of DirectInput.

riidltf

Unique identifier of the desired DirectInput interface. Values supported are IID_IDirectInput, IID_IDirectInput2, and IID_IDirectInput7. If UNICODE is defined during compilation, the Unicode version of the interface is returned; otherwise, it is the ANSI version.

ppvOut

Address of a variable to receive the interface pointer if the call succeeds.

punkOuter

Pointer to the address of the controlling object's IUnknown interface for COM aggregation, or NULL if the interface is not aggregated. Most callers pass NULL. If aggregation is requested, the object returned in *ppvOut is a pointer to IUnknown, rather than an IDirectInput interface, as required by COM aggregation.

Return Values

If the function succeeds, the return value is DI_OK.

If the function fails, the return value can be one of the following error values:

DIERR_BETADIRECTINPUTVERSION ��DIERR_INVALIDPARAM ��DIERR_OLDDIRECTINPUTVERSION ��DIERR_OUTOFMEMORY ��

Remarks

Calling the function with punkOuter = NULL is equivalent to creating the object through CoCreateInstance(&CLSID_DirectInput, punkOuter, CLSCTX_INPROC_SERVER, &IID_IDirectInput7W, lplpDirectInput), then initializing it with IDirectInput7::Initialize.

Calling the function with punkOuter != NULL is equivalent to creating the object through CoCreateInstance(&CLSID_DirectInput, punkOuter, CLSCTX_INPROC_SERVER, &IID_IUnknown, lplpDirectInput). The aggregated object must be initialized manually.

There are separate ANSI and Unicode versions of this service. The ANSI version creates an object that supports the IDirectInputA interface, whereas the Unicode version creates an object that supports the IDirectInputW interface. As with other system services that are sensitive to character-set issues, macros in the header file map DirectInputCreateEx to the appropriate character set variation.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: Use dinput.lib.

Callback Functions

The following four functions are prototype callback functions for use with various enumeration methods. Applications can declare one of these callback functions under any name and define it in any way, but the parameter and return types must be the same as in the prototype.

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIEnumCreatedEffectObjectsCallback

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIEnumDeviceObjectsCallback

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIEnumDevicesCallback

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIEnumEffectsCallback

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIEnumEffectsInFileCallback

DIEnumCreatedEffectObjectsCallback

The DIEnumCreatedEffectObjectsCallback function is an application-defined callback function that receives DirectInputDevice effects as a result of a call to the IDirectInputDevice7::EnumCreatedEffectObjects method.

BOOL CALLBACK DIEnumCreatedEffectObjectsCallback(

 LPDIRECTINPUTEFFECT peff,

 LPVOID pvRef

);

Parameters

peff

Address of an effect object that has been created.

pvRef

Application-defined value given in the IDirectInputDevice7::EnumCreatedEffectObjects method.

Return Values

Returns DIENUM_CONTINUE to continue the enumeration or DIENUM_STOP to stop the enumeration.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: User-defined.

DIEnumDeviceObjectsCallback

The DIEnumDeviceObjectsCallback function is an application-defined callback function that receives DirectInputDevice objects as a result of a call to the IDirectInputDevice7::EnumObjects method.

BOOL CALLBACK DIEnumDeviceObjectsCallback(

 LPCDIDEVICEOBJECTINSTANCE lpddoi,

 LPVOID pvRef

);

Parameters

lpddoi

DIDEVICEOBJECTINSTANCE structure that describes the object being enumerated.

pvRef

Application-defined value given in the EnumObjects method.

Return Values

Returns DIENUM_CONTINUE to continue the enumeration or DIENUM_STOP to stop the enumeration.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: User-defined.

DIEnumDevicesCallback

The DIEnumDevicesCallback function is an application-defined callback function that receives DirectInput devices as a result of a call to the IDirectInput7::EnumDevices method.

BOOL CALLBACK DIEnumDevicesCallback(

 LPCDIDEVICEINSTANCE lpddi,

 LPVOID pvRef

);

Parameters

lpddi

Address of a DIDEVICEINSTANCE structure that describes the device instance.

pvRef

Application-defined value given in the EnumDevices method.

Return Values

Returns DIENUM_CONTINUE to continue the enumeration or DIENUM_STOP to stop the enumeration.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: User-defined.

DIEnumEffectsCallback

The DIEnumEffectsCallback function is an application-defined callback function used with the IDirectInputDevice7::EnumEffects method.

BOOL CALLBACK DIEnumEffectsCallback(

 LPCDIEFFECTINFO pdei,

 LPVOID pvRef

);

Parameters

pdei

DIEFFECTINFO structure that describes the enumerated effect.

pvRef

Address of application-defined data given to the EnumEffects method.

Return Values

Returns DIENUM_CONTINUE to continue the enumeration, or DIENUM_STOP to stop it.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: User-defined.

DIEnumEffectsInFileCallback

The DIEnumEffectsInFileCallback function is an application-defined callback function used with the IDirectInputDevice7::EnumEffectsInFile method.

BOOL CALLBACK DIEnumEffectsInFileCallback(

 LPCDIFILEEFFECT lpDiFileEf,

 LPVOID pvRef

);

Parameters

lpDiFileEf

DIFILEEFFECT structure that describes the enumerated effect.

pvRef

Address of application-defined data given to the EnumEffectsInFile method.

Return Values

Returns DIENUM_CONTINUE to continue the enumeration, or DIENUM_STOP to stop it.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.� Import Library: User-defined.

Macros

This section describes the following macros used in DirectInput:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIDFT_GETINSTANCE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIDFT_GETTYPE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIDFT_MAKEINSTANCE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIEFT_GETTYPE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIMAKEUSAGEDWORD

�SYMBOL 183 \f "Symbol" \s 11 \h �	DISEQUENCE_COMPARE

�SYMBOL 183 \f "Symbol" \s 11 \h �	GET_DIDEVICE_SUBTYPE

�SYMBOL 183 \f "Symbol" \s 11 \h �	GET_DIDEVICE_TYPE

Dinput.h also defines macros for C calls to all the methods of the IDirectInput and IDirectInputDevice interfaces. These macros eliminate the need for pointers to method tables. For example, the following is a C call to the IDirectInputDevice7::Release method:

lpdid->lpVtbl->Release(lpdid));

The equivalent macro call looks like this:

IDirectInputDevice7_Release(lpdid);

All these macros take the same parameters as the method calls themselves.

DIDFT_GETINSTANCE

The DIDFT_GETINSTANCE macro extracts the object instance number code from a data format type.

DIDFT_GETINSTANCE(n) LOWORD((n) >> 8)

Parameters

n

DirectInput data format type. The possible values for this parameter are identical to those found in the dwType member of the DIOBJECTDATAFORMAT structure.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.

See Also

DIDFT_MAKEINSTANCE, DIDFT_GETTYPE

DIDFT_GETTYPE

The DIDFT_GETTYPE macro extracts the object type code from a data format type.

DIDFT_GETTYPE(n) LOBYTE(n)

Parameters

n

DirectInput data format type. The possible values for this parameter are identical to those found in the dwType member of the DIOBJECTDATAFORMAT structure.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.

See Also

DIDFT_GETINSTANCE

DIDFT_MAKEINSTANCE

The DIDFT_MAKEINSTANCE macro creates an instance identifier of a device object for packing in the dwType member of the DIOBJECTDATAFORMAT structure.

DIDFT_MAKEINSTANCE(n) ((WORD)(n) << 8)

Parameters

n

Instance of the object; for example, 1 for button 1 of a mouse.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.

See Also

DIDFT_GETINSTANCE

DIEFT_GETTYPE

The DIEFT_GETTYPE macro extracts the effect type code from an effect format type.

DIEFT_GETTYPE(n) LOBYTE(n)

Parameters

n

DirectInput effect format type. The possible values for this parameter are identical to those found in the dwEffType member of the DIEFFECTINFO structure.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.

DIMAKEUSAGEDWORD

The DIMAKEUSAGEDWORD macro combines the Usage Page and Usage HID codes for a device object, for passing to the IDirectInputDevice7::GetObjectInfo method.

DWORD DIMAKEUSAGEDWORD(

 WORD UsagePage,

 WORD Usage

);

Parameters

UsagePage

Usage page of the device object.

Usage

Usage of the device object.

Remarks

This macro is declared in Dinput.h as follows:

#define DIMAKEUSAGEDWORD(UsagePage, Usage) \

 ((DWORD)MAKELONG(Usage, UsagePage))

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 98.� Header: Declared in dinput.h.

DISEQUENCE_COMPARE

The DISEQUENCE_COMPARE macro compares two DirectInput sequence numbers, compensating for wrap around.

DISEQUENCE_COMPARE(dwSequence1, cmp, dwSequence2) \

 ((int)((dwSequence1) - (dwSequence2)) cmp 0)

Parameters

dwSequence1

First sequence number to compare.

cmp

One of the following comparison operators: ==, !=, <, >, <=, or >=.

dwSequence2

Second sequence number to compare.

Return Values

Returns a nonzero value if the result of the comparison specified by the cmp parameter is true, or 0 otherwise.

Remarks

The following example checks whether the dwSequence1 parameter value precedes the dwSequence2 parameter value chronologically:

BOOL Sooner = (DISEQUENCE_COMPARE(dwSequence1, <, dwSequence2));

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.

GET_DIDEVICE_SUBTYPE

The GET_DIDEVICE_SUBTYPE macro extracts the device subtype code from a device type description code.

GET_DIDEVICE_SUBTYPE(dwDevType) HIBYTE(dwDevType)

Parameters

dwDevType

DirectInput device type description code. The possible values for this parameter are identical to those found in the dwDevType member of the DIDEVICEINSTANCE structure.

Remarks

The interpretation of the subtype code depends on the primary type.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.

See Also

GET_DIDEVICE_TYPE, DIDEVICEINSTANCE

GET_DIDEVICE_TYPE

The GET_DIDEVICE_TYPE macro extracts the device primary type code from a device type description code.

GET_DIDEVICE_TYPE(dwDevType) LOBYTE(dwDevType)

Parameters

dwDevType

DirectInput device type description code. Possible values for this parameter are identical to those found in the dwDevType member of the DIDEVICEINSTANCE structure.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.

See Also

GET_DIDEVICE_SUBTYPE, DIDEVICEINSTANCE

Structures

This section contains information on the following structures used with DirectInput:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DICONDITION

�SYMBOL 183 \f "Symbol" \s 11 \h �	DICONSTANTFORCE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DICUSTOMFORCE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIDATAFORMAT

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIDEVCAPS

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIDEVICEINSTANCE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIDEVICEOBJECTDATA

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIDEVICEOBJECTINSTANCE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIEFFECT

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIEFFECTINFO

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIEFFESCAPE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIENVELOPE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIFILEEFFECT

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIJOYSTATE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIJOYSTATE2

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIMOUSESTATE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIMOUSESTATE2

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIOBJECTDATAFORMAT

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPERIODIC

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROPDWORD

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROPGUIDANDPATH

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROPHEADER

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROPRANGE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROPSTRING

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIRAMPFORCE

Note

The memory for all DirectX structures must be initialized to 0 before use. In addition, all structures that contain a dwSize member should set the member to the size of the structure, in bytes, before use. The following example performs these tasks on a common structure, DIDEVCAPS:

DIDEVCAPS didevcaps; // Can't use this yet

ZeroMemory(&didevcaps, sizeof(didevcaps));

didevcaps.dwSize = sizeof(didevcaps);

// Now the structure can be used.

.

.

DICONDITION

The DICONDITION structure contains type-specific information for effects that are marked as DIEFT_CONDITION.

A pointer to an array of DICONDITION structures for an effect is passed in the lpvTypeSpecificParams member of the DIEFFECT structure. The number of elements in the array must be either one, or equal to the number of axes associated with the effect.

typedef struct DICONDITION {

 LONG lOffset;

 LONG lPositiveCoefficient;

 LONG lNegativeCoefficient;

 DWORD dwPositiveSaturation;

 DWORD dwNegativeSaturation;

 LONG lDeadBand;

} DICONDITION, *LPDICONDITION;

typedef const DICONDITION *LPCDICONDITION;

Members

lOffset

Offset for the condition, in the range from –10,000 through 10,000.

lPositiveCoefficient

Coefficient constant on the positive side of the offset, in the range from –10,000 through 10,000.

lNegativeCoefficient

Coefficient constant on the negative side of the offset, in the range from –10,000 through 10,000.

If the device does not support separate positive and negative coefficients, the value of lNegativeCoefficient is ignored, and the value of lPositiveCoefficient is used as both the positive and negative coefficients.

dwPositiveSaturation

Maximum force output on the positive side of the offset, in the range from 0 through 10,000.

If the device does not support force saturations, the value of this member is ignored.

dwNegativeSaturation

Maximum force output on the negative side of the offset, in the range from 0 through 10,000.

If the device does not support force saturation, the value of this member is ignored.

If the device does not support separate positive and negative saturation, the value of dwNegativeSaturation is ignored, and the value of dwPositiveSaturation is used as both the positive and negative saturation.

lDeadBand

Region around lOffset in which the condition is not active, in the range from 0 through 10,000. In other words, the condition is not active between lOffset minus lDeadBand and lOffset plus lDeadBand.

Remarks

Different types of conditions interpret the parameters differently, but the basic idea is that force resulting from a condition is equal to A(q - q0) where A is a scaling coefficient, q is some metric, and q0 is the neutral value for that metric.

The preceding simplified formula must be adjusted if a nonzero dead band is provided. If the metric is less than lOffset - lDeadBand, the resulting force is given by the following formula:

force = lNegativeCoefficient * (q - (lOffset - lDeadBand))

Similarly, if the metric is greater than lOffset + lDeadBand, the resulting force is given by the following formula:

force = lPositiveCoefficient * (q - (lOffset + lDeadBand))

A spring condition uses axis position as the metric.

A damper condition uses axis velocity as the metric.

An inertia condition uses axis acceleration as the metric.

If the number of DICONDITION structures in the array is equal to the number of axes for the effect, the first structure applies to the first axis, the second applies to the second axis, and so on. For example, a two-axis spring condition with lOffset set to 0 in both DICONDITION structures would have the same effect as the joystick self-centering spring. When a condition is defined for each axis in this way, the effect must not be rotated.

If there is a single DICONDITION structure for an effect with more than one axis, the direction along which the parameters of the DICONDITION structure are in effect is determined by the direction parameters passed in the rglDirection field of the DIEFFECT structure. For example, a friction condition rotated 45 degrees (in polar coordinates) would resist joystick motion in the northeast-southwest direction but would have no effect on joystick motion in the northwest-southeast direction.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.

DICONSTANTFORCE

The DICONSTANTFORCE structure contains type-specific information for effects that are marked as DIEFT_CONSTANTFORCE.

The structure describes a constant force effect.

A pointer to a single DICONSTANTFORCE structure for an effect is passed in the lpvTypeSpecificParams member of the DIEFFECT structure.

typedef struct DICONSTANTFORCE {

 LONG lMagnitude;

} DICONSTANTFORCE, *LPDICONSTANTFORCE;

typedef const DICONSTANTFORCE *LPCDICONSTANTFORCE;

Members

lMagnitude

The magnitude of the effect, in the range from –10,000 through 10,000. If an envelope is applied to this effect, the value represents the magnitude of the sustain. If no envelope is applied, the value represents the amplitude of the entire effect.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.

DICUSTOMFORCE

The DICUSTOMFORCE structure contains type-specific information for effects that are marked as DIEFT_CUSTOMFORCE.

The structure describes a custom or user-defined force.

A pointer to a DICUSTOMFORCE structure for an effect is passed in the lpvTypeSpecificParams member of the DIEFFECT structure.

typedef struct DICUSTOMFORCE {

 DWORD cChannels;

 DWORD dwSamplePeriod;

 DWORD cSamples;

 LPLONG rglForceData;

} DICUSTOMFORCE, *LPDICUSTOMFORCE;

typedef const DICUSTOMFORCE *LPCDICUSTOMFORCE;

Members

cChannels

Number of channels (axes) affected by this force.

The first channel is applied to the first axis associated with the effect, the second to the second, and so on. If there are fewer channels than axes, nothing is associated with the extra axes.

If there is only a single channel, the effect is rotated in the direction specified by the rglDirection member of the DIEFFECT structure. If there is more than one channel, rotation is not allowed.

Not all devices support rotation of custom effects.

dwSamplePeriod

Sample period, in microseconds.

cSamples

Total number of samples in the rglForceData. It must be an integral multiple of the cChannels.

rglForceData

Pointer to an array of force values representing the custom force. If multiple channels are provided, the values are interleaved. For example, if cChannels is 3, the first element of the array belongs to the first channel, the second to the second, and the third to the third.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.

DIDATAFORMAT

The DIDATAFORMAT structure carries information describing a device's data format. This structure is used with the IDirectInputDevice7::SetDataFormat method.

typedef struct DIDATAFORMAT {

 DWORD dwSize;

 DWORD dwObjSize;

 DWORD dwFlags;

 DWORD dwDataSize;

 DWORD dwNumObjs;

 LPDIOBJECTDATAFORMAT rgodf;

} DIDATAFORMAT, *LPDIDATAFORMAT;

typedef const DIDATAFORMAT *LPCDIDATAFORMAT;

Members

dwSize

Size of this structure, in bytes.

dwObjSize

Size of the DIOBJECTDATAFORMAT structure, in bytes.

dwFlags

Flags describing other attributes of the data format. This value can be one of the following:

DIDF_ABSAXIS

The axes are in absolute mode. Setting this flag in the data format is equivalent to manually setting the axis mode property, using the IDirectInputDevice7::SetProperty method. This cannot be combined with DIDF_RELAXIS flag.

DIDF_RELAXIS

The axes are in relative mode. Setting this flag in the data format is equivalent to manually setting the axis mode property using the IDirectInputDevice7::SetProperty method. This cannot be combined with the DIDF_ABSAXIS flag.

dwDataSize

Size of a data packet returned by the device, in bytes. This value must be a multiple of 4 and must exceed the largest offset value for an object's data within the data packet.

dwNumObjs

Number of objects in the rgodf array.

rgodf

Address to an array of DIOBJECTDATAFORMAT structures. Each structure describes how one object's data should be reported in the device data. Typical errors include placing two pieces of information in the same location and placing one piece of information in more than one location.

Remarks

Applications do not typically need to create a DIDATAFORMAT structure. An application can use one of the predefined global data format variables, c_dfDIMouse, c_dfDIMouse2, c_dfDIKeyboard, c_dfDIJoystick, or c_dfDIJoystick2.

The following code example sets a data format that can be used by applications that need two axes (reported in absolute coordinates) and two buttons:

// Suppose an application uses the following

// structure to read device data.

typedef struct MYDATA {

 LONG lX; // X-axis goes here.

 LONG lY; // Y-axis goes here.

 BYTE bButtonA; // One button goes here.

 BYTE bButtonB; // Another button goes here.

 BYTE bPadding[2]; // Must be DWORD multiple in size.

} MYDATA;

// Then, it can use the following data format.

DIOBJECTDATAFORMAT rgodf[] = {

 { &GUID_XAxis, FIELD_OFFSET(MYDATA, lX),

 DIDFT_AXIS | DIDFT_ANYINSTANCE, 0, },

 { &GUID_YAxis, FIELD_OFFSET(MYDATA, lY),

 DIDFT_AXIS | DIDFT_ANYINSTANCE, 0, },

 { &GUID_Button, FIELD_OFFSET(MYDATA, bButtonA),

 DIDFT_BUTTON | DIDFT_ANYINSTANCE, 0, },

 { &GUID_Button, FIELD_OFFSET(MYDATA, bButtonB),

 DIDFT_BUTTON | DIDFT_ANYINSTANCE, 0, },

};

#define numObjects (sizeof(rgodf) / sizeof(rgodf[0]))

DIDATAFORMAT df = {

 sizeof(DIDATAFORMAT), // this structure

 sizeof(DIOBJECTDATAFORMAT), // size of object data format

 DIDF_ABSAXIS, // absolute axis coordinates

 sizeof(MYDATA), // device data size

 numObjects, // number of objects

 rgodf, // and here they are

};

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.

DIDEVCAPS

The DIDEVCAPS structure contains information about a DirectInput device's capabilities. This structure is used with the IDirectInputDevice7::GetCapabilities method.

typedef struct DIDEVCAPS {

 DWORD dwSize;

 DWORD dwFlags;

 DWORD dwDevType;

 DWORD dwAxes;

 DWORD dwButtons;

 DWORD dwPOVs;

 DWORD dwFFSamplePeriod;

 DWORD dwFFMinTimeResolution;

 DWORD dwFirmwareRevision;

 DWORD dwHardwareRevision;

 DWORD dwFFDriverVersion;

} DIDEVCAPS, *LPDIDEVCAPS;

Members

dwSize

Size of this structure, in bytes. This member must be initialized by the application before a call to the IDirectInputDevice7::GetCapabilities method.

dwFlags

Flags associated with the device. This value can be a combination of the following:

DIDC_ALIAS

The device is a duplicate of another DirectInput device. Alias devices are by default not enumerated by IDirectInput7::EnumDevices.

DIDC_PHANTOM

The device does not really exist. It is a placeholder for a device which might exist in the future. Phantom devices are by default not enumerated by IDirectInput7::EnumDevices.

DIDC_ATTACHED

The device is physically attached.

DIDC_DEADBAND

The device supports deadband for at least one force-feedback condition.

DIDC_EMULATED

If this flag is set, the data is coming from a user mode device interface (such as HID) or by some other ring 3 means. If it is not set, the data is coming directly from a kernel mode driver.

DIDC_FORCEFEEDBACK

The device supports force feedback.

DIDC_FFFADE

The force-feedback system supports the fade parameter for at least one effect. If the device does not support fade, the fade level and fade time members of the DIENVELOPE structure are ignored by the device.

After a call to the IDirectInputDevice7::GetEffectInfo method, an individual effect sets the DIEFT_FFFADE flag if fade is supported for that effect.

DIDC_FFATTACK

The force-feedback system supports the attack parameter for at least one effect. If the device does not support attack, the attack level and attack time members of the DIENVELOPE structure are ignored by the device.

After a call to the IDirectInputDevice7::GetEffectInfo method, an individual effect sets the DIEFT_FFATTACK flag if attack is supported for that effect.

DIDC_POLLEDDATAFORMAT

At least one object in the current data format is polled, rather than interrupt-driven. For these objects, the application must explicitly call the IDirectInputDevice7::Poll method to obtain data.

DIDC_POLLEDDEVICE

At least one object on the device is polled, rather than interrupt-driven. For these objects, the application must explicitly call the IDirectInputDevice7::Poll method to obtain data. HID devices can contain a mixture of polled and nonpolled objects.

DIDC_POSNEGCOEFFICIENTS

The force-feedback system supports two coefficient values for conditions (one for the positive displacement of the axis and one for the negative displacement of the axis) for at least one condition. If the device does not support both coefficients, the negative coefficient in the DICONDITION structure is ignored.

After a call to the IDirectInputDevice7::GetEffectInfo method, an individual condition sets the DIEFT_POSNEGCOEFFICIENTS flag if separate positive and negative coefficients are supported for that condition.

DIDC_POSNEGSATURATION

The force-feedback system supports a maximum saturation for both positive and negative force output for at least one condition. If the device does not support both saturation values, the negative saturation in the DICONDITION structure is ignored.

After a call to the IDirectInputDevice7::GetEffectInfo method, an individual condition sets the DIEFT_POSNEGSATURATION flag if separate positive and negative saturation are supported for that condition.

DIDC_SATURATION

The force-feedback system supports the saturation of condition effects for at least one condition. If the device does not support saturation, the force generated by a condition is limited only by the maximum force that the device can generate.

After a call to the IDirectInputDevice7::GetEffectInfo method, an individual condition sets the DIEFT_SATURATION flag if saturation is supported for that condition.

DIDC_STARTDELAY

The force-feedback system supports the start delay parameter for at least one effect. If the device does not support start delays, the dwStartDelay member of the DIEFFECT structure is ignored.

dwDevType

Device type specifier. This member can contain values identical to those in the dwDevType member of the DIDEVICEINSTANCE structure.

dwAxes

Number of axes available on the device.

dwButtons

Number of buttons available on the device.

dwPOVs

Number of point-of-view controllers available on the device.

dwFFSamplePeriod

Minimum time between playback of consecutive raw force commands.

dwFFMinTimeResolution

Minimum time, in microseconds, that the device can resolve. The device rounds any times to the nearest supported increment. For example, if the value of dwFFMinTimeResolution is 1000, the device would round any times to the nearest millisecond.

dwFirmwareRevision

Specifies the firmware revision of the device.

dwHardwareRevision

Hardware revision of the device.

dwFFDriverVersion

Version number of the device driver.

Remarks

The semantics of version numbers are left to the manufacturer of the device. The only guarantee is that newer versions have larger numbers.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.

See Also

DIDEVICEINSTANCE

DIDEVICEINSTANCE

The DIDEVICEINSTANCE structure contains information about an instance of a DirectInput device. This structure is used with the IDirectInput7::EnumDevices and IDirectInputDevice7::GetDeviceInfo methods.

typedef struct DIDEVICEINSTANCE {

 DWORD dwSize;

 GUID guidInstance;

 GUID guidProduct;

 DWORD dwDevType;

 TCHAR tszInstanceName[MAX_PATH];

 TCHAR tszProductName[MAX_PATH];

 GUID guidFFDriver;

 WORD wUsagePage;

 WORD wUsage;

} DIDEVICEINSTANCE, *LPDIDEVICEINSTANCE;

typedef const DIDEVICEINSTANCE *LPCDIDEVICEINSTANCE;

Members

dwSize

Size of this structure, in bytes. This member must be initialized before the structure is used.

guidInstance

Unique identifier for the instance of the device. An application can save the instance GUID into a configuration file and use it at a later time. Instance GUIDs are specific to a particular computer. An instance GUID obtained from one computer is unrelated to instance GUIDs on another.

guidProduct

Unique identifier for the product. This identifier is established by the manufacturer of the device.

dwDevType

Device type specifier. The least-significant byte of the device type description code specifies the device type. The next-significant byte specifies the device subtype. This value can be one of the following types combined with their respective subtypes and optionally with DIDEVTYPE_HID, which specifies a Human Interface Device.

Device Types

DIDEVTYPE_MOUSE

A mouse or mouse-like device (such as a trackball).

DIDEVTYPE_KEYBOARD

A keyboard or keyboard-like device.

DIDEVTYPE_JOYSTICK

A joystick or similar device, such as a steering wheel.

DIDEVTYPE_DEVICE

A device that does not fall into the previous categories.

Mouse subtypes

DIDEVTYPEMOUSE_UNKNOWN

The subtype could not be determined.

DIDEVTYPEMOUSE_TRADITIONAL

The device is a traditional mouse.

DIDEVTYPEMOUSE_FINGERSTICK

The device is a fingerstick.

DIDEVTYPEMOUSE_TOUCHPAD

The device is a touchpad.

DIDEVTYPEMOUSE_TRACKBALL

The device is a trackball.

Keyboard subtypes

DIDEVTYPEKEYBOARD_UNKNOWN

The subtype could not be determined.

DIDEVTYPEKEYBOARD_PCXT

IBM PC/XT 83-key keyboard.

DIDEVTYPEKEYBOARD_OLIVETTI

Olivetti 102-key keyboard.

DIDEVTYPEKEYBOARD_PCAT

IBM PC/AT 84-key keyboard.

DIDEVTYPEKEYBOARD_PCENH

IBM PC Enhanced 101/102-key or Microsoft Natural® keyboard.

DIDEVTYPEKEYBOARD_NOKIA1050

Nokia 1050 keyboard.

DIDEVTYPEKEYBOARD_NOKIA9140

Nokia 9140 keyboard.

DIDEVTYPEKEYBOARD_NEC98

Japanese NEC PC98 keyboard.

DIDEVTYPEKEYBOARD_NEC98LAPTOP

Japanese NEC PC98 laptop keyboard.

DIDEVTYPEKEYBOARD_NEC98106

Japanese NEC PC98 106-key keyboard.

DIDEVTYPEKEYBOARD_JAPAN106

Japanese 106-key keyboard.

DIDEVTYPEKEYBOARD_JAPANAX

Japanese AX keyboard.

DIDEVTYPEKEYBOARD_J3100

Japanese J3100 keyboard.

Joystick Subtypes

DIDEVTYPEJOYSTICK_UNKNOWN

The subtype could not be determined.

DIDEVTYPEJOYSTICK_TRADITIONAL

A traditional joystick.

DIDEVTYPEJOYSTICK_FLIGHTSTICK

A joystick optimized for flight simulation.

DIDEVTYPEJOYSTICK_GAMEPAD

A device whose primary purpose is to provide button input.

DIDEVTYPEJOYSTICK_RUDDER

A device for yaw control.

DIDEVTYPEJOYSTICK_WHEEL

A steering wheel.

DIDEVTYPEJOYSTICK_HEADTRACKER

A device that tracks the movement of the user's head.

Flags in the High Word

DIDEVTYPE_HID

The device uses the Human Interface Device (HID) protocol.

tszInstanceName[MAX_PATH]

Friendly name for the instance. For example, "Joystick 1."

tszProductName[MAX_PATH]

Friendly name for the product.

guidFFDriver

Unique identifier for the driver being used for force feedback. This identifier is established by the manufacturer of the driver.

wUsagePage

If the device is an HID device, this member contains the HID usage page code.

wUsage

If the device is an HID, this member contains the HID usage code.

Remarks

For compatibility with previous versions of DirectX, a DIDEVICEINSTANCE_DX3 structure is also defined, containing only the first six members of the DIDEVICEINSTANCE structure.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.

DIDEVICEOBJECTDATA

The DIDEVICEOBJECTDATA structure contains raw buffered device information. This structure is used with the IDirectInputDevice7::GetDeviceData and the IDirectInputDevice7::SendDeviceData methods.

typedef struct DIDEVICEOBJECTDATA {

 DWORD dwOfs;

 DWORD dwData;

 DWORD dwTimeStamp;

 DWORD dwSequence;

} DIDEVICEOBJECTDATA, *LPDIDEVICEOBJECTDATA;

typedef const DIDEVICEOBJECTDATA *LPCDIDEVICEOBJECTDATA;

Members

dwOfs

For GetDeviceData, the offset into the current data format of the object whose data is being reported; that is, the location in which the dwData would have been stored if the data had been obtained by a call to the IDirectInputDevice7::GetDeviceState method. If the device is accessed as a mouse, keyboard, or joystick, the dwOfs member is one of the mouse device constants, keyboard device constants, or joystick device constants. If a custom data format has been set, it is an offset relative to the custom data format.

For SendDeviceData, the instance ID of the object to which the data is being sent, as obtained from the dwType member of a DIDEVICEOBJECTINSTANCE structure.

dwData

Data obtained from or sent to the device.

For axis input, if the device is in relative axis mode, the relative axis motion is reported. If the device is in absolute axis mode, the absolute axis coordinate is reported.

For button input, only the low byte of dwData is significant. The high bit of the low byte is set if the button went down; it is clear if the button went up.

dwTimeStamp

Tick count at which the input event was generated, in milliseconds. The current system tick count (at a lower resolution) can be obtained by calling the Win32 GetTickCount function. This value wraps around approximately every 50 days.

When the structure is used with the SendDeviceData method, this member must be 0.

dwSequence

DirectInput sequence number for this event. All input events are assigned an increasing sequence number. This allows events from different devices to be sorted chronologically. Since this value can wrap around, care must be taken when comparing two sequence numbers. The DISEQUENCE_COMPARE macro can be used to perform this comparison safely.

When the structure is used with the SendDeviceData method, this member must be 0.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.

DIDEVICEOBJECTINSTANCE

The DIDEVICEOBJECTINSTANCE structure contains information about a device object instance. This structure is used with the IDirectInputDevice7::EnumObjects method to provide the DIEnumDeviceObjectsCallback callback function with information about a particular object associated with a device, such as an axis or button. It is also used with the IDirectInputDevice7::GetObjectInfo method to retrieve information about a device object.

typedef struct DIDEVICEOBJECTINSTANCE {

 DWORD dwSize;

 GUID guidType;

 DWORD dwOfs;

 DWORD dwType;

 DWORD dwFlags;

 TCHAR tszName[MAX_PATH];

 DWORD dwFFMaxForce;

 DWORD dwFFForceResolution;

 WORD wCollectionNumber;

 WORD wDesignatorIndex;

 WORD wUsagePage;

 WORD wUsage;

 DWORD dwDimension;

 WORD wExponent;

 WORD wReportId;

} DIDEVICEOBJECTINSTANCE, *LPDIDEVICEOBJECTINSTANCE;

typedef const DIDEVICEOBJECTINSTANCE *LPCDIDEVICEOBJECTINSTANCE;

Members

dwSize

Size of the structure, in bytes. During enumeration, the application can inspect this value to determine how many members of the structure are valid. When the structure is passed to the IDirectInputDevice7::GetObjectInfo method, this member must be initialized to sizeof(DIDEVICEOBJECTINSTANCE).

guidType

Unique identifier that indicates the object type. This member is optional. If present, it can be one of the following values:

GUID_XAxis

The horizontal axis. For example, it can represent the left-right motion of a mouse.

GUID_YAxis

The vertical axis. For example, it can represent the forward-backward motion of a mouse.

GUID_ZAxis

The z-axis. For example, it can represent rotation of the wheel on a mouse, or movement of a throttle control on a joystick.

GUID_RxAxis

Rotation around the x-axis.

GUID_RyAxis

Rotation around the y-axis.

GUID_RzAxis

Rotation around the z-axis (often a rudder control).

GUID_Slider

A slider axis.

GUID_Button

A button on a mouse.

GUID_Key

A key on a keyboard.

GUID_POV

A point-of-view indicator.

GUID_Unknown

Unknown.

Other object types might be defined in the future.

dwOfs

Offset within the data format at which data is reported for this object. This value can be used to identify the object in method calls and structures that accept the DIPH_BYOFFSET flag.

dwType

Device type that describes the object. It is a combination of DIDFT_* flags that describe the object type (axis, button, and so on) and contains the object instance number in the middle 16 bits. Use the DIDFT_GETINSTANCE macro to extract the object instance number. For the DIDFT_* flags, see IDirectInputDevice7::EnumObjects.

dwFlags

Flags describing other attributes of the data format. This value can be one of the following:

DIDOI_ASPECTACCEL

The object reports acceleration information.

DIDOI_ASPECTFORCE

The object reports force information.

DIDOI_ASPECTMASK

The bits that are used to report aspect information. An object can represent at most one aspect.

DIDOI_ASPECTPOSITION

The object reports position information.

DIDOI_ASPECTVELOCITY

The object reports velocity information.

DIDOI_FFACTUATOR

The object can have force-feedback effects applied to it.

DIDOI_FFEFFECTTRIGGER

The object can trigger playback of force-feedback effects.

DIDOI_GUIDISUSAGE

The pguid member of the DIOBJECTDATAFORMAT structure is really a (suitably cast) DIMAKEUSAGEDWORD of the usage page and usage that is desired.

DIDOI_POLLED

The object does not return data until the IDirectInputDevice7::Poll method is called.

tszName[MAX_PATH]

Name of the object; for example, "X-Axis" or "Right Shift."

dwFFMaxForce

The magnitude of the maximum force that can be created by the actuator associated with this object. Force is expressed in newtons and measured in relation to where the hand would be during normal operation of the device.

dwFFForceResolution

The force resolution of the actuator associated with this object. The returned value represents the number of gradations, or subdivisions, of the maximum force that can be expressed by the force-feedback system from 0 (no force) to maximum force.

wCollectionNumber

The HID link collection to which the object belongs.

wDesignatorIndex

An index that refers to a designator in the HID physical descriptor. This number can be passed to functions in the HID parsing library (Hidpi.h) to obtain additional information about the device object.

wUsagePage

The HID usage page associated with the object, if known. Human Interface Devices always report a usage page. Non-HID devices can optionally report a usage page; if they do not, the value of this member is 0.

wUsage

The HID usage associated with the object, if known. Human Interface Devices always report a usage. Non-HID devices can optionally report a usage; if they do not, the value of this member is 0.

dwDimension

An HID code for the dimensional units in which the object's value is reported, if known, or 0 if not known.

wExponent

The exponent to associate with the dimension, if known. Dimensional units are always integral, so an exponent might be needed to convert them to nonintegral types.

wReportId

Reserved.

Remarks

Applications can use the wUsagePage and wUsage members to obtain additional information about how the object was designed to be used. For example, if wUsagePage has the value 0x02 (vehicle controls) and wUsage has the value 0xB9 (elevator trim), the object was designed to be the elevator trim control on a flightstick. A flight simulator application can use this information to provide more reasonable defaults for objects on the device. HID usage codes are determined by the USB standards committee.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.

DIEFFECT

The DIEFFECT structure is used by the IDirectInputDevice7::CreateEffect method to initialize a new IDirectInputEffect object. It is also used by the IDirectInputEffect::SetParameters and IDirectInputEffect::GetParameters methods.

typedef struct DIEFFECT {

 DWORD dwSize;

 DWORD dwFlags;

 DWORD dwDuration;

 DWORD dwSamplePeriod;

 DWORD dwGain;

 DWORD dwTriggerButton;

 DWORD dwTriggerRepeatInterval;

 DWORD cAxes;

 LPDWORD rgdwAxes;

 LPLONG rglDirection;

 LPDIENVELOPE lpEnvelope;

 DWORD cbTypeSpecificParams;

 LPVOID lpvTypeSpecificParams;

 DWORD dwStartDelay;

} DIEFFECT, *LPDIEFFECT;

typedef const DIEFFECT *LPCDIEFFECT;

Members

dwSize

Specifies the size, in bytes, of the structure. This member must be initialized before the structure is used.

dwFlags

Flags associated with the effect. This value can be a combination of one or more of the following values:

DIEFF_CARTESIAN

The values of rglDirection are to be interpreted as Cartesian coordinates.

DIEFF_OBJECTIDS

The values of dwTriggerButton and rgdwAxes are object identifiers as obtained by IDirectInputDevice7::EnumObjects.

DIEFF_OBJECTOFFSETS

The values of dwTriggerButton and rgdwAxes are data format offsets, relative to the data format selected by IDirectInputDevice7::SetDataFormat.

DIEFF_POLAR

The values of rglDirection are to be interpreted as polar coordinates.

DIEFF_SPHERICAL

The values of rglDirection are to be interpreted as spherical coordinates.

dwDuration

The total duration of the effect, in microseconds. If this value is INFINITE, the effect has infinite duration. If an envelope has been applied to the effect, the attack is applied, followed by an infinite sustain.

dwSamplePeriod

The period at which the device should play back the effect, in microseconds. A value of 0 indicates that the default playback sample rate should be used.

If the device is not capable of playing back the effect at the specified rate, it chooses the supported rate that is closest to the requested value.

Setting a custom dwSamplePeriod can be used for special effects. For example, playing a sine wave at an artificially large sample period results in a rougher texture.

dwGain

The gain to be applied to the effect, in the range from 0 through 10,000. The gain is a scaling factor applied to all magnitudes of the effect and its envelope.

dwTriggerButton

The identifier or offset of the button to be used to trigger playback of the effect. The flags DIEFF_OBJECTIDS and DIEFF_OBJECTOFFSETS determine the semantics of the value. If this member is set to DIEB_NOTRIGGER, no trigger button is associated with the effect.

dwTriggerRepeatInterval

The interval, in microseconds, between the end of one playback and the start of the next when the effect is triggered by a button press and the button is held down. Setting this value to INFINITE suppresses repetition.

Support for trigger repeat for an effect is indicated by the presence of the DIEP_TRIGGERREPEATINTERVAL flag in the dwStaticParams member of the DIEFFECTINFO structure.

cAxes

Number of axes involved in the effect. This member must be filled in by the caller if changing or setting the axis list or the direction list.

The number of axes for an effect cannot be changed once it has been set.

rgdwAxes

Pointer to a DWORD array (of cAxes elements) containing identifiers or offsets identifying the axes to which the effect is to be applied. The flags DIEFF_OBJECTIDS and DIEFF_OBJECTOFFSETS determine the semantics of the values in the array.

The list of axes associated with an effect cannot be changed once it has been set.

No more than 32 axes can be associated with a single effect.

rglDirection

Pointer to a LONG array (of cAxes elements) containing either Cartesian coordinates or polar coordinates. The flags DIEFF_CARTESIAN, DIEFF_POLAR, and DIEFF_SPHERICAL determine the semantics of the values in the array.

If Cartesian, each value in rglDirection is associated with the corresponding axis in rgdwAxes.

If polar, the angle is measured in hundredths of degrees from the (0, –1) direction, rotated in the direction of (1, 0). This usually means that north is away from the user, and east is to the user's right. The last element is not used.

If spherical, the first angle is measured in hundredths of a degree from the (1, 0) direction, rotated in the direction of (0, 1). The second angle (if the number of axes is three or more) is measured in hundredths of a degree toward (0, 0, 1). The third angle (if the number of axes is four or more) is measured in hundredths of a degree toward (0, 0, 0, 1), and so on. The last element is not used.

Note

The rglDirection array must contain cAxes entries, even if polar or spherical coordinates are given. In these cases, the last element in the rglDirection array is reserved for future use and must be 0.

lpEnvelope

Optional pointer to a DIENVELOPE structure that describes the envelope to be used by this effect. Not all effect types use envelopes. If no envelope is to be applied, the member should be set to NULL.

cbTypeSpecificParams

Number of bytes of additional type-specific parameters for the corresponding effect type.

lpvTypeSpecificParams

Pointer to type-specific parameters, or NULL if there are no type-specific parameters.

If the effect is of type DIEFT_CONDITION, this member contains a pointer to an array of DICONDITION structures that define the parameters for the condition. A single structure may be used, in which case the condition is applied in the direction specified in the rglDirection array. Otherwise, there must be one structure for each axis, in the same order as the axes in rgdwAxes array. If a structure is supplied for each axis, the effect should not be rotated; you should use the following values in the rglDirection array:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIEFF_SPHERICAL: 0, 0, ...

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIEFF_POLAR: 9000, 0, ...

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIEFF_CARTESIAN: 1, 0, ...

If the effect is of type DIEFT_CUSTOMFORCE, this member contains a pointer to a DICUSTOMFORCE structure that defines the parameters for the custom force.

If the effect is of type DIEFT_PERIODIC, this member contains a pointer to a DIPERIODIC structure that defines the parameters for the effect.

If the effect is of type DIEFT_CONSTANTFORCE, this member contains a pointer to a DICONSTANTFORCE structure that defines the parameters for the constant force.

If the effect is of type DIEFT_RAMPFORCE, this member contains a pointer to a DIRAMPFORCE structure that defines the parameters for the ramp force.

dwStartDelay

Time (in microseconds) that the device should wait after a IDirectInputEffect::Start call before playing the effect. If this value is 0, effect playback begins immediately. This member is not present in versions prior to DirectX 7.0.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.

DIEFFECTINFO

The DIEFFECTINFO structure is used by the IDirectInputDevice7::EnumEffects and IDirectInputDevice7::GetEffectInfo methods to return information about a particular effect supported by a device.

typedef struct DIEFFECTINFO {

 DWORD dwSize;

 GUID guid;

 DWORD dwEffType;

 DWORD dwStaticParams;

 DWORD dwDynamicParams;

 TCHAR tszName[MAX_PATH];

} DIEFFECTINFO, *LPDIEFFECTINFO;

typedef const DIEFFECTINFO *LPCDIEFFECTINFO;

Members

dwSize

Size of the structure in bytes. During enumeration, the application can inspect this value to determine how many members of the structure are valid. This member must be initialized before the structure is passed to the IDirectInputDevice7::GetEffectInfo method.

guid

Identifier of the effect.

dwEffType

Zero or more of the following values:

DIEFT_ALL

Valid only for IDirectInputDevice7::EnumEffects. Enumerate all effects, regardless of type. This flag cannot be combined with any of the other flags.

DIEFT_CONDITION

The effect represents a condition. When creating or modifying a condition, the lpvTypeSpecificParams member of the DIEFFECT structure must point to an array of DICONDITION structures (one per axis), and the cbTypeSpecificParams member must be set to cAxis * sizeof(DICONDITION).

Not all devices support all the parameters of conditions. Check the effect capability flags to determine which capabilities are available.

The flag can be passed to IDirectInputDevice7::EnumEffects to restrict the enumeration to conditions.

DIEFT_CONSTANTFORCE

The effect represents a constant-force effect. When creating or modifying a constant-force effect, the lpvTypeSpecificParams member of the DIEFFECT must point to a DICONSTANTFORCE structure, and the cbTypeSpecificParams member must be set to sizeof(DICONSTANTFORCE).

The flag can be passed to IDirectInputDevice7::EnumEffects to restrict the enumeration to constant-force effects.

DIEFT_CUSTOMFORCE

The effect represents a custom-force effect. When creating or modifying a custom-force effect, the lpvTypeSpecificParams member of the DIEFFECT structure must point to a DICUSTOMFORCE structure, and the cbTypeSpecificParams member must be set to sizeof(DICUSTOMFORCE).

The flag can be passed to IDirectInputDevice7::EnumEffects to restrict the enumeration to custom-force effects.

DIEFT_DEADBAND

The effect generator for this condition effect supports the lDeadBand parameter.

DIEFT_FFATTACK

The effect generator for this effect supports the attack envelope parameter. If the effect generator does not support attack, the attack level and attack time parameters of the DIENVELOPE structure are ignored by the effect.

If neither DIEFT_FFATTACK nor DIEFT_FFFADE is set, the effect does not support an envelope, and any provided envelope is ignored.

DIEFT_FFFADE

The effect generator for this effect supports the fade parameter. If the effect generator does not support fade, the fade level and fade time parameters of the DIENVELOPE structure are ignored by the effect.

If neither DIEFT_FFATTACK nor DIEFT_FFFADE is set, the effect does not support an envelope, and any provided envelope is ignored.

DIEFT_HARDWARE

The effect represents a hardware-specific effect. For additional information on using a hardware-specific effect, consult the hardware documentation.

The flag can be passed to the IDirectInputDevice7::EnumEffects method to restrict the enumeration to hardware-specific effects.

DIEFT_PERIODIC

The effect represents a periodic effect. When creating or modifying a periodic effect, the lpvTypeSpecificParams member of the DIEFFECT structure must point to a DIPERIODIC structure, and the cbTypeSpecificParams member must be set to sizeof(DIPERIODIC).

The flag can be passed to IDirectInputDevice7::EnumEffects to restrict the enumeration to periodic effects.

DIEFT_POSNEGCOEFFICIENTS

The effect generator for this effect supports two coefficient values for conditions, one for the positive displacement of the axis and one for the negative displacement of the axis. If the device does not support both coefficients, the negative coefficient in the DICONDITION structure is ignored, and the positive coefficient is used in both directions.

DIEFT_POSNEGSATURATION

The effect generator for this effect supports a maximum saturation for both positive and negative force output. If the device does not support both saturation values, the negative saturation in the DICONDITION structure is ignored, and the positive saturation is used in both directions.

DIEFT_RAMPFORCE

The effect represents a ramp-force effect. When creating or modifying a ramp-force effect, the lpvTypeSpecificParams member of the DIEFFECT structure must point to a DIRAMPFORCE structure, and the cbTypeSpecificParams member must be set to sizeof(DIRAMPFORCE).

The flag can be passed to IDirectInputDevice7::EnumEffects to restrict the enumeration to ramp-force effects.

DIEFT_SATURATION

The effect generator for this effect supports the saturation of condition effects. If the effect generator does not support saturation, the force generated by a condition is limited only by the maximum force that the device can generate.

dwStaticParams

Zero or more DIEP_* values describing the parameters supported by the effect. For example, if DIEP_ENVELOPE is set, the effect supports an envelope. For a list of possible values, see IDirectInputEffect::GetParameters.

It is not an error for an application to attempt to use effect parameters that are not supported by the device. The unsupported parameters are ignored.

This information is provided to allow the application to tailor its use of force feedback to the capabilities of the specific device.

dwDynamicParams

Zero or more DIEP_* values denoting parameters of the effect that can be modified while the effect is playing. For a list of possible values, see IDirectInputEffect::GetParameters.

If an application attempts to change a parameter while the effect is playing and the driver does not support modifying that effect dynamically, the driver is permitted to stop the effect, update the parameters, then restart it. For more information, see IDirectInputEffect::SetParameters.

tszName[MAX_PATH]

Name of the effect; for example, "Sawtooth up" or "Constant force".

Remarks

Use the DIEFT_GETTYPE macro to extract the effect type from the dwEffType flags.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.

DIEFFESCAPE

The DIEFFESCAPE structure is used by the IDirectInputDevice7::Escape and IDirectInputEffect::Escape methods to pass hardware-specific data directly to the device driver.

typedef struct DIEFFESCAPE {

 DWORD dwSize;

 DWORD dwCommand;

 LPVOID lpvInBuffer;

 DWORD cbInBuffer;

 LPVOID lpvOutBuffer;

 DWORD cbOutBuffer;

} DIEFFESCAPE, *LPDIEFFESCAPE;

Members

dwSize

Size of the structure in bytes. This member must be initialized before the structure is used.

dwCommand

Driver-specific command number. Consult the driver documentation for a list of valid commands.

lpvInBuffer

Buffer containing the data required to perform the operation.

cbInBuffer

Size, in bytes, of the lpvInBuffer buffer.

lpvOutBuffer

Buffer in which the operation's output data is returned.

cbOutBuffer

On entry, the size in bytes of the lpvOutBuffer buffer. On exit, the number of bytes actually produced by the command.

Remarks

Since each driver implements different escapes, it is the application's responsibility to ensure that it is talking to the correct driver by comparing the guidFFDriver member in the DIDEVICEINSTANCE structure against the value the application is expecting.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.

DIENVELOPE

The DIENVELOPE structure is used by the DIEFFECT structure to specify the optional envelope parameters for an effect. The sustain level for the envelope is represented by the dwMagnitude member of the DIPERIODIC structure and the lMagnitude member of the DICONSTANTFORCE structure. The sustain time is represented by dwDuration member of the DIEFFECT structure.

typedef struct DIENVELOPE {

 DWORD dwSize;

 DWORD dwAttackLevel;

 DWORD dwAttackTime;

 DWORD dwFadeLevel;

 DWORD dwFadeTime;

} DIENVELOPE, *LPDIENVELOPE;

typedef const DIENVELOPE *LPCDIENVELOPE;

Members

dwSize

Size, in bytes, of the structure. This member must be initialized before the structure is used.

dwAttackLevel

Amplitude for the start of the envelope, relative to the baseline, in the range from 0 through 10,000. If the effect's type-specific data does not specify a baseline, the amplitude is relative to 0.

dwAttackTime

The time, in microseconds, to reach the sustain level.

dwFadeLevel

Amplitude for the end of the envelope, relative to the baseline, in the range from 0 through 10,000. If the effect's type-specific data does not specify a baseline, the amplitude is relative to 0.

dwFadeTime

The time, in microseconds, to reach the fade level.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.

DIFILEEFFECT

The DIFILEEFFECT structure describes data for a force-feedback effect stored in a file. It is used in conjunction with the IDirectInputDevice7::EnumEffectsInFile and IDirectInputDevice7::WriteEffectToFile methods.

typedef struct DIFILEEFFECT{

 DWORD dwSize;

 GUID GuidEffect;

 LPCDIEFFECT lpDiEffect;

 CHAR szFriendlyName[MAX_PATH];

}DIFILEEFFECT, *LPDIFILEEFFECT;

Members

dwSize

Size, in bytes, of the structure. This member must be initialized before the structure is used.

GuidEffect

Unique identifier of the effect type. This can be one of the standard GUIDs defined in Dinput.h, such as GUID_ConstantForce, or one created by the designer.

lpDiEffect

Pointer to a DIEFFECT structure containing information about the effect.

szFriendlyName

Name of the effect.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.

DIJOYSTATE

The DIJOYSTATE structure contains information about the state of a joystick device. This structure is used with the IDirectInputDevice7::GetDeviceState method.

typedef struct DIJOYSTATE {

 LONG lX;

 LONG lY;

 LONG lZ;

 LONG lRx;

 LONG lRy;

 LONG lRz;

 LONG rglSlider[2];

 DWORD rgdwPOV[4];

 BYTE rgbButtons[32];

} DIJOYSTATE, *LPDIJOYSTATE;

Members

lX

Information about the joystick x-axis (usually the left-right movement of a stick).

lY

Information about the joystick y-axis (usually the forward-backward movement of a stick).

lZ

Information about the joystick z-axis (often the throttle control). If the joystick does not have this axis, the value is 0.

lRx

Information about the joystick x-axis rotation. If the joystick does not have this, the value is 0.

lRy

Information about the joystick y-axis rotation. If the joystick does not have this axis, the value is 0.

lRz

Information about the joystick z-axis rotation (often called the rudder). If the joystick does not have this axis, the value is 0.

rglSlider[2]

Two additional axis values (formerly called the u-axis and v-axis) whose semantics depend on the joystick. Use the IDirectInputDevice7::GetObjectInfo method to obtain semantic information about these values.

rgdwPOV[4]

The current position of up to four direction controllers (such as point-of-view indicators). The position is indicated in hundredths of a degree clockwise from north (away from the user). The center position is normally reported as –1; but see Remarks. For indicators that have only five positions, the value for a controller is –1, 0, 9,000, 18,000, or 27,000.

rgbButtons[32]

Array of button states. The high-order bit of the byte is set if the corresponding button is down, and clear if the button is up or does not exist.

Remarks

You must prepare the device for joystick-style access by calling the IDirectInputDevice7::SetDataFormat method, passing the c_dfDIJoystick global data format variable.

If an axis is in relative mode, the appropriate member contains the change in position. If it is in absolute mode, the member contains the absolute axis position.

Some drivers report the centered position of the POV indicator as 65,535. Determine whether the indicator is centered as follows:

BOOL POVCentered = (LOWORD(dwPOV) == 0xFFFF);

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.

DIJOYSTATE2

The DIJOYSTATE2 structure contains information about the state of a joystick device with extended capabilities. This structure is used with the IDirectInputDevice7::GetDeviceState method.

typedef struct DIJOYSTATE2 {

 LONG lX;

 LONG lY;

 LONG lZ;

 LONG lRx;

 LONG lRy;

 LONG lRz;

 LONG rglSlider[2];

 DWORD rgdwPOV[4];

 BYTE rgbButtons[128];

 LONG lVX;

 LONG lVY;

 LONG lVZ;

 LONG lVRx;

 LONG lVRy;

 LONG lVRz;

 LONG rglVSlider[2];

 LONG lAX;

 LONG lAY;

 LONG lAZ;

 LONG lARx;

 LONG lARy;

 LONG lARz;

 LONG rglASlider[2];

 LONG lFX;

 LONG lFY;

 LONG lFZ;

 LONG lFRx;

 LONG lFRy;

 LONG lFRz;

 LONG rglFSlider[2];

} DIJOYSTATE2, *LPDIJOYSTATE2;

Members

lX

Information about the joystick x-axis (usually the left-right movement of a stick).

lY

Information about the joystick y-axis (usually the forward-backward movement of a stick).

lZ

Information about the joystick z-axis (often the throttle control). If the joystick does not have this axis, the value is 0.

lRx

Information about the joystick x-axis rotation. If the joystick does not have this, the value is 0.

lRy

Information about the joystick y-axis rotation. If the joystick does not have this axis, the value is 0.

lRz

Information about the joystick z-axis rotation (often called the rudder). If the joystick does not have this axis, the value is 0.

rglSlider[2]

Two additional axis values (formerly called the u-axis and v-axis) whose semantics depend on the joystick. Use the IDirectInputDevice7::GetObjectInfo method to obtain semantic information about these values.

rgdwPOV[4]

The current position of up to four direction controllers (such as point-of-view hats). The position is indicated in hundredths of a degree clockwise from north (away from the user). The center position is normally reported as –1; but see Remarks. For indicators that have only five positions, the value for a controller is –1, 0, 9,000, 18,000, or 27,000.

rgbButtons[128]

Array of button states. The high-order bit of the byte is set if the corresponding button is down, and clear if the button is up or does not exist.

lVX

Information about the x-axis velocity.

lVY

Information about the y-axis velocity.

lVZ

Information about the z-axis velocity.

lVRx

Information about the x-axis angular velocity.

lVRy

Information about the y-axis angular velocity.

lVRz

Information about the z-axis angular velocity.

rglVSlider[2]

Information about extra axis velocities.

lAX

Information about the x-axis acceleration.

lAY

Information about the y-axis acceleration.

lAZ

Information about the z-axis acceleration.

lARx

Information about the x-axis angular acceleration.

lARy

Information about the y-axis angular acceleration.

lARz

Information about the z-axis angular acceleration.

rglASlider[2]

Information about extra axis accelerations.

lFX

Information about the x-axis force.

lFY

Information about the y-axis force.

lFZ

Information about the z-axis force.

lFRx

Information about the x-axis torque.

lFRy

Information about the y-axis torque.

lFRz

Information about the z-axis torque.

rglFSlider[2]

Information about extra axis forces.

Remarks

You must prepare the device for access to a joystick with extended capabilities by calling the IDirectInputDevice7::SetDataFormat method, passing the c_dfDIJoystick2 global data format variable.

The DIJOYSTATE2 structure has no special association with the IDirectInputDevice7 interface. You can use either DIJOYSTATE or DIJOYSTATE2 with either the IDirectInputDevice or the IDirectInputDevice7 interface.

If an axis is in relative mode, the appropriate member contains the change in position. If it is in absolute mode, the member contains the absolute axis position.

Some drivers report the centered position of the POV indicator as 65,535. Determine whether the indicator is centered as follows:

BOOL POVCentered = (LOWORD(dwPOV) == 0xFFFF);

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.

DIMOUSESTATE

The DIMOUSESTATE structure contains information about the state of a mouse device that has up to four buttons, or another device that is being accessed as if it were a mouse device. This structure is used with the IDirectInputDevice7::GetDeviceState method.

typedef struct DIMOUSESTATE {

 LONG lX;

 LONG lY;

 LONG lZ;

 BYTE rgbButtons[4];

} DIMOUSESTATE, *LPDIMOUSESTATE;

Members

lX

Information about the mouse x-axis.

lY

Information about the mouse y-axis.

lZ

Information about the mouse z-axis (typically a wheel). If the mouse does not have a z-axis, the value is 0.

rgbButtons[4]

Array of button states. The high-order bit of the byte is set if the corresponding button is down.

Remarks

You must prepare the device for mouse-style access by calling the IDirectInputDevice7::SetDataFormat method, passing the c_dfDIMouse global data format variable.

The mouse is a relative-axis device, so the absolute axis positions for mouse axes are simply accumulated relative motion. Therefore, the value of the absolute axis position is not meaningful except in comparison with other absolute axis positions.

If an axis is in relative mode, the appropriate member contains the change in position. If it is in absolute mode, the member contains the absolute axis position.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.

See Also

DIMOUSESTATE2

DIMOUSESTATE2

The DIMOUSESTATE2 structure contains information about the state of a mouse device that has up to eight buttons, or another device that is being accessed as if it were a mouse device. This structure is used with the IDirectInputDevice7::GetDeviceState method.

typedef struct DIMOUSESTATE {

 LONG lX;

 LONG lY;

 LONG lZ;

 BYTE rgbButtons[8];

} DIMOUSESTATE, *LPDIMOUSESTATE;

Members

lX

Information about the mouse x-axis.

lY

Information about the mouse y-axis.

lZ

Information about the mouse z-axis (typically a wheel). If the mouse does not have a z-axis, the value is 0.

rgbButtons[8]

Array of button states. The high-order bit of the byte is set if the corresponding button is down.

Remarks

You must prepare the device for mouse-style access by calling the IDirectInputDevice7::SetDataFormat method, passing the c_dfDIMouse2 global data format variable.

The mouse is a relative-axis device, so the absolute axis positions for mouse axes are simply accumulated relative motion. Therefore, the value of the absolute axis position is not meaningful except in comparison with other absolute axis positions.

If an axis is in relative mode, the appropriate member contains the change in position. If it is in absolute mode, the member contains the absolute axis position.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.

See Also

DIMOUSESTATE

DIOBJECTDATAFORMAT

The DIOBJECTDATAFORMAT structure contains information about a device object's data format for use with the IDirectInputDevice7::SetDataFormat method.

typedef struct DIOBJECTDATAFORMAT {

 const GUID * pguid;

 DWORD dwOfs;

 DWORD dwType;

 DWORD dwFlags;

} DIOBJECTDATAFORMAT, *LPDIOBJECTDATAFORMAT;

typedef const DIOBJECTDATAFORMAT *LPCDIOBJECTDATAFORMAT;

Members

pguid

Unique identifier for the axis, button, or other input source. When requesting a data format, making this member NULL indicates that any type of object is permissible.

dwOfs

Offset within the data packet where the data for the input source is stored. This value must be a multiple of 4 for DWORD size data, such as axes. It can be byte-aligned for buttons.

dwType

Device type that describes the object. It is a combination of the following flags describing the object type (axis, button, and so forth) and containing the object-instance number in the middle 16 bits. When requesting a data format, the instance portion must be set to DIDFT_ANYINSTANCE to indicate that any instance is permissible, or to DIDFT_MAKEINSTANCE(n) to restrict the request to instance n. See the examples under Remarks.

DIDFT_ABSAXIS

The object selected by the SetDataFormat method must be an absolute axis.

DIDFT_AXIS

The object selected by the SetDataFormat method must be an absolute or relative axis.

DIDFT_BUTTON

The object selected by the SetDataFormat method must be a push button or a toggle button.

DIDFT_FFACTUATOR

The object selected by the SetDataFormat method must contain a force-feedback actuator; in other words, it must be possible to apply forces to the object.

DIDFT_FFEFFECTTRIGGER

The object selected by the SetDataFormat method must be a valid force-feedback effect trigger.

DIDFT_POV

The object selected by the SetDataFormat method must be a point-of-view controller.

DIDFT_PSHBUTTON

The object selected by the SetDataFormat method must be a push button.

DIDFT_RELAXIS

The object selected by SetDataFormat must be a relative axis.

DIDFT_TGLBUTTON

The object selected by SetDataFormat must be a toggle button.

DIDFT_VENDORDEFINED

The object selected by SetDataFormat must be of a type defined by the manufacturer.

dwFlags

Zero or more of the following values:

DIDOI_ASPECTACCEL

The object selected by SetDataFormat must report acceleration information.

DIDOI_ASPECTFORCE

The object selected by SetDataFormat must report force information.

DIDOI_ASPECTPOSITION

The object selected by SetDataFormat must report position information.

DIDOI_ASPECTVELOCITY

The object selected by SetDataFormat must report velocity information.

Remarks

A data format is made up of several DIOBJECTDATAFORMAT structures, one for each object (axis, button, and so on). An array of these structures is contained in the DIDATAFORMAT structure that is passed to IDirectInputDevice7::SetDataFormat. An application typically does not need to create an array of DIOBJECTDATAFORMAT structures; rather, it can use one of the predefined data formats, c_dfDIMouse, c_dfDIMouse2, c_dfDIKeyboard, c_dfDIJoystick, or c_dfDIJoystick2, which have predefined settings for DIOBJECTDATAFORMAT.

The following object data format specifies that DirectInput should choose the first available axis and report its value in the DWORD at offset 4 in the device data.

DIOBJECTDATAFORMAT dfAnyAxis = {

 0, // Wildcard

 4, // Offset

 DIDFT_AXIS | DIDFT_ANYINSTANCE, // Any axis is okay.

 0, // Don't care about aspect

};

The following object data format specifies that the x-axis of the device should be stored in the DWORD at offset 12 in the device data. If the device has more than one x-axis, the first available one should be selected.

DIOBJECTDATAFORMAT dfAnyXAxis = {

 &GUID_XAxis, // Must be an X axis

 12, // Offset

 DIDFT_AXIS | DIDFT_ANYINSTANCE, // Any X axis is okay.

 0, // Don't care about aspect

};

The following object data format specifies that DirectInput should choose the first available button and report its value in the high bit of the byte at offset 16 in the device data.

DIOBJECTDATAFORMAT dfAnyButton = {

 0, // Wildcard

 16, // Offset

 DIDFT_BUTTON | DIDFT_ANYINSTANCE, // Any button is okay.

 0, // Don't care about aspect

};

The following object data format specifies that button 0 of the device should be reported as the high bit of the byte stored at offset 18 in the device data.

If the device does not have a button 0, the attempt to set this data format fails.

DIOBJECTDATAFORMAT dfButton0 = {

 0, // Wildcard

 18, // Offset

 DIDFT_BUTTON | DIDFT_MAKEINSTANCE(0), // Button zero

 0, // Don't care about aspect

};

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.

DIPERIODIC

The DIPERIODIC structure contains type-specific information for effects that are marked as DIEFT_PERIODIC.

The structure describes a periodic effect.

A pointer to a single DIPERIODIC structure for an effect is passed in the lpvTypeSpecificParams member of the DIEFFECT structure.

typedef struct DIPERIODIC {

 DWORD dwMagnitude;

 LONG lOffset;

 DWORD dwPhase;

 DWORD dwPeriod;

} DIPERIODIC, *LPDIPERIODIC;

typedef const DIPERIODIC *LPCDIPERIODIC;

Members

dwMagnitude

Magnitude of the effect, in the range from 0 through 10,000. If an envelope is applied to this effect, the value represents the magnitude of the sustain. If no envelope is applied, the value represents the amplitude of the entire effect.

lOffset

Offset of the effect. The range of forces generated by the effect is lOffset minus dwMagnitude to lOffset plus dwMagnitude. The value of the lOffset member is also the baseline for any envelope that is applied to the effect.

dwPhase

Position in the cycle of the periodic effect at which playback begins, in the range from 0 through 35,999. See Remarks.

dwPeriod

Period of the effect, in microseconds.

Remarks

A device driver cannot provide support for all values in the dwPhase member. In this case, the value is rounded off to the nearest supported value.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.

DIPROPDWORD

The DIPROPDWORD is a generic structure used to access DWORD properties.

typedef struct DIPROPDWORD {

 DIPROPHEADER diph;

 DWORD dwData;

} DIPROPDWORD, *LPDIPROPDWORD;

typedef const DIPROPDWORD *LPCDIPROPDWORD;

Members

diph

DIPROPHEADER structure that must be initialized as follows:

Member �Value ����dwSize �sizeof(DIPROPDWORD) ��dwHeaderSize �sizeof(DIPROPHEADER) ��dwObj �If the dwHow member is DIPH_DEVICE, this member must be 0.

If the dwHow member is DIPH_BYID, this member must be the identifier for the object whose property setting is to be set or retrieved.

If the dwHow member is DIPH_BYOFFSET, this member must be a data format offset for the object whose property setting is to be set or retrieved. For example, if the c_dfDIMouse data format is selected, it must be one of the DIIMOFS_* values.��dwHow �Specifies how the dwObj member should be interpreted. If dwObj is DIPROP_AXISMODE or DIPROP_BUFFERSIZE, dwHow should be DIPH_DEVICE. ��

dwData

Property-specific value being set or retrieved.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.

See Also

IDirectInputDevice7::GetProperty, IDirectInputDevice7::SetProperty

DIPROPGUIDANDPATH

The DIPROPGUIDANDPATH structure is used to access properties whose values represent a GUID and a path.

typedef struct DIPROPGUIDANDPATH {

 DIPROPHEADER diph;

 GUID guidClass;

 WCHAR wszPath[MAX_PATH];

} DIPROPGUIDANDPATH, *LPDIPROPGUIDANDPATH;

Members

diph

DIPROPHEADER structure that must be initialized as follows:

Member �Value ����dwSize �sizeof(DIPROPGUIDANDPATH) ��dwHeaderSize �sizeof(DIPROPHEADER) ��dwObj �Identifier of the object. For devices, must be 0��dwHow �How the dwObj member should be interpreted. ��

guidClass

Class GUID for the object.

wszPath

Returned path for the object. This is a Unicode string.

Remarks

The DIPROP_GUIDANDPATH property associated with the DIPROPGUIDANDPATH structure allows advanced applications to perform operations on a HID that are not supported by DirectInput.

The application calls the IDirectInputDevice7::GetProperty method with DIPROP_GUIDANDPATH as the rguidProp parameter. The class GUID of the device is returned in the guidClass member of the DIPROPGUIDANDPATH structure, and the device interface path is returned in the wszPath member. The application can then call the CreateFile function on this path to access the device directly.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 98.� Header: Declared in dinput.h.

DIPROPHEADER

DIPROPHEADER is a generic structure placed at the beginning of all property structures.

typedef struct DIPROPHEADER {

 DWORD dwSize;

 DWORD dwHeaderSize;

 DWORD dwObj;

 DWORD dwHow;

} DIPROPHEADER, *LPDIPROPHEADER;

typedef const DIPROPHEADER *LPCDIPROPHEADER;

Members

dwSize

Size of the enclosing structure. This member must be initialized before the structure is used.

dwHeaderSize

Size of the DIPROPHEADER structure.

dwObj

Object for which the property is to be accessed. The value set for this member depends on the value specified in the dwHow member.

dwHow

Value specifying how the dwObj member should be interpreted. This value can be one of the following:

Value �Meaning ����DIPH_DEVICE �The dwObj member must be 0. ��DIPH_BYOFFSET �The dwObj member is the offset into the current data format of the object whose property is being accessed. ��DIPH_BYID �The dwObj member is the object type/instance identifier. This identifier is returned in the dwType member of the DIDEVICEOBJECTINSTANCE structure returned from a previous call to the IDirectInputDevice7::EnumObjects member. ��

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.

DIPROPRANGE

The DIPROPRANGE structure contains information about the range of an object within a device. This structure is used with the DIPROP_RANGE flag set in the IDirectInputDevice7::GetProperty and IDirectInputDevice7::SetProperty methods.

typedef struct DIPROPRANGE {

 DIPROPHEADER diph;

 LONG lMin;

 LONG lMax;

} DIPROPRANGE, *LPDIPROPRANGE;

typedef const DIPROPRANGE *LPCDIPROPRANGE;

Members

diph

DIPROPHEADER structure that must be initialized as follows:

Member�Value��dwSize �sizeof(DIPROPRANGE) ��dwHeaderSize �sizeof(DIPROPHEADER) ��dwObj �Identifier of the object whose range is being retrieved or set. ��dwHow �How the dwObj member should be interpreted. ��

lMin

Lower limit of the range. If the range of the device is unrestricted, this value is DIPROPRANGE_NOMIN when the IDirectInputDevice7::GetProperty method returns.

lMax

Upper limit of the range. If the range of the device is unrestricted, this value is DIPROPRANGE_NOMAX when the IDirectInputDevice7::GetProperty method returns.

Remarks

The range values for devices whose ranges are unrestricted wrap around.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.

See Also

IDirectInputDevice7::GetProperty, IDirectInputDevice7::SetProperty

DIPROPSTRING

The DIPROPSTRING structure is used to access string properties.

typedef struct {

 DIPROPHEADER diph;

 WCHAR wsz;

} DIPROPSTRING;

Members

diph

DIPROPHEADER structure that must be initialized as follows:

Member�Value��dwSize �sizeof(DIPROPSTRING) ��dwHeaderSize �sizeof(DIPROPHEADER) ��dwObj �Identifier of the object whose property is being retrieved or set. ��dwHow �How the dwObj member should be interpreted. �����

wsz

String itself. This is a Unicode string.

Remarks

The DIPROP_INSTANCENAME and DIPROP_PRODUCTNAME properties associated with the DIPROPSTRING structure allows advanced applications to perform operations on an HID that are not supported by DirectInput.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 98.� Header: Declared in dinput.h.

DIRAMPFORCE

The DIRAMPFORCE structure contains type-specific information for effects that are marked as DIEFT_RAMPFORCE. The structure describes a ramp force effect.

A pointer to a single DIRAMPFORCE structure for an effect is passed in the lpvTypeSpecificParams member of the DIEFFECT structure.

typedef struct DIPROPRANGE {

 LONG lStart;

 LONG lEnd;

} DIRAMPFORCE, *LPDIRAMPFORCE;

typedef const DIRAMPFORCE *LPCDIRAMPFORCE;

Members

lStart

Magnitude at the start of the effect, in the range from –10,000 through 10,000.

lEnd

Magnitude at the end of the effect, in the range from –10,000 through 10,000.

Remarks

The dwDuration for a ramp force effect cannot be INFINITE.

Requirements

 Windows NT/2000: Requires Windows 2000.� Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.� Header: Declared in dinput.h.

Device Constants

This section is a reference for constants used to interpret data for keys, buttons, and axes.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Keyboard Device Constants

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInput and Japanese Keyboards

�SYMBOL 183 \f "Symbol" \s 11 \h �	Mouse Device Constants

�SYMBOL 183 \f "Symbol" \s 11 \h �	Joystick Device Constants

Keyboard Device Constants

Keyboard device constants, defined in Dinput.h, represent offsets within a keyboard device's data packet, a 256-byte array. The data at a given offset is associated with a keyboard key. Typically, these values are used in the dwOfs member of the DIDEVICEOBJECTDATA, DIOBJECTDATAFORMAT or DIDEVICEOBJECTINSTANCE structures, or as indices when accessing data within the array using array notation.

The standard keyboard device constants are the following (in ascending order):

Constant�Note����DIK_ESCAPE � ��DIK_1 �On main keyboard��DIK_2 �On main keyboard��DIK_3 �On main keyboard��DIK_4 �On main keyboard��DIK_5 �On main keyboard��DIK_6 �On main keyboard��DIK_7 �On main keyboard��DIK_8 �On main keyboard��DIK_9 �On main keyboard��DIK_0 �On main keyboard��DIK_MINUS �On main keyboard��DIK_EQUALS �On main keyboard��DIK_BACK �The BACKSPACE key ��DIK_TAB � ��DIK_Q � ��DIK_W � ��DIK_E � ��DIK_R � ��DIK_T � ��DIK_Y � ��DIK_U � ��DIK_I � ��DIK_O � ��DIK_P � ��DIK_LBRACKET �The [key ��DIK_RBRACKET �The] key ��DIK_RETURN �ENTER key on main keyboard ��DIK_LCONTROL �Left CTRL key ��DIK_A � ��DIK_S � ��DIK_D � ��DIK_F � ��DIK_G � ��DIK_H � ��DIK_J � ��DIK_K � ��DIK_L � ��DIK_SEMICOLON � ��DIK_APOSTROPHE � ��DIK_GRAVE �Grave accent (`) key ��DIK_LSHIFT �Left SHIFT key ��DIK_BACKSLASH � ��DIK_Z � ��DIK_X � ��DIK_C � ��DIK_V � ��DIK_B � ��DIK_N � ��DIK_M � ��DIK_COMMA � ��DIK_PERIOD �On main keyboard ��DIK_SLASH �Forward slash on main keyboard��DIK_RSHIFT �Right SHIFT key ��DIK_MULTIPLY �The * key on numeric keypad ��DIK_LMENU �Left ALT key ��DIK_SPACE �SPACEBAR ��DIK_CAPITAL �CAPS LOCK key ��DIK_F1 � ��DIK_F2 � ��DIK_F3 � ��DIK_F4 � ��DIK_F5 � ��DIK_F6 � ��DIK_F7 � ��DIK_F8 � ��DIK_F9 � ��DIK_F10 � ��DIK_NUMLOCK � ��DIK_SCROLL �SCROLL LOCK��DIK_NUMPAD7 � ��DIK_NUMPAD8 � ��DIK_NUMPAD9 � ��DIK_SUBTRACT �MINUS SIGN on numeric keypad ��DIK_NUMPAD4 � ��DIK_NUMPAD5 � ��DIK_NUMPAD6 � ��DIK_ADD �PLUS SIGN on numeric keypad ��DIK_NUMPAD1 � ��DIK_NUMPAD2 � ��DIK_NUMPAD3 � ��DIK_NUMPAD0 � ��DIK_DECIMAL �PERIOD (decimal point) on numeric keypad ��DIK_OEM_102�On British and German keyboards.��DIK_F11 � ��DIK_F12 � ��DIK_F13� ��DIK_F14� ��DIK_F15� ��DIK_KANA�On Japanese keyboard��DIK_ABNT_C1�On numeric pad of Brazilian keyboards��DIK_CONVERT�On Japanese keyboard��DIK_NOCONVERT�On Japanese keyboard��DIK_YEN�On Japanese keyboard��DIK_ABNT_C2�On numeric pad of Brazilian keyboards��DIK_NUMPADEQUALS�On numeric keypad (NEC PC98)��DIK_PREVTRACK�Previous track; circumflex on Japanese keyboard��DIK_AT�On Japanese keyboard��DIK_COLON�On Japanese keyboard��DIK_UNDERLINE�On Japanese keyboard��DIK_KANJI�On Japanese keyboard��DIK_STOP�On Japanese keyboard��DIK_AX�On Japanese keyboard��DIK_UNLABELED�On Japanese keyboard��DIK_NEXTTRACK�Next track��DIK_NUMPADENTER � ��DIK_RCONTROL �Right CTRL key ��DIK_MUTE� ��DIK_CALCULATOR� ��DIK_PLAYPAUSE� ��DIK_MEDIASTOP� ��DIK_VOLUMEDOWN� ��DIK_VOLUMEUP� ��DIK_WEBHOME� ��DIK_NUMPADCOMMA�COMMA on NEC PC98 numeric keypad��DIK_DIVIDE �Forward slash on numeric keypad ��DIK_SYSRQ � ��DIK_RMENU �Right ALT key ��DIK_PAUSE���DIK_HOME ���DIK_UP �UP ARROW ��DIK_PRIOR �PAGE UP ��DIK_LEFT �LEFT ARROW ��DIK_RIGHT �RIGHT ARROW ��DIK_END � ��DIK_DOWN �DOWN ARROW ��DIK_NEXT �PAGE DOWN ��DIK_INSERT � ��DIK_DELETE � ��DIK_LWIN �Left Windows key ��DIK_RWIN �Right Windows key ��DIK_APPS �Application key ��DIK_POWER� ��DIK_SLEEP� ��DIK_WAKE� ��DIK_WEBSEARCH� ��DIK_WEBFAVORITES� ��DIK_WEBREFRESH� ��DIK_WEBSTOP� ��DIK_WEBFORWARD� ��DIK_WEBBACK� ��DIK_MYCOMPUTER� ��DIK_MAIL� ��DIK_MEDIASELECT� ��

The following alternate names are available:

Alternate name�Regular name�Note����DIK_BACKSPACE�DIK_BACK�BACKSPACE��DIK_NUMPADSTAR�DIK_MULTIPLY�* key on numeric keypad��DIK_LALT�DIK_LMENU�Left ALT��DIK_CAPSLOCK�DIK_CAPITAL�CAPSLOCK��DIK_CIRCUMFLEX�DIK_PREVTRACK�On Japanese keyboards.��DIK_NUMPADMINUS�DIK__SUBTRACT�Minus key on numeric keypad��DIK_NUMPADPLUS�DIK_ADD�Plus key on numeric keypad��DIK_NUMPADPERIOD�DIK_DECIMAL�Period key on numeric keypad��DIK_NUMPADSLASH�DIK__DIVIDE�Forward slash on numeric keypad��DIK_RALT�DIK_RMENU�Right ALT��DIK_UPARROW�DIK_UP�On arrow keypad��DIK_PGUP�DIK_PRIOR�On arrow keypad��DIK_LEFTARROW�DIK_LEFT�On arrow keypad��DIK_RIGHTARROW�DIK_RIGHT�On arrow keypad��DIK_DOWNARROW�DIK_DOWN�On arrow keypad��DIK_PGDN�DIK_NEXT�On arrow keypad��

For information on Japanese keyboards, see DirectInput and Japanese Keyboards.

DirectInput and Japanese Keyboards

There are substantial differences between Japanese and U.S. keyboards. The following chart lists the additional keys that are available on each type of Japanese keyboard. It also lists the keys that are available on U.S. keyboards but are missing on the various Japanese keyboards.

On some NEC PC-98 keyboards, the DIK_CAPSLOCK and DIK_KANA keys are toggle buttons and not push buttons. These generate a down event when first pressed, then generate an up event when pressed a second time.

Keyboard�Additional keys�Missing keys ����DOS/V 106 Keyboard, NEC PC-98 106 Keyboard�DIK_AT, DIK_CIRCUMFLEX, DIK_COLON, DIK_CONVERT, DIK_KANA, DIK_KANJI, DIK_NOCONVERT, DIK_YEN�DIK_APOSTROPHE, DIK_EQUALS, DIK_GRAVE ������NEC PC-98 Standard Keyboard, NEC PC-98 Laptop Keyboard�DIK_AT, DIK_CIRCUMFLEX, DIK_COLON, DIK_F13, DIK_F14, DIK_F15, DIK_KANA, DIK_KANJI, DIK_NOCONVERT, DIK_NUMPADCOMMA, DIK_NUMPADEQUALS, DIK_STOP, DIK_UNDERLINE, DIK_YEN�DIK_APOSTROPHE, DIK_BACKSLASH, DIK_EQUALS, DIK_GRAVE, DIK_NUMLOCK, DIK_NUMPADENTER, DIK_RCONTROL, DIK_RMENU, DIK_RSHIFT, DIK_SCROLL ������AX Keyboard�DIK_AX, DIK_CONVERT, DIK_KANJI, DIK_NOCONVERT, DIK_YEN�DIK_RCONTROL, DIK_RMENU ������J-3100 Keyboard�DIK_KANA, DIK_KANJI, DIK_NOLABEL, DIK_YEN�DIK_RCONTROL, DIK_RMENU ��

Mouse Device Constants

Mouse device constants, defined in Dinput.h, represent offsets within a mouse device's data packet, the DIMOUSESTATE or DIMOUSESTATE2 structure. The data at a given offset is associated with a device object (button or axis). Typically, these values are used in the dwOfs member of the DIDEVICEOBJECTDATA, DIOBJECTDATAFORMAT or DIDEVICEOBJECTINSTANCE structures.

The mouse device constants are the following:

DIMOFS_BUTTON0 �Offset of the data representing the state of mouse button 0. ��DIMOFS_BUTTON1 �Offset of the data representing the state of mouse button 1. ��DIMOFS_BUTTON2 �Offset of the data representing the state of mouse button 2. ��DIMOFS_BUTTON3 �Offset of the data representing the state of mouse button 3. ��DIMOFS_BUTTON4 �Offset of the data representing the state of mouse button 4. (DIMOUSESTATE2 only.)��DIMOFS_BUTTON5 �Offset of the data representing the state of mouse button 5. (DIMOUSESTATE2 only.)��DIMOFS_BUTTON6 �Offset of the data representing the state of mouse button 6. (DIMOUSESTATE2 only.)��DIMOFS_BUTTON7 �Offset of the data representing the state of mouse button 7. (DIMOUSESTATE2 only.)��DIMOFS_X �Offset of the data representing the mouse's position on the x-axis. ��DIMOFS_Y �Offset of the data representing the mouse's position on the y-axis. ��DIMOFS_Z �Offset of the data representing the mouse's position on the z-axis. ��

Joystick Device Constants

Joystick device constants represent offsets within a joystick device's data packet, the DIJOYSTATE structure. The data at a given offset is associated with a device object; that is, a button or axis. Typically, these values are used in the dwOfs member of the DIDEVICEOBJECTDATA, DIOBJECTDATAFORMAT or DIDEVICEOBJECTINSTANCE structures.

The following macros return a constant indicating the offset of the data for a particular button or axis relative to the beginning of the DIJOYSTATE structure:

DIJOFS_BUTTON0 to DIJOFS_BUTTON31 or DIJOFS_BUTTON(n)�A button.��DIJOFS_POV(n) �A point-of-view indicator.��DIJOFS_RX �The x-axis rotation.��DIJOFS_RY �The y-axis rotation.��DIJOFS_RZ �The z-axis rotation (rudder).��DIJOFS_X �The x-axis.��DIJOFS_Y �The y-axis.��DIJOFS_Z �The z-axis.��DIJOFS_SLIDER(n)�A slider axis.��

Return Values

This table lists the HRESULT values that can be returned by DirectInput methods and functions. Errors are represented by negative values and cannot be combined.

For a list of the error values each method or function can return, see the individual descriptions. Lists of error codes in the documentation are necessarily incomplete. For example, any DirectInput method can return DIERR_OUTOFMEMORY even though the error code is not explicitly listed as a possible return value in the documentation for that method.

DI_BUFFEROVERFLOW

The device buffer overflowed and some input was lost. This value is equal to the S_FALSE standard COM return value.

DI_DOWNLOADSKIPPED

The parameters of the effect were successfully updated, but the effect could not be downloaded because the associated device was not acquired in exclusive mode.

DI_EFFECTRESTARTED

The effect was stopped, the parameters were updated, and the effect was restarted.

DI_NOEFFECT

The operation had no effect. This value is equal to the S_FALSE standard COM return value.

DI_NOTATTACHED

The device exists but is not currently attached. This value is equal to the S_FALSE standard COM return value.

DI_OK

The operation completed successfully. This value is equal to the S_OK standard COM return value.

DI_POLLEDDEVICE

The device is a polled device. As a result, device buffering does not collect any data and event notifications is not signaled until the IDirectInputDevice7::Poll method is called.

DI_PROPNOEFFECT

The change in device properties had no effect. This value is equal to the S_FALSE standard COM return value.

DI_TRUNCATED

The parameters of the effect were successfully updated, but some of them were beyond the capabilities of the device and were truncated to the nearest supported value.

DI_TRUNCATEDANDRESTARTED

Equal to DI_EFFECTRESTARTED | DI_TRUNCATED.

DIERR_ACQUIRED

The operation cannot be performed while the device is acquired.

DIERR_ALREADYINITIALIZED

This object is already initialized

DIERR_BADDRIVERVER

The object could not be created due to an incompatible driver version or mismatched or incomplete driver components.

DIERR_BETADIRECTINPUTVERSION

The application was written for an unsupported prerelease version of DirectInput.

DIERR_DEVICEFULL

The device is full.

DIERR_DEVICENOTREG

The device or device instance is not registered with DirectInput. This value is equal to the REGDB_E_CLASSNOTREG standard COM return value.

DIERR_EFFECTPLAYING

The parameters were updated in memory but were not downloaded to the device because the device does not support updating an effect while it is still playing.

DIERR_HASEFFECTS

The device cannot be reinitialized because there are still effects attached to it.

DIERR_GENERIC

An undetermined error occurred inside the DirectInput subsystem. This value is equal to the E_FAIL standard COM return value.

DIERR_HANDLEEXISTS

The device already has an event notification associated with it. This value is equal to the E_ACCESSDENIED standard COM return value.

DIERR_INCOMPLETEEFFECT

The effect could not be downloaded because essential information is missing. For example, no axes have been associated with the effect, or no type-specific information has been supplied.

DIERR_INPUTLOST

Access to the input device has been lost. It must be reacquired.

DIERR_INVALIDPARAM

An invalid parameter was passed to the returning function, or the object was not in a state that permitted the function to be called. This value is equal to the E_INVALIDARG standard COM return value.

DIERR_MOREDATA

Not all the requested information fit into the buffer.

DIERR_NOAGGREGATION

This object does not support aggregation.

DIERR_NOINTERFACE

The specified interface is not supported by the object. This value is equal to the E_NOINTERFACE standard COM return value.

DIERR_NOTACQUIRED

The operation cannot be performed unless the device is acquired.

DIERR_NOTBUFFERED

The device is not buffered. Set the DIPROP_BUFFERSIZE property to enable buffering.

DIERR_NOTDOWNLOADED

The effect is not downloaded.

DIERR_NOTEXCLUSIVEACQUIRED

The operation cannot be performed unless the device is acquired in DISCL_EXCLUSIVE mode.

DIERR_NOTFOUND

The requested object does not exist.

DIERR_NOTINITIALIZED

This object has not been initialized.

DIERR_OBJECTNOTFOUND

The requested object does not exist.

DIERR_OLDDIRECTINPUTVERSION

The application requires a newer version of DirectInput.

DIERR_OTHERAPPHASPRIO

Another application has a higher priority level, preventing this call from succeeding. This value is equal to the E_ACCESSDENIED standard COM return value. This error can be returned when an application has only foreground access to a device but is attempting to acquire the device while in the background.

DIERR_OUTOFMEMORY

The DirectInput subsystem could not allocate sufficient memory to complete the call. This value is equal to the E_OUTOFMEMORY standard COM return value.

DIERR_READONLY

The specified property cannot be changed. This value is equal to the E_ACCESSDENIED standard COM return value.

DIERR_REPORTFULL

More information was requested to be sent than can be sent to the device.

DIERR_UNPLUGGED

The operation could not be completed because the device is not plugged in.

DIERR_UNSUPPORTED

The function called is not supported at this time. This value is equal to the E_NOTIMPL standard COM return value.

E_HANDLE

The HWND parameter is not a valid top-level window that belongs to the process.

E_PENDING

Data is not yet available.

DirectInput Visual Basic Reference

Reference material for the DirectInput Visual Basic application programming interface is divided into the following categories:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Classes

�SYMBOL 183 \f "Symbol" \s 11 \h �	Types

�SYMBOL 183 \f "Symbol" \s 11 \h �	Enumerations

�SYMBOL 183 \f "Symbol" \s 11 \h �	Keyboard Keys

�SYMBOL 183 \f "Symbol" \s 11 \h �	Error Codes

Classes

This section contains references for methods of the following DirectInput classes:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInput

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInputDevice

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInputDeviceInstance

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInputDeviceObjectInstance

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInputEffect

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInputEnumDeviceObjects

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInputEnumDevices

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInputEnumEffects

DirectInput

The DirectInput class represents the DirectInput system. An application should have a single object of this class, which is used to enumerate available devices, create devices, and retrieve the status of devices, as well as to invoke an instance of the Windows Control Panel.

The DirectInput object is obtained by using the DirectX7.DirectInputCreate method.

The DirectInput class has the following methods:

Device Management �CreateDevice ���GetDeviceStatus ���GetDIEnumDevices ��Miscellaneous �RunControlPanel ��

DirectInput.CreateDevice

The DirectInput.CreateDevice method creates and initializes an instance of a device based on a given GUID.

object.CreateDevice(guid As String) As DirectInputDevice

Parameters

object

Object expression that resolves to a DirectInput object.

guid

The instance GUID for the desired input device. The GUID is retrieved from the DirectInputDeviceInstance object returned by the DirectInputEnumDevices.GetItem method, or it can be one of the following strings:

GUID_SysKeyboard

The default system keyboard.

GUID_SysMouse

The default system mouse.

Return Values

If the method succeeds, a DirectInputDevice object is returned.

Error Codes

If the method fails, an error is raised and Err.Number may be set to one of the following:

DIERR_DEVICENOTREG ��DIERR_INVALIDPARAM ��DIERR_NOINTERFACE ��DIERR_OUTOFMEMORY ��

See Also

Using GUIDs

DirectInput.GetDeviceStatus

The DirectInput.GetDeviceStatus method determines whether a device is attached to the system.

object.GetDeviceStatus(guid As String) As Boolean

Parameters

object

Object expression that resolves to a DirectInput object.

guid

The instance GUID for the desired input device. The GUID is retrieved by using the DirectInputDeviceInstance.GetGuidInstance method on the object returned by DirectInputEnumDevices.GetItem method, or it can be one of the following strings:

GUID_SysKeyboard

The default system keyboard.

GUID_SysMouse

The default system mouse.

Return Values

The method returns True if the device is attached, and False otherwise.

Error Codes

If the method fails, an error is raised and Err.Number may be one of the following error codes:

DIERR_GENERIC ��DIERR_INVALIDPARAM ��

See Also

Using GUIDs

DirectInput.GetDIEnumDevices

The DirectInput.GetDIEnumDevices method returns a DirectInputEnumDevices object which is used to enumerate devices that are either currently attached or could be attached to the computer.

object.GetDIEnumDevices(_

 deviceType As CONST_DIDEVICETYPE, _

 flags As CONST_DIENUMDEVICESFLAGS) _

 As DirectInputEnumDevices

Parameters

object

Object expression that resolves to a DirectInput object.

deviceType

Device type filter. If this parameter is 0, all device types are enumerated. Otherwise, it is one of the following DIDEVTYPE_* constants of the CONST_DIDEVICETYPE enumeration, indicating the device type that should be enumerated.

DIDEVTYPE_MOUSE

A mouse or mouse-like device (such as a trackball).

DIDEVTYPE_KEYBOARD

A keyboard or keyboard-like device.

DIDEVTYPE_JOYSTICK

A joystick or similar device, such as a steering wheel.

DIDEVTYPE_DEVICE

A device that does not fall into the previous categories.

flags

Flag value that specifies the scope of the enumeration. This parameter can be one of the following constants of the CONST_DIENUMDEVICESFLAGS enumeration. If this flag is 0 (DIEDFL_ALLDEVICES), then all installed devices are enumerated. If it is DIEDFL_ATTACHEDONLY, only devices actually attached to the system are enumerated.

Return Values

If the method succeeds, the method returns a DirectInputEnumDevices object.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

Remarks

All installed devices can be enumerated, even if they are not present. For example, a joystick may be installed on the system but not currently plugged into the computer.

If a single piece of hardware can function as more than one DirectInput device type, it will be returned for each device type it supports. For example, a keyboard with a built-in mouse will be enumerated as a keyboard and as a mouse. The product GUID would be the same for each device, however.

DirectInput.RunControlPanel

The DirectInput.RunControlPanel method runs the Windows Control Panel to allow the user to install a new input device or modify configurations.

object.RunControlPanel(hwndOwner As Long)

Parameters

object

Object expression that resolves to a DirectInput object.

hwndOwner

Handle to the window to be used as the parent window for the subsequent user interface. If this parameter is 0, no parent window is used.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

See Also

DirectInputDevice.RunControlPanel

DirectInputDevice

Applications use the methods of the DirectInputDevice class to gain and release access to DirectInput devices, manage device properties and information, set behavior, perform initialization, and invoke a device's property sheet.

The DirectInputDevice object is obtained by using the DirectInput.CreateDevice method.

The methods of the DirectInputDevice class can be organized into the following groups.

Access �Acquire ���SetCooperativeLevel ���Unacquire ��Objects �GetDeviceObjectsEnum ���GetObjectInfo ��Properties �GetCapabilities ���GetDeviceInfo ���GetProperty ���SetCommonDataFormat���SetDataFormat ���SetProperty ��Retrieving Data�GetDeviceData ���GetDeviceState���GetDeviceStateJoystick ���GetDeviceStateJoystick2���GetDeviceStateKeyboard���GetDeviceStateMouse���Poll���SetEventNotification ��Force Feedback�CreateCustomEffect���CreateEffect���GetEffectsEnum���GetForceFeedbackState���SendForceFeedbackCommand��Miscellaneous �RunControlPanel���SendDeviceData��

DirectInputDevice.Acquire

The DirectInputDevice.Acquire method obtains access to the input device.

object.Acquire()

Parameters

object

Object expression that resolves to a DirectInputDevice object.

Error Codes

If the method fails, an error is raised and Err.Number may be one of the following error codes::

DIERR_INVALIDPARAM ��DIERR_OTHERAPPHASPRIO ��

Remarks

Before a device can be acquired, a data format must be set by using the DirectInputDevice.SetDataFormat or DirectInputDevice.SetCommonDataFormat method.

A device must be acquired before input data can be retrieved from it.

See Also

DirectInputDevice.Unacquire

DirectInputDevice.CreateCustomEffect

The DirectInputDevice.CreateCustomEffect method creates a force-feedback effect consisting of a series of constant forces of fixed duration.

object.CreateCustomEffect(effectinfo As DIEFFECT, _

 channels As Long, samplePeriod As Long, _

 nSamples As Long, sampledata() As Long) _

 As DirectInputEffect

Parameters

object

Object expression that resolves to a DirectInputDevice object.

effectinfo

DIEFFECT type containing general parameters of the effect.

channels

The number of channels (axes) affected by this force. Must be 1 or 2.

If there is only a single channel, then the effect will be rotated in the direction specified by the x member of the DIEFFECT type. Not all devices support rotation of custom effects.

If there is more than one channel, the first channel is applied to the x-axis and the second to the y-axis. Rotation is not allowed.

samplePeriod

The sample period in microseconds. See Remarks.

nSamples

Number of elements in the sampledata array.

sampledata

Array of magnitudes. If channels is greater than 1, then the values are interleaved. For example, if channels is 2, then the first element of the array is assigned to the x-axis, the second to the y-axis, the third to the x-axis, and so on.

Remarks

In theory, samplePeriod is the length of time for which each magnitude in sampledata is valid, whereas DIEFFECT.lSamplePeriod is the length of time between samplings of the data (and the minimum time between changes in magnitude). Since each element in the array needs to be sampled exactly once on each iteration through the array, and some drivers ignore samplePeriod in any case, it is best to make the values of lSamplePeriod and samplePeriod identical.

See Also

Custom Forces

DirectInputDevice.CreateEffect

The DirectInputDevice.CreateEffect method creates a force-feedback effect. If the device is currently acquired at the exclusive cooperative level, the effect is also downloaded.

object.CreateEffect(effectGuid As String, _

 effectinfo As DIEFFECT) As DirectInputEffect

Parameters

object

Object expression that resolves to a DirectInputDevice object.

effectGuid

String representation of a GUID for an effect recognized by the hardware driver, or one of the following aliases for standard effects:

GUID_ConstantForce�GUID_RampForce�GUID_Square�GUID_Sine�GUID_Triangle�GUID_SawtoothUp�GUID_SawtoothDown�GUID_Spring�GUID_Damper�GUID_Inertia�GUID_Friction

effectinfo

DIEFFECT structure containing the parameters for the effect.

Return Values

If the method succeeds, the method returns a DirectInputEffect object.

Error Codes

If the method fails, an error is raised and Err.Number may be one of the following error codes:

DIERR_DEVICENOTREG ��DIERR_DEVICEFULL ��DIERR_INVALIDPARAM ��DIERR_NOTINITIALIZED ��

Remarks

If no error is raised, the effect was created and the parameters of the effect were updated, but the effect was not necessarily downloaded. In order for it to be downloaded, the device must be acquired in exclusive mode.

See Also

DirectInputEffect.Download, DirectInputEffect.Start

DirectInputDevice.GetCapabilities

The DirectInputDevice.GetCapabilities method obtains the capabilities of the DirectInputDevice object.

object.GetCapabilities(caps As DIDEVCAPS)

Parameters

object

Object expression that resolves to a DirectInputDevice object.

caps

A DIDEVCAPS type to be filled with the device capabilities.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

DirectInputDevice.GetDeviceData

The DirectInputDevice.GetDeviceData method retrieves buffered data from the device.

object.GetDeviceData(_

 deviceObjectDataArray() As DIDEVICEOBJECTDATA, _

 flags As CONST_DIDGDDFLAGS) As Long

Parameters

object

Object expression that resolves to a DirectInputDevice object.

deviceObjectDataArray()

Array of DIDEVICEOBJECTDATA types to receive the buffered data.

flags

Flags that control the manner in which data is obtained. This value can be 0 or one of the constants of the CONST_DIDGDDFLAGS enumeration.

Return Values

If it succeeds, the method returns the number of buffered data elements actually returned in deviceObjectDataArray.

Error Codes

If the method fails, an error is raised and Err.Number may be one of the following error codes:

DI_BUFFEROVERFLOW��DIERR_INPUTLOST ��DIERR_INVALIDPARAM ��DIERR_NOTACQUIRED ��DIERR_NOTBUFFERED ��

Remarks

Before device data can be obtained, you must set the data format by using the DirectInputDevice.SetDataFormat method, set the buffer size by using DirectInputDevice.SetProperty method, and acquire the device by using the DirectInputDevice.Acquire method.

You can use this method to retrieve one or more input events from the buffer you created by using SetProperty. You do not have to retrieve all pending events with a single call. You can, for example, pass in a deviceObjectDataArray() consisting of a single element and loop on GetDeviceData till no more data is returned.

If the buffer overflows, all pending data is lost and the DI_BUFFEROVERFLOW error is raised.

See Also

DirectInputDevice.Poll, Polling and Events

DirectInputDevice.GetDeviceInfo

The DirectInputDevice.GetDeviceInfo method obtains information about the device's identity.

object.GetDeviceInfo() As DirectInputDeviceInstance

Parameters

object

Object expression that resolves to a DirectInputDevice object.

Return Values

If it succeeds, the method returns a DirectInputDeviceInstance object

Error Codes

If the method fails, an error is raised and Err.Number will be set.

DirectInputDevice.GetDeviceObjectsEnum

The DirectInputDevice.GetDeviceObjectsEnum method returns a DirectInputEnumDeviceObjects object which is used to enumerate the objects available on a device. A device object is typically an axis or a button.

object.GetDeviceObjectsEnum(_

 flags As CONST_DIDFTFLAGS) _

 As DirectInputEnumDeviceObjects

Parameters

object

Object expression that resolves to a DirectInputDevice object.

flags

Flags specifying the type of object to be enumerated. Can be one or more of the members of the CONST_DIDFTFLAGS enumeration.

Return Values

If the method succeeds, the return value is a DirectInputEnumDeviceObjects object.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

Remarks

The DIDFT_FFACTUATOR and DIDFT_FFEFFECTTRIGGER flags restrict enumeration to objects that meet all the criteria defined by the included flags. For all the other flags, an object is enumerated if it meets the criterion defined by any included flag in this category. For example, (DIDFT_FFACTUATOR Or DIDFT_FFEFFECTTRIGGER) restricts enumeration to force-feedback trigger objects, and (DIDFT_FFEFFECTTRIGGER Or DIDFT_TGLBUTTON Or DIDFT_PSHBUTTON) restricts enumeration to buttons of any kind that can be used as effect triggers.

DirectInputDevice.GetDeviceState

The DirectInputDevice.GetDeviceState method retrieves immediate data for a device other than a standard keyboard, mouse, or joystick.

object.GetDeviceState(cb As Long, state As Any)

Parameters

object

Object expression that resolves to a DirectInputDevice object.

cb

Size of the array whose first element is passed as state.

state

First element of an array to receive device state information.

Error Codes

If the method fails, an error is raised and Err.Number may be one of the following error codes:

DIERR_INPUTLOST ��DIERR_INVALIDPARAM ��DIERR_NOTACQUIRED ��E_PENDING ��

Remarks

Before device data can be obtained, you must set the cooperative level by using the DirectInputDevice.SetCooperativeLevel method, then set the data format by using DirectInputDevice.SetDataFormat, and acquire the device by using the DirectInputDevice.Acquire method.

See Also

DirectInputDevice.GetDeviceStateJoystick, DirectInputDevice.GetDeviceStateJoystick2, DirectInputDevice.GetDeviceStateKeyboard, DirectInputDevice.GetDeviceStateMouse, DirectInputDevice.SetDataFormat, Buffered and Immediate Data

DirectInputDevice.GetDeviceStateJoystick

The DirectInputDevice.GetDeviceStateJoystick method retrieves instantaneous data from a joystick device.

object.GetDeviceStateJoystick(state As DIJOYSTATE)

Parameters

object

Object expression that resolves to a DirectInputDevice object.

state

A DIJOYSTATE type that receives the current state of the device.

Error Codes

If the method fails, an error is raised and Err.Number may be one of the following error codes:

DIERR_INPUTLOST ��DIERR_INVALIDPARAM ��DIERR_NOTACQUIRED ��E_PENDING ��

Remarks

Before device data can be obtained, you must set the cooperative level by using the DirectInputDevice.SetCooperativeLevel method, then set the data format by using DirectInputDevice.SetCommonDataFormat, and acquire the device by using the DirectInputDevice.Acquire method.

See Also

DirectInputDevice.Poll

DirectInputDevice.GetDeviceStateJoystick2

The DirectInputDevice.GetDeviceStateJoystick2 method retrieves instantaneous data from a joystick device with extended capabilities.

object.GetDeviceStateJoystick2(state As DIJOYSTATE2)

Parameters

object

Object expression that resolves to a DirectInputDevice object.

state

A DIJOYSTATE2 type that receives the current state of the device. The format of the data is established by a prior call to the DirectInputDevice.SetDataFormat method.

Error Codes

If the method fails, an error is raised and Err.Number may be one of the following error codes:

DIERR_INPUTLOST ��DIERR_INVALIDPARAM ��DIERR_NOTACQUIRED ��E_PENDING ��

Remarks

Before device data can be obtained, you must set the cooperative level by using the DirectInputDevice.SetCooperativeLevel method, then set the data format by using DirectInputDevice.SetCommonDataFormat, and acquire the device by using the DirectInputDevice.Acquire method.

See Also

DirectInputDevice.Poll, Polling and Events

DirectInputDevice.GetDeviceStateKeyboard

The DirectInputDevice.GetDeviceStateKeyboard method retrieves instantaneous data from a keyboard device.

object.GetDeviceStateKeyboard(state As DIKEYBOARDSTATE)

Parameters

object

Object expression that resolves to a DirectInputDevice object.

state

A DIKEYBOARDSTATE type that receives the current state of the device.

Error Codes

If the method fails, an error is raised and Err.Number may be one of the following error codes:

DIERR_INPUTLOST ��DIERR_INVALIDPARAM ��DIERR_NOTACQUIRED ��E_PENDING ��

Remarks

Before device data can be obtained, you must set the cooperative level by using the DirectInputDevice.SetCooperativeLevel method, then set the data format by using DirectInputDevice.SetCommonDataFormat, and acquire the device by using the DirectInputDevice.Acquire method.

See Also

DirectInputDevice.Poll

DirectInputDevice.GetDeviceStateMouse

The DirectInputDevice.GetDeviceStateMouse method retrieves instantaneous data from a mouse device.

object.GetDeviceStateMouse(state As DIMOUSESTATE)

Parameters

object

Object expression that resolves to a DirectInputDevice object.

state

A DIMOUSESTATE type that receives the current state of the device.

Error Codes

If the method fails, an error is raised and Err.Number may be one of the following error codes:

DIERR_INPUTLOST ��DIERR_INVALIDPARAM ��DIERR_NOTACQUIRED ��E_PENDING ��

Remarks

Before device data can be obtained, you must set the cooperative level by using the DirectInputDevice.SetCooperativeLevel method, then set the data format by using DirectInputDevice.SetCommonDataFormat, and acquire the device by using the DirectInputDevice.Acquire method.

See Also

DirectInputDevice.Poll

DirectInputDevice.GetEffectsEnum

The DirectInputDevice.GetEffectsEnum method enumerates force-feedback effects supported by the device, including standard effects as well as effects designed by the device manufacturer.

object.GetEffectsEnum(_

 effType As CONST_DIEFTFLAGS) As DirectInputEnumEffects

Parameters

object

Object expression that resolves to a DirectInputDevice object.

effType

One of the following flags from the CONST_DIEFTFLAGS enumeration specifying the type of effect to be enumerated:

DIEFT_ALL�DIEFT_CONDITION�DIEFT_CONSTANTFORCE�DIEFT_CUSTOMFORCE�DIEFT_HARDWARE�DIEFT_PERIODIC�DIEFT_RAMPFORCE

Return Values

The method returns a DirectInputEnumEffects object whose methods can be used to retrieve information about the effects.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

DirectInputDevice.GetForceFeedbackState

The DirectInputDevice.GetForceFeedbackState method retrieves the state of the device's force-feedback system.

object.GetForceFeedbackState() As CONST_DIGFFSFLAGS

Parameters

object

Object expression that resolves to a DirectInputDevice object.

Return Values

If it succeeds, the method returns flags from the CONST_DIGFFSFLAGS enumeration that describe the current state of the device's force-feedback system.

Future versions of DirectInput may define additional flags. Applications should ignore any flags that are not currently defined.

Error Codes

If the method fails, an error is raised and Err.Number may be one of the following error codes:

DIERR_INPUTLOST ��DIERR_INVALIDPARAM ��DIERR_NOTEXCLUSIVEACQUIRED ��DIERR_NOTINITIALIZED ��DIERR_UNSUPPORTED ��

Remarks

The device must be acquired at the exclusive cooperative level for this method to succeed.

DirectInputDevice.GetObjectInfo

The DirectInputDevice.GetObjectInfo method retrieves information about a device object such as a button or axis.

object.GetObjectInfo(_

 Obj As Long, _

 how As CONST_DIPHFLAGS) _

 As DirectInputDeviceObjectInstance

Parameters

object

Object expression that resolves to a DirectInputDevice object.

Obj

Value that identifies the object whose information will be retrieved. The interpretation of this parameter depends on the value specified in the how parameter.

how

Value specifying how the Obj parameter should be interpreted. This value can be one of the constants of the CONST_DIPHFLAGS enumeration.

Return Values

The method returns a DirectInputDeviceObjectInstance object whose methods can be used to retrieve information about the object.

Error Codes

If the method fails, an error is raised and Err.Number may be one of the following error codes:

DIERR_INVALIDPARAM ��DIERR_OBJECTNOTFOUND ��

DirectInputDevice.GetProperty

The DirectInputDevice.GetProperty method retrieves information about the input device.

object.GetProperty(_

 guid As String, _

 propertyInfo As Any)

Parameters

object

Object expression that resolves to a DirectInputDevice object.

guid

Identifier of the property to be retrieved. The following properties are defined for an input device and can be passed as strings:

DIPROP_AUTOCENTER

Specifies whether device objects are self-centering. See DirectInputDevice.SetProperty for more information.

DIPROP_AXISMODE

Retrieves the axis mode. The retrieved value can be DIPROPAXISMODE_ABS or DIPROPAXISMODE_REL. (See the CONST_DINPUT enumeration.)

DIPROP_BUFFERSIZE

Retrieves the input-buffer size. The buffer size determines the amount of data that the buffer can hold between calls to the DirectInputDevice.GetDeviceData method before data is lost. This value may be set to 0 to indicate that the application will not be reading buffered data from the device.

DIPROP_DEADZONE

Retrieves a value for the dead zone of a joystick, in the range 0 to 10,000, where 0 indicates there is no dead zone, 5,000 indicates that the dead zone extends over 50 percent of the physical range of the axis on both sides of center, and 10,000 indicates that the entire physical range of the axis is dead. When the axis is within the dead zone, it is reported as being at the center of its range.

DIPROP_FFGAIN

Retrieves the gain of the device. See DirectInputDevice.SetProperty for more information.

DIPROP_FFLOAD

Retrieves the memory load for the device. This setting applies to the entire device, rather than to any particular object, so the lHow member of the associated DIPROPLONG type must be DIPH_DEVICE.

The lData member contains a value in the range 0 to 100, indicating the percentage of device memory in use.

DIPROP_GRANULARITY

Retrieves the input granularity. Granularity represents the smallest distance the object will report movement. Most axis objects have a granularity of 1, meaning that all values are possible. Some axes may have a larger granularity. For example, the wheel axis on a mouse may have a granularity of 20, meaning that all reported changes in position will be multiples of 20. In other words, when the user turns the wheel slowly, the device reports a position of 0, then 20, then 40, and so on.

This is a read-only property; you cannot set its value by calling the DirectInputDevice.SetProperty method.

DIPROP_RANGE

Retrieves the range of values an object can possibly report. The retrieved minimum and maximum values are set in the lMin and lMax members of the associated DIPROPRANGE type.

For some devices, this is a read-only property; you cannot set its value by calling the DirectInputDevice.SetProperty method.

DIPROP_SATURATION

Retrieves a value for the saturation zones of a joystick, in the range 0 to 10,000. The saturation level is the point at which the axis is considered to be at its most extreme position. For example, if the saturation level is set to 9,500, then the axis reaches the extreme of its range when it has moved 95 percent of the physical distance from its center position (or from the dead zone).

propertyInfo

A DIPROPLONG type to receive a single value, or a DIPROPRANGE type to receive a pair of values for the property. The lObj, lHow, and lSize members of this type must be initialized before the method is called.

Error Codes

If the method fails, an error is raised and Err.Number may be one of the following error codes:

DIERR_INVALIDPARAM ��DIERR_OBJECTNOTFOUND ��DIERR_UNSUPPORTED ��

See Also

DirectInputDevice.SetProperty

DirectInputDevice.Poll

The DirectInputDevice.Poll method makes data available from polled objects on a DirectInput device. If the device does not require polling, then calling this method has no effect. If a device that requires polling is not polled periodically, no new data will be received from the device. Calling this method causes DirectInput to update the device state, generate input events (if buffered data is enabled), and set notification events (if notification is enabled).

object.Poll()

Parameters

object

Object expression that resolves to a DirectInputDevice object.

Error Codes

If the method fails, an error is raised and Err.Number may be one of the following error codes:

DIERR_INPUTLOST ��DIERR_NOTACQUIRED ��

Remarks

Before a device data can be polled, the data format must be set by using the DirectInputDevice.SetDataFormat or DirectInputDevice.SetCommonDataFormat method, and the device must be acquired by using the DirectInputDevice.Acquire method.

DirectInputDevice.RunControlPanel

The DirectInputDevice.RunControlPanel method opens the Control Panel property sheet associated with this device. If the device does not have a property sheet associated with it, the default device property sheet is displayed.

object.RunControlPanel(hwnd As Long)

Parameters

object

Object expression that resolves to a DirectInputDevice object.

hwnd

Handle to the parent window. If this parameter is 0, no parent window is used.

Error Codes

If the method fails, an error is raised and Err.Number may be one of the following error codes:

DIERR_INVALIDPARAM ��

DirectInputDevice.SendDeviceData

The DirectInputDevice.SendDeviceData method sends data to a device that accepts output. The device must be in an acquired state.

object.SendDeviceData(count As Long, _

 data() As DIDEVICEOBJECTDATA, _

 flags As CONST_DESDDFLAGS) As Long

Parameters

object

Object expression that resolves to a DirectInputDevice object.

count

Number of elements in data.

data

Array of DIDEVICEOBJECTDATA types containing the data to send to the device.

The lOfs field of each DIDEVICEOBJECTDATA type must contain the instance identifier (not the data offset) for the device object to which the data is directed. (See DirectInputDeviceObjectInstance.GetType.) The lTimeStamp and lSequence members must be 0.

flags

Flags controlling the manner in which data is sent. This may be 0 or the following value:

DISDD_CONTINUE

The device data sent will be overlaid on the previously sent device data. See Remarks.

Error Codes

If the method fails, an error is raised and Err.Number may be one of the following error codes:

DIERR_INPUTLOST ��DIERR_NOTACQUIRED ��DIERR_REPORTFULL ��DIERR_UNPLUGGED ��

Remarks

There is no guarantee that the individual data elements will be sent in a particular order. However, data sent by successive calls to SendDeviceData will not be interleaved. Furthermore, if multiple pieces of data are sent to the same object with a single call, it is unspecified which piece of data is sent.

Consider, for example, a device that can be sent data in packets, each packet describing two pieces of information, call them A and B. Suppose the application attempts to send three data elements: B = 2, A = 1, and B = 0.

The actual device will be sent a single packet. The A field of the packet will contain the value 1, and the B field of the packet will be either 2 or 0.

If the data must to be sent to the device exactly as specified, then three calls to SendDeviceData should be performed, each call sending one data element.

In response to the first call, the device will be sent a packet where the A field is blank and the B field contains the value 2.

In response to the second call, the device will be sent a packet where the A field contains the value 1, and the B field is blank.

Finally, in response to the third call, the device will be sent a packet where the A field is blank and the B field contains the value 0.

If the DISDD_CONTINUE flag is set, then the device data sent will be overlaid on the previously sent device data. Otherwise, the device data sent will start from scratch.

For example, suppose a device supports two button outputs, Button0 and Button1. If an application first calls SendDeviceData passing "Button0 pressed", then a packet of the form "Button0 pressed, Button1 not pressed" is sent to the device. If the application then makes another call, passing "Button1 pressed" and the DISDD_CONTINUE flag, then a packet of the form "Button0 pressed, Button1 pressed" is sent to the device. However, if the application had not passed the DISDD_CONTINUE flag, the packet sent to the device would have been "Button0 not pressed, Button1 pressed".

DirectInputDevice.SendForceFeedbackCommand

The DirectInputDevice.SendForceFeedbackCommand method sends a command to the device's force-feedback system.

object.SendForceFeedbackCommand(flags As Long)

Parameters

object

Object expression that resolves to a DirectInputDevice object.

flags

A single value indicating the desired change in state. The value may be one of the members of the CONST_DISFFCFLAGS enumeration.

Error Codes

If the method fails, an error is raised and Err.Number may be one of the following error codes:

DIERR_INPUTLOST ��DIERR_NOTACQUIRED ��DIERR_REPORTFULL ��DIERR_UNPLUGGED ��

DirectInputDevice.SetCommonDataFormat

The DirectInputDevice.SetCommonDataFormat method sets the input data format for standard devices.

object.SetCommonDataFormat(_

 format As CONST_DICOMMONDATAFORMATS)

Parameters

object

Object expression that resolves to a DirectInputDevice object.

format

One of the CONST_DICOMMONDATAFORMATS enumeration, identifying the data format to use for the device.

Error Codes

If the method fails, an error is raised and Err.Number may be one of the following error codes:

DIERR_ACQUIRED ��DIERR_INVALIDPARAM ��

Remarks

The data format must be set before the device can be acquired by using the DirectInputDevice.Acquire method. It is necessary to set the data format only once. The data format cannot be changed while the device is acquired.

See Also

DirectInputDevice.SetDataFormat

DirectInputDevice.SetCooperativeLevel

The DirectInputDevice.SetCooperativeLevel method establishes the cooperative level for this instance of the device. The cooperative level determines how this instance of the device interacts with other instances of the device and the rest of the system.

object.SetCooperativeLevel(hwnd As Long, _

 flags As CONST_DISCLFLAGS)

Parameters

object

Object expression that resolves to a DirectInputDevice object.

hwnd

Window handle to be associated with the device. This parameter must be a valid top-level window handle that belongs to the process. The window associated with the device must not be destroyed while it is still active in a DirectInput device.

flags

Flags that describe the cooperative level associated with the device. The flags are constants of the CONST_DISCLFLAGS enumeration.

The following combinations of flags are valid:

Flags�Meaning�Valid for��DISCL_NONEXCLUSIVE Or DISCL_BACKGROUND�Others can acquire device in exclusive or nonexclusive mode; your application has access to data at all times.�All.��DISCL_NONEXCLUSIVE Or DISCL_FOREGROUND�Others can acquire device in exclusive or nonexclusive mode; your application has access to data only when in the foreground.�All.��DISCL_EXCLUSIVE Or DISCL_BACKGROUND�Others can acquire device in nonexclusive mode; your application has access to data at all times.�Joystick.��DISCL_EXCLUSIVE Or DISC_FOREGROUND�Others can acquire device in nonexclusive mode; your application has access to data only when in the foreground. �All. Valid for mouse but prevents Windows from displaying the cursor.��

Error Codes

If the method fails, an error is raised and Err.Number may be one of the following error codes:

DIERR_INVALIDPARAM ��DIERR_INVALIDHANDLE��

Remarks

No two applications (or instances of the same application) can have a device acquired in exclusive mode at the same time. This is primarily a security feature; it prevents input intended for one application from going to another that may be running concurrently.

If the system mouse is acquired in exclusive mode, then the pointer will be removed from the screen until the device is unacquired.

Applications must call this method before acquiring the device by using the DirectInputDevice.Acquire method.

See Also

Cooperative Levels

DirectInputDevice.SetDataFormat

The DirectInputDevice.SetDataFormat method sets the data format for a DirectInput device that is not a standard keyboard, mouse, or keyboard.

object.SetDataFormat(format As DIDATAFORMAT, _

 formatArray() As DIOBJECTDATAFORMAT))

Parameters

object

Object expression that resolves to a DirectInputDevice object.

format

A DIDATAFORMAT type that describes the format of the data the device should return.

formatArray

Array of DIOBJECTDATAFORMAT types describing data formats for objects on the device.

Error Codes

If the method fails, an error is raised and Err.Number may be one of the following error codes:

DIERR_ACQUIRED ��DIERR_INVALIDPARAM ��

Remarks

The data format must be set before the device can be acquired by using the DirectInputDevice.Acquire method. It is necessary to set the data format only once. The data format cannot be changed while the device is acquired.

See Also

DirectInputDevice.SetCommonDataFormat

DirectInputDevice.SetEventNotification

The DirectInputDevice.SetEventNotification method sets the event notification status. This method specifies an event that is to be set when the device state changes. It is also used to turn off event notification.

object.SetEventNotification(hEvent As Long)

Parameters

object

Object expression that resolves to a DirectInputDevice object.

hEvent

Handle to the event that is to be set when the device state changes, or 0 to disable notification.

Error Codes

If the method fails, an error is raised and Err.Number may be one of the following error codes:

DIERR_ACQUIRED ��DIERR_HANDLEEXISTS ��DIERR_INVALIDPARAM ��

Remarks

A device state change is defined as any of the following:

�SYMBOL 183 \f "Symbol" \s 11 \h �	A change in the position of an axis

�SYMBOL 183 \f "Symbol" \s 11 \h �	A change in the state (pressed or released) of a button

�SYMBOL 183 \f "Symbol" \s 11 \h �	A change in the direction of a POV control

�SYMBOL 183 \f "Symbol" \s 11 \h �	Loss of acquisition

You must call this method with the hEvent parameter set to 0 before destroying the event.

The event notification handle cannot be changed while the device is acquired.

See Also

Polling and Events, DirectXEvent

DirectInputDevice.SetProperty

The DirectInputDevice.SetProperty method sets properties that define the device behavior.

object.SetProperty(_

 guid As String, _

 propertyInfo As Any)

Parameters

object

Object expression that resolves to a DirectInputDevice object.

guid

Identifier of the property to be set. The following property values are predefined for an input device and can be passed as strings:

DIPROP_AXISMODE

Sets the axis mode. The value being set (either DIPROPAXISMODE_ABS or DIPROPAXISMODE_REL from the CONST_DINPUT enumeration) must be specified in the lData member of the associated DIPROPLONG type.

This setting applies to the entire device, so the lHow member of the DIPROPLONG type must be set to DIPH_DEVICE.

DIPROP_BUFFERSIZE

Sets the input-buffer size. See Remarks.

This setting applies to the entire device, so the lHow member of the associated DIPROPLONG type must be set to DIPH_DEVICE.

DIPROP_CALIBRATIONMODE

Allows the application to specify whether DirectInput should retrieve calibrated or uncalibrated data from an axis. By default, DirectInput retrieves calibrated data.

Setting the calibration mode for the entire device is equivalent to setting it for each axis individually.

The lData member of the DIPROPLONG type may be one of the following values:

DIPROPCALIBRATIONMODE_COOKED: DirectInput should return data after applying calibration information. This is the default mode.

DIPROPCALIBRATIONMODE_RAW: DirectInput should return raw, uncalibrated data. This mode is typically used only by Control Panel–type applications.

Note that setting a device into raw mode causes the dead zone, saturation, and range settings to be ignored.

DIPROP_DEADZONE

Sets the value for the dead zone of a joystick, in the range 0 to 10,000, where 0 indicates there is no dead zone, 5,000 indicates that the dead zone extends over 50 percent of the physical range of the axis on both sides of center, and 10,000 indicates that the entire physical range of the axis is dead. When the axis is within the dead zone, it is reported as being at the center of its range.

This setting can be applied to either the entire device or to a specific axis.

DIPROP_RANGE

Sets the range of values an object can possibly report. The minimum and maximum values are taken from the lMin and lMax members of the associated DIPROPRANGE type.

For some devices, this is a read-only property.

You cannot set a reverse range; lMax must be greater than lMin.

DIPROP_SATURATION

Sets the value for the saturation zones of a joystick, in the range 0 to 10,000. The saturation level is the point at which the axis is considered to be at its most extreme position. For example, if the saturation level is set to 9,500, then the axis reaches the extreme of its range when it has moved 95 percent of the physical distance from its center position (or from the dead zone).

This setting can be applied to either the entire device or to a specific axis.

propertyInfo

A DIPROPLONG type containing data for properties that take a single value, or a DIPROPRANGE type containing data for properties that take a pair of values.

Error Codes

If the method fails, an error is raised and Err.Number may be one of the following error codes:

DIERR_INVALIDPARAM ��DIERR_OBJECTNOTFOUND ��DIERR_UNSUPPORTED ��

Remarks

The buffer size determines the amount of data that the buffer can hold between calls to the DirectInputDevice.GetDeviceData method before data is lost. This value may be set to 0 to indicate that the application will not be reading buffered data from the device. If the buffer size in the lData member of the DIPROPLONG type is too large to be supported by the device, the largest possible buffer size is set. To determine whether the requested buffer size was set, retrieve the buffer-size property and compare the result with the value you previously attempted to set.

See Also

DirectInputDevice.GetProperty

DirectInputDevice.Unacquire

The DirectInputDevice.Unacquire method releases access to the device.

object.Unacquire()

Parameters

object

Object expression that resolves to a DirectInputDevice object.

Error Codes

None.

See Also

DirectInputDevice.Acquire

DirectInputDeviceInstance

The DirectInputDeviceInstance class is used to obtain information about an instance of a DirectInput device.

An object of this class is returned by the DirectInputDevice.GetDeviceInfo and DirectInputEnumDevices.GetItem method.

The DirectInputDeviceInstance class has the following methods:

Information�GetDevType���GetGuidFFDriver���GetGuidInstance���GetGuidProduct���GetInstanceName���GetProductName���GetUsage���GetUsagePage��

DirectInputDeviceInstance.GetDevType

The DirectInputDeviceInstance.GetDevType method retrieves the device type and subtype.

object.GetDevType() As Long

Parameters

object

Object expression that resolves to a DirectInputDeviceInstance object.

Return Values

The method returns a device type specifier. This value is a combination of a type (in the least significant byte) and subtype (in the next most significant byte), optionally combined using Or with DIDEVTYPE_HID, which specifies a Human Interface Device. The following constants are from the CONST_DIDEVICETYPE enumeration.

Device Types

DIDEVTYPE_MOUSE

A mouse or mouse-like device (such as a trackball).

DIDEVTYPE_KEYBOARD

A keyboard or keyboard-like device.

DIDEVTYPE_JOYSTICK

A joystick or similar device, such as a steering wheel.

DIDEVTYPE_DEVICE

A device that does not fall into the previous categories.

Mouse subtypes

DIDEVTYPEMOUSE_UNKNOWN

The subtype could not be determined.

DIDEVTYPEMOUSE_TRADITIONAL

The device is a traditional mouse.

DIDEVTYPEMOUSE_FINGERSTICK

The device is a fingerstick.

DIDEVTYPEMOUSE_TOUCHPAD

The device is a touchpad.

DIDEVTYPEMOUSE_TRACKBALL

The device is a trackball.

Keyboard subtypes

DIDEVTYPEKEYBOARD_UNKNOWN

The subtype could not be determined.

DIDEVTYPEKEYBOARD_PCXT

IBM PC/XT 83-key keyboard.

DIDEVTYPEKEYBOARD_OLIVETTI

Olivetti 102-key keyboard.

DIDEVTYPEKEYBOARD_PCAT

IBM PC/AT 84-key keyboard.

DIDEVTYPEKEYBOARD_PCENH

IBM PC Enhanced 101/102-key or Microsoft Natural® keyboard.

DIDEVTYPEKEYBOARD_NOKIA1050

Nokia 1050 keyboard.

DIDEVTYPEKEYBOARD_NOKIA9140

Nokia 9140 keyboard.

DIDEVTYPEKEYBOARD_NEC98

Japanese NEC PC98 keyboard.

DIDEVTYPEKEYBOARD_NEC98LAPTOP

Japanese NEC PC98 laptop keyboard.

DIDEVTYPEKEYBOARD_NEC98106

Japanese NEC PC98 106-key keyboard.

DIDEVTYPEKEYBOARD_JAPAN106

Japanese 106-key keyboard.

DIDEVTYPEKEYBOARD_JAPANAX

Japanese AX keyboard.

DIDEVTYPEKEYBOARD_J3100

Japanese J3100 keyboard.

Joystick Subtypes

DIDEVTYPEJOYSTICK_UNKNOWN

The subtype could not be determined.

DIDEVTYPEJOYSTICK_TRADITIONAL

A traditional joystick.

DIDEVTYPEJOYSTICK_FLIGHTSTICK

A joystick optimized for flight simulation.

DIDEVTYPEJOYSTICK_GAMEPAD

A device whose primary purpose is to provide button input.

DIDEVTYPEJOYSTICK_RUDDER

A device for yaw control.

DIDEVTYPEJOYSTICK_WHEEL

A steering wheel.

DIDEVTYPEJOYSTICK_HEADTRACKER

A device that tracks the movement of the user's head.

Human Interface Device

DIDEVTYPE_HID

The device uses the Human Interface Device (HID) protocol.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

Remarks

To look for a particular subtype of device such as a wheel, you should check both the type and the subtype.

DirectInputDeviceInstance.GetGuidFFDriver

The DirectInputDeviceInstance.GetGuidFFDriver method returns the unique identifier for the force-feedback driver.

object.GetGuidFFDriver() As String

Parameters

object

Object expression that resolves to a DirectInputDeviceInstance object.

Return Values

The method returns the GUID for the force feedback driver, in string form. This identifier is established by the manufacturer of the driver.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

See Also

Using GUIDs

DirectInputDeviceInstance.GetGuidInstance

The DirectInputDeviceInstance.GetGuidInstance method returns the unique identifier for the instance of the device.

object.GetGuidInstance() As String

Parameters

object

Object expression that resolves to a DirectInputDeviceInstance object.

Return Values

The method returns the GUID for the device instance, in string form.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

Remarks

An application can save the instance GUID into a configuration file and use it at a later time. Instance GUIDs are specific to a particular computer. An instance GUID obtained from one computer is unrelated to instance GUIDs on another.

See Also

DirectInputDeviceInstance.GetGuidProduct, Using GUIDs

DirectInputDeviceInstance.GetGuidProduct

The DirectInputDeviceInstance.GetGuidProduct method retrieves the manufacturer's unique identifier for the device.

object.GetGuidProduct() As String

Parameters

object

Object expression that resolves to a DirectInputDeviceInstance object.

Return Values

The method returns the GUID for the product, in string form. This identifier is established by the manufacturer of the device.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

See Also

DirectInputDeviceInstance.GetGuidInstance, Using GUIDs

DirectInputDeviceInstance.GetInstanceName

The DirectInputDeviceInstance.GetInstanceName method retrieves the name of the device instance.

object.GetInstanceName() As String

Parameters

object

Object expression that resolves to a DirectInputDeviceInstance object.

Return Values

The method returns the friendly name for the instance—for example, "Joystick 1."

Error Codes

If the method fails, an error is raised and Err.Number will be set.

See Also

DirectInputDeviceInstance.GetProductName

DirectInputDeviceInstance.GetProductName

The DirectInputDeviceInstance.GetProductName method retrieves the product name of the device.

object.GetProductName() As String

Parameters

object

Object expression that resolves to a DirectInputDeviceInstance object.

Return Values

The method returns the friendly name for the product—for example, "Microsoft SideWinder".

Error Codes

If the method fails, an error is raised and Err.Number will be set.

See Also

DirectInputDeviceInstance.GetInstanceName

DirectInputDeviceInstance.GetUsage

The DirectInputDeviceInstance.GetUsage method retrieves the usage code for Human Interface Devices.

object.GetUsage() As Integer

Parameters

object

Object expression that resolves to a DirectInputDeviceInstance object.

Return Values

If the device is a HID, the method returns the usage code.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

See Also

DirectInputDeviceInstance.GetUsagePage

DirectInputDeviceInstance.GetUsagePage

The DirectInputDeviceInstance.GetUsagePage method retrieves the usage page for Human Interface Devices.

object.GetUsagePage() As Integer

Parameters

object

Object expression that resolves to a DirectInputDeviceInstance object.

Return Values

If the device is a HID, the method returns the HID usage page.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

See Also

DirectInputDeviceInstance.GetUsage

DirectInputDeviceObjectInstance

The DirectInputDeviceObjectInstance class represents an object on a DirectInput device, such as a button or axis.

A DirectInputDeviceObjectInstance object is returned by the DirectInputDevice.GetObjectInfo and DirectInputEnumDeviceObjects.GetItem methods.

This class has the following methods:

Information�GetCollectionNumber���GetDesignatorIndex���GetDimension���GetExponent���GetFlags���GetGuidType���GetName���GetOfs���GetType���GetUsage���GetUsagePage��

DirectInputDeviceObjectInstance.GetCollectionNumber

The DirectInputDeviceObjectInstance.GetCollectionNumber method retrieves the number of the HID link collection to which the device object belongs.

object.GetCollectionNumber() As Integer

Parameters

object

Object expression that resolves to a DirectInputDeviceObjectInstance object.

Return Values

If the device is a Human Interface Device and the object belongs to a collection, the method returns the number of the collection.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

DirectInputDeviceObjectInstance.GetDesignatorIndex

The DirectInputDeviceObjectInstance.GetDesignatorIndex method retrieves the designator index for an object on a Human Interface Device.

object.GetDesignatorIndex() As Integer

Parameters

object

Object expression that resolves to a DirectInputDeviceObjectInstance object.

Return Values

The method returns an index that refers to a designator in the HID physical descriptor. This number can be passed to functions in the HID parsing library to obtain additional information about the device object.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

DirectInputDeviceObjectInstance.GetDimension

The DirectInputDeviceObjectInstance.GetDimension method retrieves a HID code for the dimensional units in which the object's value is reported.

object.GetDimension() As Long

Parameters

object

Object expression that resolves to a DirectInputDeviceObjectInstance object.

Return Values

The method returns a code for the dimensional units in which the object's value is reported, if known, or 0 if not known.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

See Also

DirectInputDeviceObjectInstance.GetExponent

DirectInputDeviceObjectInstance.GetExponent

The DirectInputDeviceObjectInstance.GetExponent method retrieves the exponent to associate with the dimensional units of the device object.

object.GetExponent() As Integer

Parameters

object

Object expression that resolves to a DirectInputDeviceObjectInstance object.

Return Values

The method returns the exponent to associate with the dimension, if known. Dimensional units are always integral, so an exponent may be needed in order to convert them to non-integral types.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

See Also

DirectInputDeviceObjectInstance.GetDimension

DirectInputDeviceObjectInstance.GetFlags

The DirectInputDeviceObjectInstance.GetFlags method retrieves the flags associated with the device object.

object.GetFlags() As CONST_DIDEVICEOBJINSTANCEFLAGS

Parameters

object

Object expression that resolves to a DirectInputDeviceObjectInstance object.

Return Values

The method retrieves flags describing miscellaneous attributes of the object. The return value may consist of one or more members of the CONST_DIDEVICEOBJINSTANCEFLAGS enumeration.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

DirectInputDeviceObjectInstance.GetGuidType

The DirectInputDeviceObjectInstance.GetGuidType method retrieves the unique identifier of the object type.

object.GetGuidType() As String

Parameters

object

Object expression that resolves to a DirectInputDeviceObjectInstance object.

Return Values

The method may return one of the following string identifiers, representing the unique identifier for the object type. If the object type has a GUID not represented in the following list, a string representing the actual GUID will be returned. If the object type does not have a GUID, an empty string will be returned.

GUID_XAxis

The horizontal axis. For example, it may represent the left-right motion of a mouse.

GUID_YAxis

The vertical axis. For example, it may represent the forward-backward motion of a mouse.

GUID_ZAxis

The z-axis. For example, it may represent rotation of the wheel on a mouse, or movement of a throttle control on a joystick.

GUID_RxAxis

Rotation around the x-axis.

GUID_RyAxis

Rotation around the y-axis.

GUID_RzAxis

Rotation around the z-axis (often a rudder control).

GUID_Slider

A slider axis.

GUID_Button

A button on a mouse.

GUID_Key

A key on a keyboard.

GUID_POV

A point-of-view indicator or "hat".

GUID_Unknown

Unknown.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

DirectInputDeviceObjectInstance.GetName

The DirectInputDeviceObjectInstance.GetName method retrieves the friendly name of the device object.

object.GetName() As String

Parameters

object

Object expression that resolves to a DirectInputDeviceObjectInstance object.

Return Values

The method retrieves the name of the object—for example, "X-Axis" or "Right Shift."

Error Codes

If the method fails, an error is raised and Err.Number will be set.

DirectInputDeviceObjectInstance.GetOfs

The DirectInputDeviceObjectInstance.GetOfs method retrieves the offset of the device object's data within the data format for the device.

object.GetOfs() As Long

Parameters

object

Object expression that resolves to a DirectInputDeviceObjectInstance object.

Return Values

The method returns the offset within the data format at which data is reported for this object. This value can be used to identify the object in method calls and types that accept the DIPH_BYOFFSET flag.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

See Also

DirectInputDevice.GetObjectInfo, DIPROPLONG, DIPROPRANGE

DirectInputDeviceObjectInstance.GetType

The DirectInputDeviceObjectInstance.GetType method retrieves the type and instance identifier of the object.

object.GetType() As Long

Parameters

object

Object expression that resolves to a DirectInputDeviceObjectInstance object.

Return Values

Device type that describes the object. It is a combination of CONST_DIDFTFLAGS flags that describe the object type (axis, button, and so forth) and contains the object instance number in the middle 16 bits.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

Remarks

To extract the object instance ID, use the following operation:

Dim ObjID as Long

ObjID = (diObj.GetType And &HFFFF00) \ 256

DirectInputDeviceObjectInstance.GetUsage

The DirectInputDeviceObjectInstance.GetUsage method retrieves the Human Interface Device usage code for the device object.

object.GetUsage() As Integer

Parameters

object

Object expression that resolves to a DirectInputDeviceObjectInstance object.

Return Values

The method returns the HID usage associated with the object, if known. Human Interface Devices will always report a usage. Non-HID devices may optionally report a usage; if they do not, then the value of this member will be zero.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

See Also

DirectInputDeviceObjectInstance.GetUsagePage

DirectInputDeviceObjectInstance.GetUsagePage

The DirectInputDeviceObjectInstance.GetUsagePage method retrieves the Human Interface Device usage page for the device object.

object.GetUsagePage() As Integer

Parameters

object

Object expression that resolves to a DirectInputDeviceObjectInstance object.

Return Values

The method returns the HID usage page associated with the object, if known. Human Interface Devices will always report a usage page. Non-HID devices may optionally report a usage page; if they do not, then the value of this member will be zero.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

See Also

DirectInputDeviceObjectInstance.GetUsage

DirectInputEffect

An object of the DirectInputEffect class represents a force-feedback effect created by an application. The object is created by using the DirectInputDevice.CreateEffect method.

This class has the following methods:

Information�GetEffectGuid���GetEffectStatus���GetParameters��Manipulation�Download���SetParameters���Start���Stop���Unload��

DirectInputEffect.Download

The DirectInputEffect.Download method places the effect on the device. If the effect is already on the device, then the existing effect is updated to match the values set by the DirectInputEffect.SetParameters method.

object.Download()

Parameters

object

Object expression that resolves to a DirectInputEffect object.

Error Codes

If the method fails, an error is raised and Err.Number may be set to one of the following:

DIERR_NOTINITIALIZED ��DIERR_DEVICEFULL��DIERR_INCOMPLETEEFFECT��DIERR_INPUTLOST��DIERR_NOTEXCLUSIVEACQUIRED��DIERR_INVALIDPARAM ��DIERR_EFFECTPLAYING��

Remarks

The device must be acquired at the exclusive cooperative level for this method to succeed.

It is valid to update an effect while it is playing. The semantics of such an operation are explained in the reference for DirectInputEffect.SetParameters.

DirectInputEffect.GetEffectGuid

The DirectInputEffect.GetEffectGuid method retrieves the GUID or GUID alias for the effect represented by the DirectInputEffect object.

object.GetEffectGuid() As String

Parameters

object

Object expression that resolves to a DirectInputEffect object.

Return Values

The method returns the GUID or alias that was passed to DirectInputDevice.CreateEffect—for example, "GUID_ConstantForce".

Error Codes

If the method fails, an error is raised and Err.Number will be set.

See Also

Using GUIDs

DirectInputEffect.GetEffectStatus

The DirectInputEffect.GetEffectStatus method retrieves the status of an effect.

object.GetEffectStatus() As Long

Parameters

object

Object expression that resolves to a DirectInputEffect object.

Return Values

The method returns status flags for the effect. The value may be zero, or one or more of the following constants of the CONST_DIEGESFLAGS enumeration:

DIEGES_PLAYING

The effect is playing.

DIEGES_EMULATED

The effect is emulated.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

DirectInputEffect.GetParameters

The DirectInputEffect.GetParameters method retrieves information about an effect.

object.GetParameters(effectinfo As DIEFFECT)

Parameters

object

Object expression that resolves to a DirectInputEffect object.

effectinfo

DIEFFECT type to receive the effect parameters.

Error Codes

If the method fails, an error is raised and Err.Number may be set to one of the following:

DIERR_INVALIDPARAM ��DIERR_MOREDATA ��DIERR_NOTINITIALIZED ��

DirectInputEffect.SetParameters

The DirectInputEffect.SetParameters method sets the characteristics of an effect.

object.SetParameters(effectinfo As DIEFFECT, flags As CONST_DIEPFLAGS)

Parameters

object

Object expression that resolves to a DirectInputEffect object.

effectinfo

DIEFFECT type containing effect parameters.

flags

Flags from the CONST_DIEPFLAGS enumeration specifying which portions of the effect information are to be set and how the downloading of the parameters should be handled.

Error Codes

If the method fails, an error is raised and Err.Number may be set to one of the following:

DIERR_NOTINITIALIZED ��DIERR_INCOMPLETEEFFECT ��DIERR_INPUTLOST ��DIERR_INVALIDPARAM ��DIERR_EFFECTPLAYING ��

Remarks

To determine which parameters can be dynamically updated while the effect is playing, use the DirectInputEnumEffects.GetDynamicParams method.

The DirectInputEffect.SetParameters method automatically downloads the effect, but this behavior can be suppressed by setting the DIEP_NODOWNLOAD flag. If automatic download has been suppressed, then you can manually download the effect by calling DirectInputEffect.Download.

If the effect is playing while the parameters are changed, then the new parameters take effect as if they were the parameters when the effect started.

For example, suppose a periodic effect with a duration of three seconds is started. After two seconds, the direction of the effect is changed. The effect will then continue for one additional second in the new direction. The envelope, phase, amplitude, and other parameters of the effect continue smoothly as if the direction had not changed.

In the same scenario, if after two seconds the duration of the effect were changed to 1.5 seconds, then the effect would stop.

Normally, if the driver cannot update the parameters of a playing effect, the driver is permitted to stop the effect, update the parameters, and then restart the effect. Passing the DIEP_NORESTART flag suppresses this behavior. If the driver cannot update the parameters of an effect while it is playing, the error code DIERR_EFFECTPLAYING is returned and the parameters are not updated.

No more than one of the DIEP_NODOWNLOAD, DIEP_START, and DIEP_NORESTART flags should be set. (It is also valid to pass none of them.)

These three flags control download and playback behavior as follows:

If DIEP_NODOWNLOAD is set, the effect parameters are updated but not downloaded to the device.

If the DIEP_START flag is set, the effect parameters are updated and downloaded to the device, and the effect is started just as if the DirectInputEffect.Start method had been called with the iterations parameter set to 1 and with no flags. (Combining the update with DIEP_START is slightly faster than calling Start separately, because it requires less information to be transmitted to the device.)

If neither DIEP_NODOWNLOAD nor DIEP_START is set and the effect is not playing, then the parameters are updated and downloaded to the device.

If neither DIEP_NODOWNLOAD nor DIEP_START is set and the effect is playing, then the parameters are updated if the device supports on-the-fly updating. Otherwise the behavior depends on the state of the DIEP_NORESTART flag. If it is set, the error code DIERR_EFFECTPLAYING is returned. If it is clear, the effect is stopped, the parameters are updated, and the effect is restarted.

DirectInputEffect.Start

The DirectInputEffect.Start method begins playing an effect. If the effect is already playing, it is restarted from the beginning. If the effect has not been downloaded or has been modified since its last download, then it will be downloaded before being started. This default behavior can be suppressed by passing the DIES_NODOWNLOAD flag.

object.Start(iterations As Long, flags As Long)

Parameters

object

Object expression that resolves to a DirectInputEffect object.

iterations

Number of times to play the effect in sequence. The envelope is re-articulated with each iteration.

To play the effect exactly once, pass 1. To play the effect repeatedly until explicitly stopped, pass -1. To play the effect until explicitly stopped without re-articulating the envelope, modify the effect parameters with the DirectInputEffect.SetParameters method and change the lDuration member of DIEFFECT to -1.

flags

Flags from the CONST_DIESFLAGS enumeration that describe how the effect should be played by the device. The value may be zero or one or more of the following values:

DIES_SOLO

All other effects on the device should be stopped before the specified effect is played. If this flag is omitted, then the effect is mixed with existing effects already started on the device.

DIES_NODOWNLOAD

Do not automatically download the effect.

Error Codes

If the method fails, an error is raised and Err.Number may be set to one of the following:

DIERR_INVALIDPARAM ��DIERR_INCOMPLETEEFFECT ��DIERR_NOTEXCLUSIVEACQUIRED ��DIERR_NOTINITIALIZED ��DIERR_UNSUPPORTED ��

Remarks

The device must be acquired at the exclusive cooperative level for this method to succeed.

Not all devices support multiple iterations.

DirectInputEffect.Stop

The DirectInputEffect.Stop method stops an effect that is playing.

object.Stop()

Parameters

object

Object expression that resolves to a DirectInputEffect object.

Error Codes

If the method fails, an error is raised and Err.Number may be set to one of the following:

DIERR_NOTEXCLUSIVEACQUIRED ��DIERR_NOTINITIALIZED ��

Remarks

The device must be acquired at the exclusive cooperative level for this method to succeed.

DirectInputEffect.Unload

The DirectInputEffect.Unload method removes the effect from the device. If the effect is playing, it is automatically stopped before it is unloaded.

object.Unload()

Parameters

object

Object expression that resolves to a DirectInputEffect object.

Error Codes

If the method fails, an error is raised and Err.Number may be set to one of the following:

DIERR_INPUTLOST ��DIERR_INVALIDPARAM ��DIERR_NOTEXCLUSIVEACQUIRED ��DIERR_NOTINITIALIZED ��

Remarks

The device must be acquired at the exclusive cooperative level for this method to succeed.

DirectInputEnumDeviceObjects

The DirectInputEnumDeviceObjects class enumerates the DirectInputDevice objects installed on a system. This object is created and filled with data as a result of a call to DirectInputDevice.GetDeviceObjectsEnum method.

This class has the following methods:

Information�GetCount���GetItem��

DirectInputEnumDeviceObjects.GetCount

The DirectInputEnumDeviceObjects.GetCount method returns the number of items in the DirectInputEnumDeviceObjects collection.

object.GetCount() As Long

Parameters

object

Object expression that resolves to a DirectInputEnumDeviceObjects object.

Return Values

The method returns the number of device objects enumerated for the device.

Error Codes

None.

DirectInputEnumDeviceObjects.GetItem

The DirectInputEnumDeviceObjects.GetItem method retrieves an object describing the specified device object.

object.GetItem(index As Long) _

 As DirectInputDeviceObjectInstance

Parameters

object

Object expression that resolves to a DirectInputEnumDeviceObjects object.

index

Index of the enumerated item to retrieve.

Return Values

The method returns a DirectInputDeviceObjectInstance object whose methods can be used to retrieve information about the device object.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

Remarks

To get the number of entries in the DirectInputEnumDeviceObjects first call the DirectInputEnumDeviceObjects.GetCount method.

DirectInputEnumDevices

The DirectInputEnumDevices enumerates the DirectInput devices installed on a system. This object is created and filled with data as a result of a call to DirectInput.GetDIEnumDevices method.

This class has the following methods:

Information�GetCount���GetItem��

DirectInputEnumDevices.GetCount

The DirectInputEnumDevices.GetCount method returns the number of DirectInput devices in the DirectInputEnumDevices collection.

object.GetCount() As Long

Parameters

object

Object expression that resolves to a DirectInputEnumDevices object.

Return Values

If the method succeeds, the number of DirectInput devices in the DirectInputEnumDevices collection is returned.

Error Codes

None.

DirectInputEnumDevices.GetItem

The DirectInputEnumDevices.GetItem method returns information about an enumerated device.

object.GetItem(index As Long) As DirectInputDeviceInstance

Parameters

object

Object expression that resolves to a DirectInputEnumDevices object.

index

The specific DirectInput device data entry in DirectInputEnumDevices.

Return Values

The method returns a DirectInputDeviceInstance object whose methods can be used to retrieve information about the device.

Error Codes

If the method fails, an error is raised and Err.Number will be set.

Remarks

To get the number of entries in DirectInputEnumDevices first call the DirectInputEnumDevices.GetCount method.

DirectInputEnumEffects

An object of the DirectInputEnumEffects class represents a collection of supported force-feedback effects on a device, and is used for retrieving information about the effects. The object is created by using the DirectInputDevice.GetEffectsEnum method.

The class has the following methods:

Information�GetCount���GetDynamicParams���GetEffectGuid���GetName���GetStaticParams���GetType��

DirectInputEnumEffects.GetCount

The DirectInputEnumEffects.GetCount method returns the number of enumerated effects in the collection.

object.GetCount() As Long

Parameters

object

Object expression that resolves to a DirectInputEnumEffects object.

Return Values

The method returns the number of items in the collection.

Error Codes

If the method fails, it raises an error and Err.Number will be set.

DirectInputEnumEffects.GetDynamicParams

The DirectInputEnumEffects.GetDynamicParams method retrieves information about which effect parameters can be changed without stopping the effect, using the DirectInputEffect.SetParameters method.

object.GetDynamicParams(i As Long) As CONST_DIEPFLAGS

Parameters

object

Object expression that resolves to a DirectInputEnumEffects object.

i

Index (1-based) of the effect in the collection.

Return Values

The method returns flags from the CONST_DIEPFLAGS enumeration specifying which parameters can be dynamically updated while the effect is playing.

Error Codes

If the method fails, it raises an error and Err.Number will be set.

See Also

DirectInputEffect.SetParameters

DirectInputEnumEffects.GetEffectGuid

The DirectInputEnumEffects.GetEffectGuid method retrieves the GUID for the supported effect. This GUID can be passed to the DirectInputDevice.CreateEffect method.

object.GetEffectGuid(i As Long) As String

Parameters

object

Object expression that resolves to a DirectInputEnumEffects object.

i

Index (1-based) of the effect in the collection.

Return Values

The method returns the GUID in string form. For standard effects, the return value is an alias such as "GUID_ConstantForce".

Error Codes

If the method fails, it raises an error and Err.Number will be set.

See Also

Using GUIDs

DirectInputEnumEffects.GetName

The DirectInputEnumEffects.GetName method retrieves the name of the effect.

object.GetName(i As Long) As String

Parameters

object

Object expression that resolves to a DirectInputEnumEffects object.

i

Index (1-based) of the effect in the collection.

Return Values

The method returns the name of the effect, such as "Constant Force".

Error Codes

If the method fails, it raises an error and Err.Number will be set.

DirectInputEnumEffects.GetStaticParams

The DirectInputEnumEffects.GetStaticParams method retrieves information about effect parameters supported on the device.

object.GetStaticParams(i As Long) As CONST_DIEPFLAGS

Parameters

object

Object expression that resolves to a DirectInputEnumEffects object.

i

Index (1-based) of the effect in the collection.

Return Values

The method returns flags from the CONST_DIEPFLAGS enumeration specifying which parameters are supported by the effect.

Error Codes

If the method fails, it raises an error and Err.Number will be set.

DirectInputEnumEffects.GetType

The DirectInputEnumEffects.GetType method retrieves information about the type and capabilities of the effect.

object.GetType(i As Long) As CONST_DIEFTFLAGS

Parameters

object

Object expression that resolves to a DirectInputEnumEffects object.

i

Index (1-based) of the effect in the collection.

Return Values

The method returns flags from the CONST_DIEFTFLAGS enumeration giving information about the effect.

Error Codes

If the method fails, it raises an error and Err.Number will be set.

Remarks

The effect type is stored in the low byte and can be retrieved by a bitwise And with &HFF.

Types

This section contains information on the following types used with DirectInput:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DICONDITION

�SYMBOL 183 \f "Symbol" \s 11 \h �	DICONSTANTFORCE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIDATAFORMAT

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIDEVCAPS

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIDEVICEOBJECTDATA

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIEFFECT

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIENVELOPE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIJOYSTATE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIJOYSTATE2

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIKEYBOARDSTATE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIMOUSESTATE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIOBJECTDATAFORMAT

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPERIODICFORCE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROPLONG

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIPROPRANGE

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIRAMPFORCE

DICONDITION

The DICONDITION type describes parameters for a force-feedback condition in the DIEFFECT type.

Type DICONDITION

 lDeadBand As Long

 lNegativeCoefficient As Long

 lNegativeSaturation As Long

 lOffset As Long

 lPositiveCoefficient As Long

 lPositiveSaturation As Long

End Type

Members

lDeadBand

The region around lOffset where the condition is not active, in the range 0 to 10,000. In other words, the condition is not active between lOffset - lDeadBand and lOffset + lDeadBand.

lNegativeCoefficient

The coefficient constant on the negative side of the offset, in the range -10,000 to +10,000.

If the device does not support separate positive and negative coefficients, then the value of lNegativeCoefficient is ignored and the value of lPositiveCoefficient is used as both the positive and negative coefficients.

lNegativeSaturation

The maximum force output on the negative side of the offset, in the range 0 to 10,000.

If the device does not support force saturations, then the value of this member is ignored.

If the device does not support separate positive and negative saturations, then the value of lNegativeSaturation is ignored and the value of lPositiveSaturation is used as both the positive and negative saturations.

lOffset

The offset for the condition, in the range -10,000 to +10,000.

lPositiveCoefficient

The coefficient constant on the positive side of the offset, in the range -10,000 to +10,000.

lPositiveSaturation

The maximum force output on the positive side of the offset, in the range 0 to 10,000.

If the device does not support force saturation, then the value of this member is ignored.

Remarks

Different types of conditions will interpret the parameters differently, but the basic idea is that force resulting from a condition is equal to A(q - q0) where A is a scaling coefficient, q is some metric, and q0 is the neutral value for that metric.

The preceding simplified formula must be adjusted if a nonzero dead band is provided. If the metric is less than lOffset - lDeadBand, then the resulting force is given by the following formula:

force = lNegativeCoefficient * (q - (lOffset - lDeadBand))

Similarly, if the metric is greater than lOffset + lDeadBand, then the resulting force is given by the following formula:

force = lPositiveCoefficient * (q - (lOffset + lDeadBand))

A spring condition uses axis position as the metric.

A damper condition uses axis velocity as the metric.

An inertia condition uses axis acceleration as the metric.

DICONSTANTFORCE

The DICONSTANTFORCE type describes parameters for a constant force in the DIEFFECT type.

Type DICONSTANTFORCE

 lMagnitude As Long

End Type

Members

lMagnitude

Magnitude of the effect, in the range -10,000 to +10,000. If an envelope is applied to this effect, then the value represents the magnitude of the sustain. If no envelope is applied, then the value represents the amplitude of the entire effect.

DIDATAFORMAT

The DIDATAFORMAT type carries information describing a device's data format. This type is used with the DirectInputDevice.SetDataFormat method.

Type DIDATAFORMAT

 dataSize As Long

 lFlags As Long

 lObjSize As Long

 numObjs As Long

End Type

Members

dataSize

Size of a data packet returned by the device, in bytes. This value must be a multiple of 4 and must exceed the largest offset value for an object's data within the data packet.

lFlags

Flags describing other attributes of the data format. This value can be one of the CONST_DIDATAFORMATFLAGS enumeration.

lObjSize

Size of the DIOBJECTDATAFORMAT type, in bytes.

numObjs

Number of objects for which data is to be returned.

Remarks

Applications need to create a DIDATAFORMAT type only for nonstandard devices. For the mouse, keyboard, and joystick, you set the data format by using DirectInputDevice.SetCommonDataFormat.

DIDEVCAPS

The DIDEVCAPS type contains information about a DirectInput device's capabilities. This type is used with the DirectInputDevice.GetCapabilities method.

Type DIDEVCAPS

 lAxes As Long

 lButtons As Long

 lDevType As CONST_DIDEVICETYPE

 lDriverVersion As Long

 lFFMinTimeResolution As Long

 lFFSamplePeriod As Long

 lFirmwareRevision As Long

 lFlags As CONST_DIDEVCAPSFLAGS

 lHardwareRevision As Long

 lPOVs As Long

End Type

Members

lAxes

Number of axes available on the device.

lButtons

Number of buttons available on the device.

lDevType

A packed value containing information about the type and subtype of the device. The value is identical to that returned by the DirectInputDeviceInstance.GetDevType method.

lDriverVersion

The version number of the device driver.

lFFMinTimeResolution

The minimum amount of time, in microseconds, that the device can resolve when playing force-feedback effects. The device rounds any times to the nearest supported increment. For example, if the value of lFFMinTimeResolution is 1000, then the device would round any times to the nearest millisecond.

lFFSamplePeriod

The minimum time between playback of consecutive raw force commands.

lFirmwareRevision

Specifies the firmware revision of the device.

lFlags

Flags associated with the device. This value can be a combination of the constants of the CONST_DIDEVCAPSFLAGS enumeration.

lHardwareRevision

The hardware revision of the device.

lPOVs

Number of point-of-view controllers available on the device.

Remarks

The semantics of version numbers are left to the manufacturer of the device. The only guarantee is that newer versions will have larger numbers.

DIDEVICEOBJECTDATA

The DIDEVICEOBJECTDATA type contains raw buffered device information. This type is used with the DirectInputDevice.GetDeviceData method.

Type DIDEVICEOBJECTDATA

 lData As Long

 lOfs As Long

 lSequence As Long

 lTimeStamp As Long

End Type

Members

lData

Data obtained from the device.

For axis input, if the device is in relative axis mode, then the relative axis motion is reported. If the device is in absolute axis mode, then the absolute axis coordinate is reported.

For button input, only the low byte of lData is significant. The high bit of the low byte is set if the button went down; it is clear if the button went up.

lOfs

Offset into the current data format of the object whose data is being reported—that is, the location where the data would have been stored if it had been obtained by a call to the DirectInputDevice.GetDeviceStateX method where X refers to the specific device, for instance GetDeviceStateMouse. If the device is accessed as a keyboard, you can determine which key generated the event by comparing this value with the members of the CONST_DIKEYFLAGS enumeration. For the mouse and joystick, the value in lOfs is equivalent to the byte offset of the button or axis within the DIMOUSESTATE, DIJOYSTATE, or DIJOYSTATE2 type (depending on the data format that was established by using DirectInputDevice.SetCommonDataFormat.) Constants for these offsets are contained in the CONST_DIMOUSEOFS and CONST_DIJOYSTICKOFS enumerations. If a custom data format has been set by using DirectInputDevice.SetDataFormat, then lOfs is the offset of the device object's place in the custom data format.

lSequence

DirectInput sequence number for this event. All input events are assigned an increasing sequence number. This allows events from different devices to be sorted chronologically. Since this value can wrap around, care must be taken when comparing two sequence numbers.

lTimeStamp

System time at which the input event was generated, in milliseconds. This value wraps around approximately every 50 days.

DIEFFECT

The DIEFFECT type describes a force-feedback effect. It is passed to the DirectInputDevice.CreateEffect and DirectInputEffect.SetParameters methods in order to set parameters for an effect. Existing parameters are retrieved in this type through the DirectInputEffect.GetParameters method.

Type DIEFFECT

 bUseEnvelope As Long

 conditionFlags As CONST_DICONDITIONFLAGS

 conditionX As DICONDITION

 conditionY As DICONDITION

 constantForce As DICONSTANTFORCE

 envelope As DIENVELOPE

 lDuration As Long

 lFlags As Long

 lGain As Long

 lSamplePeriod As Long

 lStartDelay As Long

 lTriggerButton As Long

 lTriggerRepeatInterval As Long

 periodicForce As DIPERIODICFORCE

 rampForce As DIRAMPFORCE

 x As Long

 y As Long

End Type

Members

bUseEnvelope

True if the envelope described in the envelope member is to be applied to the effect.

conditionFlags

Flags from the CONST_DICONDITIONFLAGS enumeration. In the current version of DirectX for Visual Basic, this value should be 0.

conditionX

DICONDITION type describing parameters of the condition on the x-axis. Ignored for other types of effects.

conditionY

DICONDITION type describing parameters of the condition on the y-axis. Ignored for other types of effects.

constantForce

DICONSTANTFORCE type describing parameters of a constant force. Ignored for other types of effects.

envelope

DIENVELOPE type describing parameters of an envelope to be applied to the effect. Valid only if the bUseEnvelope member is True.

lDuration

Duration of the effect, in microseconds. A value of -1 indicates infinite duration. If an envelope is applied to an effect of infinite duration, then the attack will be applied, followed by an infinite sustain.

lFlags

Zero or more members of the CONST_DIEFFFLAGS enumeration specifying how other members are to be interpreted.

lGain

The gain to be applied to the effect, in the range 0 to 10,000. The gain is a scaling factor applied to all magnitudes of the effect and its envelope.

lSamplePeriod

The period, in microseconds, at which the device samples the effect—in other words, the granularity of changes in force. A value of 0 indicates that the default playback sample rate should be used.

If the device is not capable of sampling the effect at the specified rate, it will choose the supported rate that is closest to the requested value.

Setting a custom sample period can be used for special effects. For example, playing a sine wave with an artificially large sample period results in a rougher texture.

lStartDelay

Time, in microseconds, the device should wait after a DirectInputEffect.Start call before playing the effect. If this value is 0, then effect playback begins immediately.

lTriggerButton

Offset value of the button that will trigger the effect. This should be one of the members of the CONST_DIJOYSTICKOFS enumeration, or -1 to indicate that the effect does not have a trigger button.

lTriggerRepeatInterval

The interval, in microseconds, between the end of one playback and the start of the next when the effect is triggered by a button press and the button is held down. Setting this value to -1 suppresses repetition.

Not all devices support trigger repeat.

periodicForce

DIPERIODICFORCE type describing parameters of a periodic effect. Ignored for other types of effects.

rampForce

DIRAMPFORCE type describing parameters of a ramp force. Ignored for other types of effects.

x

Direction of the effect. Normally, this is the amount by which the direction is rotated from north (usually the negative y-axis), in hundredths of degrees. Thus a value of 0 indicates a force pushing toward the user, a value of 9000 indicates a force pushing from the user's right, and so on. In this case, y should be 0.

If lFlags contains DIEFF_CARTESIAN, this is a Cartesian value describing the relative amount of force on the x-axis. For example, if x = -1 and y = 1, the direction of the force is from the southwest. For more information, see Effect Direction.

y

If lFlags contains DIEFF_CARTESIAN, this is a Cartesian value describing the relative amount of force on the y-axis. Otherwise it should be 0.

DIENVELOPE

The DIENVELOPE type describes parameters for an envelope in the DIEFFECT type.

Type DIENVELOPE

 lAttackLevel As Long

 lAttackTime As Long

 lFadeLevel As Long

 lFadeTime As Long

End Type

Members

lAttackLevel

Amplitude for the start of the envelope, relative to the baseline (offset), in the range 0 to 10,000. If the effect's type-specific data does not specify a baseline, then the amplitude is relative to zero.

lAttackTime

The time, in microseconds, to reach the sustain level.

lFadeLevel

Amplitude for the end of the envelope, relative to the baseline, in the range 0 to 10,000. If the effect's type-specific data does not specify a baseline, then the amplitude is relative to zero.

lFadeTime

The time, in microseconds, to reach the fade level.

DIJOYSTATE

The DIJOYSTATE type contains information about the state of a joystick device. (This term includes other controllers such as game pads and steering wheels). This type is used with the DirectInputDevice.GetDeviceStateJoystick method.

Type DIJOYSTATE

 buttons(0 To 31) As Byte

 POV(0 To 3) As Long

 rx As Long

 ry As Long

 rz As Long

 slider(0 To 1) As Long

 x As Long

 y As Long

 z As Long

End Type

Members

buttons

Array of button states. The high-order bit of the byte is set if the corresponding button is down and clear if the button is up or does not exist.

POV

The current position of up to four direction controllers (such as point-of-view hats). The position is indicated in hundredths of degrees clockwise from north (away from the user). The center position is normally reported as -1; but see Remarks. For indicators that have only five positions, the value for a controller will be -1, 0, 9,000, 18,000, or 27,000.

rx

Information about the joystick x-axis rotation. If the joystick does not have this, the value is 0.

ry

Information about the joystick y-axis rotation. If the joystick does not have this axis, the value is 0.

rz

Information about the joystick z-axis rotation (often called the rudder). If the joystick does not have this axis, the value is 0.

slider

Two additional axis values whose semantics depend on the joystick. Use the DirectInputDevice.GetObjectInfo method to obtain semantic information about these values.

x

Information about the joystick x-axis (usually the left-right movement of a stick).

y

Information about the joystick y-axis (usually the forward-backward movement of a stick).

z

Information about the joystick z-axis (often the throttle control). If the joystick does not have this axis, the value is zero.

Remarks

You must prepare the device for joystick-style access by calling the DirectInputDevice.SetCommonDataFormat method, passing the DIFORMAT_JOYSTICK format constant.

If an axis is in relative mode, then the appropriate member contains the change in position. If it is in absolute mode, then the member contains the absolute axis position.

Some drivers report the centered position of the POV indicator as 65,535. You can determine whether an indicator is centered as follows:

Dim POVCentered as Boolean

POVCentered = MyDijoystate.POV(0) And &HFFFF;

See Also

DIJOYSTATE2

DIJOYSTATE2

The DIJOYSTATE2 type contains information about the state of a joystick device with extended capabilities. This type is used with the DirectInputDevice.GetDeviceStateJoystick2 method.

Most applications do not need to use this type, which is for highly specialized controllers including force-feedback devices. For standard game controllers, use the DIJOYSTATE type and obtain data by calling DirectInputDevice.GetDeviceStateJoystick.

Type DIJOYSTATE2

 buttons(0 To 31) As Byte

 frx As Long

 fry As Long

 frz As Long

 fslider(0 To 1) As Long

 fx As Long

 fy As Long

 fz As Long

 POV(0 To 3) As Long

 rx As Long

 ry As Long

 rz As Long

 slider(0 To 1) As Long

 vrx As Long

 vry As Long

 vrz As Long

 vslider(0 To 1) As Long

 vx As Long

 vy As Long

 vz As Long

 x As Long

 y As Long

 z As Long

End Type

Members

buttons

Array of button states. The high-order bit of the byte is set if the corresponding button is down and clear if the button is up or does not exist.

frx

Information about the x-axis torque.

fry

Information about the y-axis torque.

frz

Information about the z-axis torque.

fslider

Information about extra axis forces.

fx

Information about the x-axis force.

fy

Information about the y-axis force.

fz

Information about the z-axis force.

POV

The current position of up to four direction controllers (such as point-of-view hats). The position is indicated in hundredths of degrees clockwise from north (away from the user). The center position is normally reported as -1; but see Remarks. For indicators that have only five positions, the value for a controller will be -1, 0, 9,000, 18,000, or 27,000.

rx

Information about the joystick x-axis rotation. If the joystick does not have this, the value is 0.

ry

Information about the joystick y-axis rotation. If the joystick does not have this axis, the value is 0.

rz

Information about the joystick z-axis rotation (often called the rudder). If the joystick does not have this axis, the value is zero.

slider

Two additional axis values whose semantics depend on the joystick. Use the DirectInputDevice.GetObjectInfo method to obtain semantic information about these values.

vrx

Information about the x-axis angular velocity.

vry

Information about the y-axis angular velocity.

vrz

Information about the z-axis angular velocity.

vslider[0 To 1]

Information about extra axis velocities.

vx

Information about the x-axis velocity.

vy

Information about the y-axis velocity.

vz

Information about the z-axis velocity.

x

Information about the joystick x-axis (usually the left-right movement of a stick).

y

Information about the joystick y-axis (usually the forward-backward movement of a stick).

z

Information about the joystick z-axis (often the throttle control). If the joystick does not have this axis, the value is zero.

Remarks

You must prepare the device for access to a joystick with extended capabilities by calling the DirectInputDevice.SetCommonDataFormat method, passing the DIFORMAT_JOYSTICK2 data format variable.

If an axis is in relative mode, then the appropriate member contains the change in position. If it is in absolute mode, then the member contains the absolute axis position.

Some drivers report the centered position of the POV indicator as 65,535. You can determine whether an indicator is centered as follows:

Dim POVCentered as Boolean

POVCentered = MyDijoystate2.POV(0) And &HFFFF;

DIKEYBOARDSTATE

The DIKEYBOARDSTATE type contains information about the state of keyboard keys. This type is used with the DirectInputDevice.GetDeviceStateKeyboard method.

Type DIKEYBOARDSTATE

 key(0 To 255) As Byte

End Type

Members

key

Array of key states. The array can be indexed by using members of the CONST_DIKEYFLAGS enumeration. For each key, the high bit is set if the key is down, and clear if the key is up or does not exist.

Remarks

The following example checks to see if the Esc key is being pressed:

Dim keyState as DIKEYBOARDSTATE

' diDevice is a valid DirectInputDevice object.

Call diDevice.GetDeviceStateKeyboard(keyState)

If (keyState.key(DIK_ESCAPE) And &H80) Then

 ' Key is down

End If

DIMOUSESTATE

The DIMOUSESTATE type contains information about the state of a mouse device or another device that is being accessed as if it were a mouse device. This type is used with the DirectInputDevice.GetDeviceStateMouse method.

Type DIMOUSESTATE

 buttons(0 To 3) As Byte

 x As Long

 y As Long

 z As Long

End Type

Members

buttons

Array of button states. The high-order bit of the byte is set if the corresponding button is down.

x

Information about the mouse x-axis.

y

Information about the mouse y-axis.

z

Information about the mouse z-axis (typically a wheel). If the mouse does not have a z-axis, then the value is 0.

Remarks

Immediate data is returned in this type from a device that has been prepared by passing the DIFORMAT_MOUSE constant to the DirectInputDevice.SetCommonDataFormat method.

If an axis is in relative mode, then the appropriate member contains the change in position since the last call to this method. If the axis is in absolute mode, then the member contains the accumulated relative motion in relation to an arbitrary start point. The absolute axis position is not meaningful except in comparison with other absolute axis positions.

DIOBJECTDATAFORMAT

The DIOBJECTDATAFORMAT type contains information about a device object's data format for use with the DirectInputDevice.SetDataFormat method.

Type DIOBJECTDATAFORMAT {

 lFlags As CONST_DIDEVICEOBJINSTANCEFLAGS

 lOfs As Long

 lType As CONST_DIDFTFLAGS

 strGuid As String

End Type

Members

lFlags

Zero or more of the following values from the CONST_DIDEVICEOBJINSTANCEFLAGS enumeration.

DIDOI_ASPECTACCEL

The object selected by DirectInput.SetDataFormat must report acceleration information.

DIDOI_ASPECTFORCE

The object selected by DirectInput.SetDataFormat must report force information.

DIDOI_ASPECTPOSITION

The object selected by DirectInput.SetDataFormat must report position information.

DIDOI_ASPECTVELOCITY

The object selected by DirectInput.SetDataFormat must report velocity information.

lOfs

Byte offset within the data packet where the data for the input source will be stored. This value must be a multiple of four for Long size data, such as axes. It can be byte-aligned for buttons.

lType

Device type that describes the object. It is a combination of values from the CONST_DIDFTFLAGS enumeration describing the object type (axis, button, and so forth) and containing the object-instance number in the middle 16 bits.

strGuid

Unique identifier for the type of input source. An empty string indicates that any type of object is permissible.

The following strings can be used in place of actual GUID strings to identify the type of device object:

GUID_XAxis

GUID_YAxis

GUID_ZAxis

GUID_RxAxis

GUID_RyAxis

GUID_RzAxis

GUID_Slider

GUID_Button

GUID_Key

GUID_POV

DIPERIODICFORCE

The DIPERIODICFORCE type describes parameters for a periodic force in the DIEFFECT type.

Type DIPERIODICFORCE

 lMagnitude As Long

 lOffset As Long

 lPhase As Long

 lPeriod As Long

End Type

Members

lMagnitude

The magnitude of the effect, in the range 0 to 10,000. If an envelope is applied to this effect, then the value represents the magnitude of the sustain. If no envelope is applied, then the value represents the amplitude of the entire effect.

lOffset

The offset of the effect. The range of forces generated by the effect will be lOffset - lMagnitude to lOffset + lMagnitude. The value of the lOffset member is also the baseline for any envelope that is applied to the effect.

lPhase

The position in the cycle of the periodic effect at which playback begins, in the range 0 to 35,999. See Remarks.

lPeriod

The period of the effect, in microseconds.

Remarks

A device driver might not provide support for all values in the lPhase member. In this case the value will be rounded off to the nearest supported value.

DIPROPLONG

The DIPROPLONG type is used to store property information to be set on or retrieved from the input device by using the DirectInputDevice.SetProperty and DirectInputDevice.GetProperty methods, where the property is a single value.

Type DIPROPLONG

 lData As Long

 lHow As Long

 lObj As Long

 lSize As Long

End Type

Members

lData

The property-specific value being set or retrieved.

lHow

Value specifying how the lObj parameter should be interpreted. This value may be one of the members of the CONST_DIPHFLAGS enumeration.

If lObj is DIPROP_AXISMODE or DIPROP_BUFFERSIZE, lHow should be DIPH_DEVICE, because these properties cannot be set for an individual object.

lObj

Object for which the property is to be accessed.

If the lHow member is DIPH_BYID, this member must be the identifier for the object whose property setting is to be set or retrieved. This value can be retrieved for the object by using the DirectInputDeviceObjectInstance.GetType method.

If the lHow member is DIPH_BYOFFSET, this member must be a data format offset for the object whose property setting is to be set or retrieved. This value can be obtained by using the DirectInputDeviceObjectInstance.GetOfs method.

If lHow is DIPH_DEVICE, this value should be 0.

lSize

Size of this type.

Remarks

All members must be initialized with the proper values before the type is passed to the SetProperty method. All members except lData must be initialized with the proper values before the type is passed to GetProperty.

See Also

DIPROPRANGE

DIPROPRANGE

The DIPROPRANGE type is used to store property information to be set on or retrieved from the input device by using the DirectInputDevice.SetProperty and DirectInputDevice.GetProperty methods, where the property is a range of values.

Type DIPROPRANGE

 lHow As Long

 lMax As Long

 lMin As Long

 lObj As Long

 lSize As Long

End Type

Members

lHow

Value specifying how the lObj member should be interpreted. This value may be one of the members of the CONST_DIPHFLAGS enumeration.

lMax

Upper limit of the range. If the range of the device is unrestricted, this value will be DIPROPRANGE_NOMAX (from the CONST_DINPUT enumeration) when the DirectInputDevice.GetProperty method returns.

lMin

Lower limit of the range. If the range of the device is unrestricted, this value will be DIPROPRANGE_NOMIN (from the CONST_DINPUT enumeration)when the DirectInputDevice.GetProperty method returns.

lObj

Object for which the property is to be accessed.

If the lHow member is DIPH_BYID, this member must be the identifier for the object whose property setting is to be set or retrieved. This value can be retrieved for the object by using the DirectInputDeviceObjectInstance.GetType method.

If the lHow member is DIPH_BYOFFSET, this member must be a data format offset for the object whose property setting is to be set or retrieved. This value can be obtained by using the DirectInputDeviceObjectInstance.GetOfs method.

If lHow is DIPH_DEVICE, this value should be 0.

lSize

Size of this type.

See Also

DIPROPLONG

DIRAMPFORCE

The DIRAMPFORCE type describes parameters for a ramp force in the DIEFFECT type.

Type DIRAMPFORCE

 lRangeEnd As Long

 lRangeStart As Long

End Type

Members

lRangeEnd

The magnitude at the end of the effect, in the range -10,000 to +10,000.

lRangeStart

The magnitude at the start of the effect, in the range -10,000 to +10,000.

Remarks

The duration of a ramp force effect must be finite.

Enumerations

DirectInput uses enumerations to group constants in order to take advantage of the statement completion feature of Visual Basic. The enumerations used in DirectInput are:

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DICOMMONDATAFORMATS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DICONDITIONFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DIDATAFORMATFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DIDEVCAPSFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DIDEVICEOBJINSTANCEFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DIDEVICETYPE

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DIDFTFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DIDGDDFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DIEFFFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DIEFTFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DIEGESFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DIENUMDEVICESFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DIEPFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DIESFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DIGFFSFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DIJOYSTICKOFS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DIKEYFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DIMOUSEOFS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DINPUT

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DINPUTERR

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DIPHFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DISCLFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DISDDFLAGS

�SYMBOL 183 \f "Symbol" \s 11 \h �	CONST_DISFFCFLAGS

CONST_DICOMMONDATAFORMATS

Members of the CONST_DICOMMONDATAFORMATS enumeration are used to specify the data format in the format parameter of the DirectInputDevice.SetCommonDataFormat method.

Enum CONST_DICOMMONDATAFORMATS

 DIFORMAT_JOYSTICK = 3

 DIFORMAT_JOYSTICK2 = 4

 DIFORMAT_KEYBOARD = 1

 DIFORMAT_MOUSE = 2

End Enum

DIFORMAT_JOYSTICK

Joystick whose state data can be received in a DIJOYSTATE type.

DIFORMAT_JOYSTICK2

Joystick with extended capabilities whose state data can be received in a DIJOYSTATE2 type.

DIFORMAT_KEYBOARD

Keyboard whose state data can be received in a DIKEYBOARDSTATE type.

DIFORMAT_MOUSE

Mouse whose state data can be received in a DIMOUSESTATE type.

CONST_DICONDITIONFLAGS

The CONST_DICONDITIONFLAGS enumeration is used in the conditionFlags member of the DIEFFECT type to set the axes and direction of a force-feedback effect.

Enum CONST_DICONDITIONFLAGS

 DICONDITION_USE_BOTH_AXES = 1

 DICONDITION_USE_DIRECTION = 2

End Enum

DICONDITION_USE_BOTH_AXES

Not currently supported.

DICONDITION_USE_DIRECTION

Not currently supported.

CONST_DIDATAFORMATFLAGS

The CONST_DIDATAFORMATFLAGS enumeration is used in the lFlags member of the DIDATAFORMAT type to describe additional attributes of the data format.

Enum CONST_DIDATAFORMATFLAGS

 DIDF_ABSAXIS = 1

 DIDF_RELAXIS = 2

End Enum

DIDF_ABSAXIS

The axes are in absolute mode. Setting this flag in the data format is equivalent to manually setting the axis mode property using the DirectInputDevice.SetProperty method. This may not be combined with DIDF_RELAXIS flag.

DIDF_RELAXIS

The axes are in relative mode. Setting this flag in the data format is equivalent to manually setting the axis mode property using the DirectInputDevice.SetProperty method. This may not be combined with the DIDF_ABSAXIS flag.

CONST_DIDEVCAPSFLAGS

The CONST_DIDEVCAPSFLAGS enumeration is used in the lFlags member of the DIDEVCAPS type to describe the DirectInput device.

Enum CONST_DIDEVCAPSFLAGS

 DIDC_ATTACHED = 1

 DIDC_DEADBAND = 16384 (&H4000)

 DIDC_EMULATED = 4

 DIDC_FFATTACK = 512 (&H200)

 DIDC_FFFADE = 1024 (&H400)

 DIDC_FORCEFEEDBACK = 256 (&H100)

 DIDC_POLLEDDATAFORMAT = 8

 DIDC_POLLEDDEVICE = 2

 DIDC_POSNEGCOEFFICIENTS = 4096 (&H1000)

 DIDC_POSNEGSATURATION = 8192 (&H2000)

 DIDC_SATURATION = 2048 (&H800)

End Enum

DIDC_ATTACHED

The device is physically attached.

DIDC_DEADBAND

The device supports deadband for at least one force-feedback condition.

DIDC_EMULATED

If this flag is set, the data is coming from a user mode device interface (such as HID) or by some other ring 3 means. If it is not set, the data is coming directly from a kernel mode driver.

DIDC_FFATTACK

The force-feedback system supports the attack parameter for at least one effect. If the device does not support attack then the lAttackLevel and lAttackTime members of the DIENVELOPE type will be ignored by the device.

DIDC_FFFADE

The force-feedback system supports the fade parameter for at least one effect. If the device does not support fade then the lFadeLevel and lFadeTime members of the DIENVELOPE type will be ignored by the device.

DIDC_FORCEFEEDBACK

The device supports force feedback.

DIDC_POLLEDDATAFORMAT

At least one object in the current data format is polled rather than interrupt-driven. For these objects, the application must explicitly call the DirectInputDevice.Poll method in order to obtain data.

DIDC_POLLEDDEVICE

At least one object on the device is polled rather than interrupt-driven. For these objects, the application must explicitly call the DirectInputDevice.Poll method in order to obtain data. HID devices may contain a mixture of polled and non-polled objects.

DIDC_POSNEGCOEFFICIENTS

The force-feedback system supports two coefficient values for conditions (one for the positive displacement of the axis and one for the negative displacement of the axis) for at least one condition. If the device does not support both coefficients, then the negative coefficient in the DICONDITION type will be ignored.

DIDC_POSNEGSATURATION

The force-feedback system supports a maximum saturation for both positive and negative force output for at least one condition. If the device does not support both saturation values, then the negative saturation in the DICONDITION structure will be ignored.

DIDC_SATURATION

The force-feedback system supports the saturation of condition effects for at least one condition. If the device does not support saturation, then the force generated by a condition is limited only by the maximum force which the device can generate.

See Also

CONST_DIEFTFLAGS

CONST_DIDEVICEOBJINSTANCEFLAGS

Members of the CONST_DIDEVICEOBJINSTANCEFLAGS enumeration describe device object capabilities and are returned by the DirectInputDeviceObjectInstance.GetFlags method. They are also present in the DIOBJECTDATAFORMAT type passed to the DirectInputDevice.SetDataFormat method

Enum CONST_DIDEVICEINSTANCEFLAGS

 DIDOI_ASPECTACCEL = 768 (&H300)

 DIDOI_ASPECTFORCE = 1024 (&H400)

 DIDOI_ASPECTMASK = 3840 (&HF00)

 DIDOI_ASPECTPOSITION = 256 (&H100)

 DIDOI_ASPECTVELOCITY = 512 (&H200)

 DIDOI_FFACTUATOR = 1

 DIDOI_FFEFFECTTRIGGER = 2

 DIDOI_POLLED = 32768 (&H8000)

End Enum

DIDOI_ASPECTACCEL

The object reports acceleration information.

DIDOI_ASPECTFORCE

The object reports force information.

DIDOI_ASPECTMASK

The bits that are used to report aspect information. An object can represent at most one aspect.

DIDOI_ASPECTPOSITION

The object reports position information.

DIDOI_ASPECTVELOCITY

The object reports velocity information.

DIDOI_FFACTUATOR

The object can have force-feedback effects applied to it.

DIDOI_FFEFFECTTRIGGER

The object can trigger playback of force-feedback effects.

DIDOI_POLLED

The object does not return data until the DirectInputDevice.Poll method is called.

Remarks

The only one of these flags that is of interest for applications developed with DirectX for Visual Basic is DIDIO_POLLED.

CONST_DIDEVICETYPE

Members of the CONST_DIDEVICETYPE enumeration are used to identify the input device type and subtype. A packed value representing the type and subtype is returned by the DirectInputDeviceInstance.GetDevType method and in the lDevType member of the DIDEVCAPS type returned by DirectInputDevice.GetCapabilities. A value representing a primary type is passed as the deviceType parameter to the DirectInput.GetDIEnumDevices method.

For a table of members listed by type and subtype, see DirectInputDeviceInstance.GetDevType.

Enum CONST_DIDEVICETYPE

 DIDEVTYPE_DEVICE = 1

 DIDEVTYPE_HID = 65536 (&H10000)

 DIDEVTYPE_JOYSTICK = 4

 DIDEVTYPE_KEYBOARD = 3

 DIDEVTYPE_MOUSE = 2

 DIDEVTYPEJOYSTICK_FLIGHTSTICK = 3

 DIDEVTYPEJOYSTICK_GAMEPAD = 4

 DIDEVTYPEJOYSTICK_HEADTRACKER = 7

 DIDEVTYPEJOYSTICK_RUDDER = 5

 DIDEVTYPEJOYSTICK_TRADITIONAL = 2

 DIDEVTYPEJOYSTICK_UNKNOWN = 1

 DIDEVTYPEJOYSTICK_WHEEL = 6

 DIDEVTYPEKEYBOARD_J3100 = 12

 DIDEVTYPEKEYBOARD_JAPAN106 = 10

 DIDEVTYPEKEYBOARD_JAPANAX = 11

 DIDEVTYPEKEYBOARD_NEC98 = 7

 DIDEVTYPEKEYBOARD_NEC98106 = 9

 DIDEVTYPEKEYBOARD_NEC98LAPTOP = 8

 DIDEVTYPEKEYBOARD_NOKIA1050 = 5

 DIDEVTYPEKEYBOARD_NOKIA9140 = 6

 DIDEVTYPEKEYBOARD_OLIVETTI = 2

 DIDEVTYPEKEYBOARD_PCAT = 3

 DIDEVTYPEKEYBOARD_PCENH = 4

 DIDEVTYPEKEYBOARD_PCXT = 1

 DIDEVTYPEKEYBOARD_UNKNOWN = 0

 DIDEVTYPEMOUSE_FINGERSTICK = 3

 DIDEVTYPEMOUSE_TOUCHPAD = 4

 DIDEVTYPEMOUSE_TRACKBALL = 5

 DIDEVTYPEMOUSE_TRADITIONAL = 2

 DIDEVTYPEMOUSE_UNKNOWN = 1

End Enum

DIDEVTYPE_DEVICE

A device that does not fall into the other categories.

DIDEVTYPE_HID

The device uses the Human Interface Device (HID) protocol.

DIDEVTYPE_JOYSTICK

A joystick or similar device, such as a steering wheel.

DIDEVTYPE_KEYBOARD

A keyboard or keyboard-like device.

DIDEVTYPE_MOUSE

A mouse or mouse-like device (such as a trackball).

DIDEVTYPEJOYSTICK_FLIGHTSTICK

A joystick optimized for flight simulation.

DIDEVTYPEJOYSTICK_GAMEPAD

A device whose primary purpose is to provide button input.

DIDEVTYPEJOYSTICK_HEADTRACKER

A device that tracks the movement of the user's head.

DIDEVTYPEJOYSTICK_RUDDER

A device for yaw control.

DIDEVTYPEJOYSTICK_TRADITIONAL

A traditional joystick.

DIDEVTYPEJOYSTICK_UNKNOWN

The subtype could not be determined.

DIDEVTYPEJOYSTICK_WHEEL

A steering wheel.

DIDEVTYPEKEYBOARD_J3100

Japanese J3100 keyboard.

DIDEVTYPEKEYBOARD_JAPAN106

Japanese 106-key keyboard.

DIDEVTYPEKEYBOARD_JAPANAX

Japanese AX keyboard.

DIDEVTYPEKEYBOARD_NEC98

Japanese NEC PC98 keyboard.

DIDEVTYPEKEYBOARD_NEC98106

Japanese NEC PC98 106-key keyboard.

DIDEVTYPEKEYBOARD_NEC98LAPTOP

Japanese NEC PC98 laptop keyboard.

DIDEVTYPEKEYBOARD_NOKIA1050

Nokia 1050 keyboard.

DIDEVTYPEKEYBOARD_NOKIA9140

Nokia 9140 keyboard.

DIDEVTYPEKEYBOARD_OLIVETTI

Olivetti 102-key keyboard.

DIDEVTYPEKEYBOARD_PCAT

IBM PC/AT 84-key keyboard.

DIDEVTYPEKEYBOARD_PCENH

IBM PC Enhanced 101/102-key or Microsoft Natural® keyboard.

DIDEVTYPEKEYBOARD_PCXT

IBM PC/XT 83-key keyboard.

DIDEVTYPEKEYBOARD_UNKNOWN

The subtype could not be determined.

DIDEVTYPEMOUSE_FINGERSTICK

The device is a fingerstick.

DIDEVTYPEMOUSE_TOUCHPAD

The device is a touchpad.

DIDEVTYPEMOUSE_TRACKBALL

The device is a trackball.

DIDEVTYPEMOUSE_TRADITIONAL

The device is a traditional mouse.

DIDEVTYPEMOUSE_UNKNOWN

The subtype could not be determined.

CONST_DIDFTFLAGS

Members of the CONST_DIDFTFLAGS enumeration are used in the flags parameter of the DirectInputDevice.GetDeviceObjectsEnum method to specify the type of device object to enumerate. These values are also returned by the DirectInputDeviceObjectInstance.GetFlags method to describe capabilities of the device object.

Enum CONST_DIDFTFLAGS

 DIDFT_ABSAXIS = 2

 DIDFT_ALL = 0

 DIDFT_ANYINSTANCE = 16776960 (&HFFFF00)

 DIDFT_AXIS = 3

 DIDFT_BUTTON = 12

 DIDFT_COLLECTION = 64 (&H40)

 DIDFT_FFACTUATOR = 16777216 (&H1000000)

 DIDFT_FFEFFECTTRIGGER = 33554432 (&H2000000)

 DIDFT_INSTANCEMASK = 16776960(&HFFFF00)

 DIDFT_NOCOLLECTION = 16776960 (&HFFFF00)

 DIDFT_NODATA = 128 (&H80)

 DIDFT_POV = 16 (&H10)

 DIDFT_PSHBUTTON = 4

 DIDFT_RELAXIS = 1

 DIDFT_TGLBUTTON = 8

End Enum

DIDFT_ABSAXIS

An absolute axis.

DIDFT_ALL

All objects.

DIDFT_ANYINSTANCE

Any instance of an object.

DIDFT_AXIS

An axis, either absolute or relative.

DIDFT_BUTTON

A push button or a toggle button.

DIDFT_COLLECTION

A HID link collection. HID link collections do not generate data of their own.

DIDFT_FFACTUATOR

An object that contains a force-feedback actuator. In other words, forces can be applied to this object.

DIDFT_FFEFFECTTRIGGER

An object that can be used to trigger force-feedback effects.

DIDFT_INSTANCEMASK

Same as DIDFT_ANYINSTANCE.

DIDFT_NOCOLLECTION

An object that does not belong to any HID link collection; in other words, an object for which DirectInputDeviceObjectInstance.GetCollectionNumber returns 0.

DIDFT_NODATA

An object that does not generate data.

DIDFT_POV

A point-of-view controller.

DIDFT_PSHBUTTON

A push button. A push button is reported as down when the user presses it and as up when the user releases it.

DIDFT_RELAXIS

A relative axis.

DIDFT_TGLBUTTON

A toggle button. A toggle button is reported as down when the user presses it and remains so until the user presses the button a second time.

CONST_DIDGDDFLAGS

Members of the CONST_DIDGDDFLAGS enumeration are used in the flags parameter of the DirectInputDevice.GetDeviceData method to control the manner in which data is obtained.

Enum CONST_DIDGDDFLAGS

 DIGDD_DEFAULT = 0

 DIGDD_PEEK = 1

End Enum

DIGDD_DEFAULT

Remove retrieved items from the buffer.

DIGDD_PEEK

Do not remove retrieved items from the buffer. A subsequent GetDeviceData call will read the same data.

CONST_DIEFFFLAGS

Members of the CONST_DIEFFFLAGS enumeration are used in the lFlags member of the DIEFFECT type.

Enum CONST_DIEFFFLAGS

 DIEFF_CARTESIAN = 16 (&H10)

 DIEFF_OBJECTOFFSETS = 2

 DIEFF_POLAR = 32 (&H20)

End Enum

DIEFF_CARTESIAN

The direction of the effect is given in Cartesian coordinates. DIEFFECT.x and DIEFFECT.y contain valid values.

DIEFF_OBJECTOFFSETS

The value of the lTriggerButton member of DIEFFECT is the offset of the button in the data structure for the device.

DIEFF_POLAR

The direction of the effect is given in polar coordinates. DIEFFECT.x contains a valid value.

Remarks

The default behavior of DirectInputDevice.CreateEffect and DirectInputDevice.CreateCustomEffect is to create the effect as if DIEFFECT.lFlags contained (DIEFF_OBJECTOFFSETS Or DIEFF_POLAR). In other words, it is not necessary to specify these flags.

CONST_DIEFTFLAGS

Members of the CONST_DIEFTFLAGS enumeration describe types and capabilities of force-feedback effects. They are used to restrict effect enumeration in the DirectInputDevice.GetEffectsEnum method to one or more of the primary types. They are also returned by the DirectInputEnumEffects.GetType method.

Enum CONST_DIEFTFLAGS

 DIEFT_ALL = 0

 DIEFT_CONDITION = 4

 DIEFT_CONSTANTFORCE = 1

 DIEFT_CUSTOMFORCE = 5

 DIEFT_DEADBAND = 16384 (&H4000)

 DIEFT_FFATTACK = 512 (&H200)

 DIEFT_FFFADE = 1024 (&H400)

 DIEFT_HARDWARE = 255 (&HFF)

 DIEFT_PERIODIC = 3

 DIEFT_POSNEGCOEFFICIENTS = 4096 (&H1000)

 DIEFT_POSNEGSATURATION = 8192 (&H2000)

 DIEFT_RAMPFORCE = 2

 DIEFT_SATURATION = 2048 (&H800)

End Enum

DIEFT_ALL

All effects are to be enumerated.

DIEFT_CONDITION

The effect is a condition, or conditions are to be enumerated.

DIEFT_CONSTANTFORCE

The effect is a constant force, or constant forces are to be enumerated.

DIEFT_CUSTOMFORCE

The effect is a custom force, or custom forces are to be enumerated.

DIEFT_DEADBAND

The effect supports deadband.

DIEFT_FFATTACK

The effect supports attack.

DIEFT_FFFADE

The effect supports fade.

DIEFT_HARDWARE

The effect is specific to the hardware, or hardware effects are to be enumerated.

DIEFT_PERIODIC

The effect is periodic, or periodic effects are to be enumerated.

DIEFT_POSNEGCOEFFICIENTS

The condition supports different positive and negative coefficients.

DIEFT_POSNEGSATURATION

The effect supports different positive and negative saturation_dx_saturation_glos.

DIEFT_RAMPFORCE

The effect is a ramp force, or ramp forces are to be enumerated.

DIEFT_SATURATION

The effect supports saturation.

See Also

CONST_DIDEVCAPSFLAGS

CONST_DIEGESFLAGS

Members of the CONST_DIEGESFLAGS enumeration are returned by the DirectInputEffect.GetEffectStatus method.

Enum CONST_DIEGESFLAGS

 DIEGES_EMULATED = 2

 DIEGES_PLAYING = 1

End Enum

DIEGES_EMULATED

The effect is emulated.

DIEGES_PLAYING

The effect is playing.

CONST_DIENUMDEVICESFLAGS

Members of the CONST_DIENUMDEVICESFLAGS enumeration are used in the flags parameter of the DirectInput.GetDIEnumDevices method to indicate whether all device, or only attached devices, are to be enumerated.

Enum CONST_DIENUMDEVICESFLAGS

 DIEDFL_ALLDEVICES = 0

 DIEDFL_ATTACHEDONLY = 1

End Enum

DIEDFL_ALLDEVICES

All installed devices will be enumerated. This is the default behavior.

DIEDFL_ATTACHEDONLY

Only attached and installed devices.

CONST_DIEPFLAGS

Members of the CONST_DIEPFLAGS enumeration are passed to the DirectInputEffect.SetParameters method in order to specify which parameters are being set, and the subsequent behavior of the effect. Some members are also returned by the DirectInputEnumEffects.GetStaticParams and DirectInputEnumEffects.GetDynamicParams methods, giving information about support for the parameter.

Enum CONST_DIEPFLAGS

 DIEP_ALLPARAMS = 511 (&H1FF)

 DIEP_AXES = 32 (&H20)

 DIEP_DIRECTION = 64 (&H40)

 DIEP_DURATION = 1

 DIEP_ENVELOPE = 128 (&H80)

 DIEP_GAIN = 4

 DIEP_NODOWNLOAD = -2147483648 (&H80000000)

 DIEP_NORESTART = 1073741824 (&H40000000)

 DIEP_SAMPLEPERIOD = 2

 DIEP_START = 536870912 (&H20000000)

 DIEP_TRIGGERBUTTON = 8

 DIEP_TRIGGERREPEATINTERVAL = 16 (&H10)

 DIEP_TYPESPECIFICPARAMS = 256 (&H100)

End Enum

DIEP_ALLPARAMS

Not used.

DIEP_AXES

Not used.

DIEP_DIRECTION

The x and y members of DIEFFECT are valid, or the direction parameter is supported. If you are setting or requesting effect parameters, you can specify that the direction is supplied or is to be returned in either Cartesian or polar coordinates by specifying DIEFF_CARTESIAN or DIEFF_POLAR in DIEFFECT.lFlags.

DIEP_DURATION

The lDuration member of DIEFFECT is valid, or the effect supports changing of the duration.

DIEP_ENVELOPE

The envelope member of DIEFFECT is valid, or the effect supports the application of an envelope.

DIEP_GAIN

The lGain member is valid, or the effect supports the application of gain.

DIEP_NODOWNLOAD

After setting parameters, the effect is not to be downloaded.

DIEP_NORESTART

Suppress the stopping and restarting of the effect in order to change parameters.

DIEP_SAMPLEPERIOD

The lSamplePeriod member is valid.

DIEP_START

After setting parameters, start the effect immediately.

DIEP_TRIGGERBUTTON

The lTriggerButton member is valid, or the effect supports a trigger button.

DIEP_TRIGGERREPEATINTERVAL

The lTriggerRepeatInterval member is valid, or the effect supports trigger repeat.

DIEP_TYPESPECIFICPARAMS

The effect has type-specific parameters that can be changed by the application. This value is returned by GetStaticParams for all standard effects and for hardware-specific effects with application-modifiable parameters. DirectX for Visual Basic supports hardware effects only if they do not have this flag set.

CONST_DIESFLAGS

The CONST_DIESFLAGS are used to control behavior of force-feedback effect playback.

Enum CONST_DIESFLAGS

 DIES_NODOWNLOAD = -2147483648 (&H80000000)

 DIES_SOLO = 1

End Enum

For an explanation of the members, see DirectInputEffect.Start.

CONST_DIGFFSFLAGS

Members of the CONST_DIGFFSFLAGS enumeration describe the state of a force-feedback device. They are returned by the DirectInputDevice.GetForceFeedbackState method.

Enum CONST_DIGFFSFLAGS

 DIGFFS_ACTUATORSOFF = 32 (&H20)

 DIGFFS_ACTUATORSON = 16 (&H10)

 DIGFFS_DEVICELOST = -2147483648 (&H80000000)

 DIGFFS_EMPTY = 1

 DIGFFS_PAUSED = 4

 DIGFFS_POWEROFF = 128 (&H80)

 DIGFFS_POWERON = 64 (&H40)

 DIGFFS_SAFETYSWITCHOFF = 512 (&H200)

 DIGFFS_SAFETYSWITCHON = 256 (&H100)

 DIGFFS_STOPPED = 2

 DIGFFS_USERFFSWITCHOFF = 2048 (&H800)

 DIGFFS_USERFFSWITCHON = 1024 (&H400)

End Enum

DIGFFS_ACTUATORSOFF

The device's force-feedback actuators are disabled.

DIGFFS_ACTUATORSON

The device's force-feedback actuators are enabled.

DIGFFS_DEVICELOST

The device suffered an unexpected failure and is in an indeterminate state. It must be reset either by unacquiring and reacquiring the device, or by sending a DISFFC_RESET command.

DIGFFS_EMPTY

The device has no downloaded effects.

DIGFFS_PAUSED

Playback of all active effects has been paused.

DIGFFS_POWEROFF

The force-feedback system is not currently available. If the device cannot report the power state, then neither DIGFFS_POWERON nor DIGFFS_POWEROFF will be returned.

DIGFFS_POWERON

Power to the force-feedback system is currently available. If the device cannot report the power state, then neither DIGFFS_POWERON nor DIGFFS_POWEROFF will be returned.

DIGFFS_SAFETYSWITCHOFF

The safety switch is currently off, meaning that the device cannot operate. If the device cannot report the state of the safety switch, then neither DIGFFS_SAFETYSWITCHON nor DIGFFS_SAFETYSWITCHOFF will be returned.

DIGFFS_SAFETYSWITCHON

The safety switch is currently on, meaning that the device can operate. If the device cannot report the state of the safety switch, then neither DIGFFS_SAFETYSWITCHON nor DIGFFS_SAFETYSWITCHOFF will be returned.

DIGFFS_STOPPED

No effects are playing and the device is not paused.

DIGFFS_USERFFSWITCHOFF

The user force-feedback switch is currently off, meaning that the device cannot operate. If the device cannot report the state of the user force-feedback switch, then neither DIGFFS_USERFFSWITCHON nor DIGFFS_USERFFSWITCHOFF will be returned.

DIGFFS_USERFFSWITCHON

The user force-feedback switch is currently on, meaning that the device can operate. If the device cannot report the state of the user force-feedback switch, then neither DIGFFS_USERFFSWITCHON nor DIGFFS_USERFFSWITCHOFF will be returned.

CONST_DIJOYSTICKOFS

The members of the CONST_DIJOYSTICKOFS enumeration represent the offset of the data for the various joystick device objects within the data format.

Enum CONST_DIJOYSTICKOFS

 DIJOFS_BUTTON0 = 48 (&H30)

 DIJOFS_BUTTON1 = 49 (&H31)

 DIJOFS_BUTTON10 = 58 (&H3A)

 DIJOFS_BUTTON11 = 59 (&H3B)

 DIJOFS_BUTTON12 = 60 (&H3C)

 DIJOFS_BUTTON13 = 61 (&H3D)

 DIJOFS_BUTTON14 = 62 (&H3E)

 DIJOFS_BUTTON15 = 63 (&H3F)

 DIJOFS_BUTTON16 = 64 (&H40)

 DIJOFS_BUTTON17 = 65 (&H41)

 DIJOFS_BUTTON18 = 66 (&H42)

 DIJOFS_BUTTON19 = 67 (&H43)

 DIJOFS_BUTTON2 = 50 (&H32)

 DIJOFS_BUTTON20 = 68 (&H44)

 DIJOFS_BUTTON21 = 69 (&H45)

 DIJOFS_BUTTON22 = 70 (&H46)

 DIJOFS_BUTTON23 = 71 (&H47)

 DIJOFS_BUTTON24 = 72 (&H48)

 DIJOFS_BUTTON25 = 73 (&H49)

 DIJOFS_BUTTON26 = 74 (&H4A)

 DIJOFS_BUTTON27 = 75 (&H4B)

 DIJOFS_BUTTON28 = 76 (&H4C)

 DIJOFS_BUTTON29 = 77 (&H4D)

 DIJOFS_BUTTON3 = 51 (&H33)

 DIJOFS_BUTTON30 = 78 (&H4E)

 DIJOFS_BUTTON31 = 79 (&H4F)

 DIJOFS_BUTTON4 = 52 (&H34)

 DIJOFS_BUTTON5 = 53 (&H35)

 DIJOFS_BUTTON6 = 54 (&H36)

 DIJOFS_BUTTON7 = 55 (&H37)

 DIJOFS_BUTTON8 = 56 (&H38)

 DIJOFS_BUTTON9 = 57 (&H39)

 DIJOFS_POV0 = 32 (&H20)

 DIJOFS_POV1 = 36 (&H24)

 DIJOFS_POV2 = 40 (&H28)

 DIJOFS_POV3 = 44 (&H2C)

 DIJOFS_RX = 12

 DIJOFS_RY = 16 (&H10)

 DIJOFS_RZ = 20 (&H14)

 DIJOFS_SLIDER0 = 24 (&H18)

 DIJOFS_SLIDER1 = 28 (&H1C)

 DIJOFS_X = 0

 DIJOFS_Y = 4

 DIJOFS_Z = 8

End Enum

DIJOFS_BUTTON(n)

Offset of the data for button n.

DIJOFS_POV(n)

Offset of the data for point-of-view controller n.

DIJOFS_RX, DIJOFS_RY, DIJOFS_RZ

Offset of the data for the axis rotation.

DIJOFS_SLIDER0, DIJOFS_SLIDER1

Offset of the data for the slider.

DIJOFS_X, DIJOFS_Y, DIJOFS_Z

Offset of the data for the axis.

CONST_DIKEYFLAGS

The CONST_DIKEYFLAGS enumeration groups the Keyboard Device Constants.

CONST_DIMOUSEOFS

The members of the CONST_DIMOUSEOFS enumeration represent the offset of the data for the various mouse device objects within the data format.

Enum CONST_DIMOUSEOFS

 DIMOFS_BUTTON0 = 12

 DIMOFS_BUTTON1 = 13

 DIMOFS_BUTTON2 = 14

 DIMOFS_BUTTON3 = 15

 DIMOFS_X = 0

 DIMOFS_Y = 4

 DIMOFS_Z = 8

End Enum

DIMOFS_BUTTON(n)

Offset of the data for button n.

DIMOFS_X, DIMOFS_Y, DIMOFS_Z

Offset of the data for the axis.

CONST_DINPUT

The CONST_DINPUT enumeration contains various constants that are used throughout DirectInput.

Enum CONST_DINPUT

 DIPROPAXISMODE_ABS = 0

 DIPROPAXISMODE_REL = 1

 DIPROPCALIBRATIONMODE_COOKED = 0

 DIPROPCALIBRATIONMODE_RAW = 1

 DIPROPRANGE_NOMAX = 2147483647 (&H7FFFFFFF)

 DIPROPRANGE_NOMIN = -2147483648 (&H80000000)

End Enum

DIPROPAXISMODE_ABS

Used in DirectInputDevice.GetProperty and DirectInputDevice.SetProperty to represent absolute axis mode.

DIPROPAXISMODE_REL

Used in DirectInputDevice.GetProperty and DirectInputDevice.SetProperty to represent relative axis mode.

DIPROPCALIBRATIONMODE_COOKED

Used in setting the DIPROP_CALIBRATIONMODE property to indicate that DirectInput should return axis data after applying calibration information.

DIPROPCALIBRATIONMODE_RAW

Used in setting the DIPROP_CALIBRATIONMODE property to indicate that DirectInput should return raw, uncalibrated data. This mode is typically used only by Control Panel–type applications.

DIPROPRANGE_NOMAX

Returned from DirectInputDevice.GetProperty if the axis has no upper limit on its range.

DIPROPRANGE_NOMIN

Returned from DirectInputDevice.GetProperty if the axis has no lower limit on its range.

CONST_DINPUTERR

The CONST_DINPUTERR enumeration contains the error codes for DirectInput. All the error codes and definitions can be found in the Error Codes topic.

CONST_DIPHFLAGS

Members of the CONST_DIPHFLAGS enumeration are used to specify how a device object is identified. They are used in the DirectInputDevice.GetObjectInfo method as well as in the DIPROPLONG and DIPROPRANGE types.

Enum CONST_DIPHFLAGS

 DIPH_DEVICE = 0

 DIPH_BYID = 2

 DIPH_BYOFFSET = 1

End Enum

DIPH_DEVICE

The property applies to the entire device, not to a particular object.

DIPH_BYOFFSET

The device object is identified by the offset into the current data format of the object whose information is being accessed.

DIPH_BYID

The device object is identified by the instance identifier obtained from the return value of the DirectInputDeviceObjectInstance.GetType method.

CONST_DISCLFLAGS

The CONST_DISCLFLAGS enumeration is used in the flags parameter of the DirectInputDevice.SetCooperativeLevel method to determine how the device interacts with other instances of the device and the rest of the system.

Enum CONST_DISCLFLAGS

 DISCL_BACKGROUND = 8

 DISCL_EXCLUSIVE = 1

 DISCL_FOREGROUND = 4

 DISCL_NONEXCLUSIVE = 2

End Enum

DISCL_BACKGROUND

The application requires background access. If background access is granted, the device may be acquired at any time, even when the associated window is not the active window.

DISCL_EXCLUSIVE

The application requires exclusive access. If exclusive access is granted, no other instance of the device may obtain exclusive access to the device while it is acquired. Note, however, non-exclusive access to the device is always permitted, even if another application has obtained exclusive access.

If an application acquires the mouse or keyboard device in exclusive mode, the user will not be able to use the window menu or move and resize the window.

DISCL_FOREGROUND

The application requires foreground access. If foreground access is granted, the device is automatically unacquired when the associated window moves to the background.

DISCL_NONEXCLUSIVE

The application requires non-exclusive access. Access to the device will not interfere with other applications that are accessing the same device.

Applications must specify either DISCL_FOREGROUND or DISCL_BACKGROUND; it is an error to specify both or neither. Similarly, applications must specify either DISCL_EXCLUSIVE or DISCL_NONEXCLUSIVE.

CONST_DISDDFLAGS

Members of the CONST_DISDDFLAGS enumeration are passed to the DirectInputDevice.SendDeviceData method.

Enum CONST_DISDDCFLAGS

 DISDD_CONTINUE = 1

 DISDD_DEFAULT = 0

End Enum

DISDD_CONTINUE

Data will overlaid on existing data. For more information, see the Remarks for DirectInputDevice.SendDeviceData.

DISDD_DEFAULT

Data will not be overlaid on existing data.

CONST_DISFFCFLAGS

Members of the CONST_DISFFCFLAGS enumeration are used to specify the command sent by using the DirectInputDevice.SendForceFeedbackCommand method.

Enum CONST_DISFFCFLAGS

 DISFFC_CONTINUE = 8

 DISFFC_PAUSE = 4

 DISFFC_RESET = 1

 DISFFC_SETACTUATORSOFF = 32 (&H20)

 DISFFC_SETACTUATORSON = 16 (&H10)

 DISFFC_STOPALL = 2

End Enum

DISFFC_CONTINUE

Paused playback of all active effects is to be continued. It is an error to send this command when the device is not in a paused state.

DISFFC_PAUSE

Playback of all active effects is to be paused. This command also stops the clock on effects, so that they continue playing to their full duration when restarted.

While the device is paused, new effects may not be started and existing ones may not be modified. Doing so may result in the subsequent DISFFC_CONTINUE command failing to perform properly.

To abandon a pause and stop all effects, use the DISFFC_STOPALL or DISFCC_RESET commands.

DISFFC_RESET

The device's force-feedback system is to be put in its startup state. All effects are removed from the device, are no longer valid, and must be recreated if they are to be used again. The device's actuators are disabled.

DISFFC_SETACTUATORSOFF

The device's force-feedback actuators are to be disabled. While the actuators are off, effects continue to play but are ignored by the device. Using the analogy of a sound playback device, they are muted rather than paused.

DISFFC_SETACTUATORSON

The device's force-feedback actuators are to be enabled.

DISFFC_STOPALL

Playback of any active effects is to be stopped. All active effects will be reset, but are still being maintained by the device and are still valid. If the device is in a paused state, that state is lost.

This command is equivalent to calling the DirectInputEffect.Stop method for each effect playing.

Keyboard Keys

This section contains information on the following topics:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Keyboard Device Constants

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInput and Japanese Keyboards

Keyboard Device Constants

Keyboard device constants, which are members of the CONST_DIKEYFLAGS enumeration, represent offsets within a keyboard device's data packet, a 256-byte array. The data at a given offset is associated with a keyboard key.

The standard keyboard device constants are the following (in ascending order):

Constant�Note����DIK_ESCAPE � ��DIK_1 �On main keyboard��DIK_2 �On main keyboard��DIK_3 �On main keyboard��DIK_4 �On main keyboard��DIK_5 �On main keyboard��DIK_6 �On main keyboard��DIK_7 �On main keyboard��DIK_8 �On main keyboard��DIK_9 �On main keyboard��DIK_0 �On main keyboard��DIK_MINUS �On main keyboard��DIK_EQUALS �On main keyboard��DIK_BACK �BACKSPACE��DIK_TAB � ��DIK_Q � ��DIK_W � ��DIK_E � ��DIK_R � ��DIK_T � ��DIK_Y � ��DIK_U � ��DIK_I � ��DIK_O � ��DIK_P � ��DIK_LBRACKET �[��DIK_RBRACKET �] ��DIK_RETURN �ENTER on main keyboard ��DIK_LCONTROL �Left CTRL ��DIK_A � ��DIK_S � ��DIK_D � ��DIK_F � ��DIK_G � ��DIK_H � ��DIK_J � ��DIK_K � ��DIK_L � ��DIK_SEMICOLON � ��DIK_APOSTROPHE � ��DIK_GRAVE �Grave accent (`) ��DIK_LSHIFT �Left SHIFT��DIK_BACKSLASH � ��DIK_Z � ��DIK_X � ��DIK_C � ��DIK_V � ��DIK_B � ��DIK_N � ��DIK_M � ��DIK_COMMA � ��DIK_PERIOD �On main keyboard ��DIK_SLASH �Forward slash (/)on main keyboard��DIK_RSHIFT �Right SHIFT��DIK_MULTIPLY �Asterisk on numeric keypad ��DIK_LMENU �Left ALT ��DIK_SPACE �Spacebar��DIK_CAPITAL �CAPS LOCK ��DIK_F1 � ��DIK_F2 � ��DIK_F3 � ��DIK_F4 � ��DIK_F5 � ��DIK_F6 � ��DIK_F7 � ��DIK_F8 � ��DIK_F9 � ��DIK_F10 � ��DIK_NUMLOCK � ��DIK_SCROLL �SCROLL LOCK��DIK_NUMPAD7 � ��DIK_NUMPAD8 � ��DIK_NUMPAD9 � ��DIK_SUBTRACT �Hyphen (minus sign) on numeric keypad ��DIK_NUMPAD4 � ��DIK_NUMPAD5 � ��DIK_NUMPAD6 � ��DIK_ADD �Plus sign on numeric keypad ��DIK_NUMPAD1 � ��DIK_NUMPAD2 � ��DIK_NUMPAD3 � ��DIK_NUMPAD0 � ��DIK_DECIMAL �Period (decimal point) on numeric keypad ��DIK_F11 � ��DIK_F12 � ��DIK_F13� ��DIK_F14� ��DIK_F15� ��DIK_KANA�On Japanese keyboard��DIK_CONVERT�On Japanese keyboard��DIK_NOCONVERT�On Japanese keyboard��DIK_YEN�On Japanese keyboard��DIK_NUMPADEQUALS�On numeric keypad (NEC PC98)��DIK_CIRCUMFLEX�On Japanese keyboard��DIK_AT�On Japanese keyboard��DIK_COLON�On Japanese keyboard��DIK_UNDERLINE�On Japanese keyboard��DIK_KANJI�On Japanese keyboard��DIK_STOP�On Japanese keyboard��DIK_AX�On Japanese keyboard��DIK_UNLABELED�On Japanese keyboard��DIK_NUMPADENTER � ��DIK_RCONTROL �Right CTRL key ��DIK_NUMPADCOMMA�Comma on NEC PC98 numeric keypad��DIK_DIVIDE �Forward slash (/)on numeric keypad ��DIK_SYSRQ � ��DIK_RMENU �Right ALT ��DIK_HOME � ��DIK_UP �Up arrow��DIK_PRIOR �PAGE UP ��DIK_LEFT �Left arrow��DIK_RIGHT �Right arrow��DIK_END � ��DIK_DOWN �Down arrow ��DIK_NEXT �PAGE DOWN ��DIK_INSERT � ��DIK_DELETE � ��DIK_LWIN �Left Windows key��DIK_RWIN �Right Windows key��DIK_APPS �Application key ��DIK_PAUSE � ��

For information on Japanese keyboards, see DirectInput and Japanese Keyboards.

DirectInput and Japanese Keyboards

There are substantial differences between Japanese and U.S. keyboards. The following chart lists the additional keys that are available on each type of Japanese keyboard. It also lists the keys that are available on U.S. keyboards but are missing on the various Japanese keyboards.

Also note that on some NEC PC-98 keyboards, the DIK_CAPSLOCK and DIK_KANA keys are toggle buttons and not push buttons. These generate a down event when first pressed, then generate an up event when pressed a second time.

Keyboard�Additional Keys�Missing Keys ����DOS/V 106 Keyboard, NEC PC-98 106 Keyboard�DIK_AT, DIK_CIRCUMFLEX, DIK_COLON, DIK_CONVERT, DIK_KANA, DIK_KANJI, DIK_NOCONVERT, DIK_YEN�DIK_APOSTROPHE, DIK_EQUALS, DIK_GRAVE ������NEC PC-98 Standard Keyboard, NEC PC-98 Laptop Keyboard�DIK_AT, DIK_CIRCUMFLEX, DIK_COLON, DIK_F13, DIK_F14, DIK_F15, DIK_KANA, DIK_KANJI, DIK_NOCONVERT, DIK_NUMPADCOMMA, DIK_NUMPADEQUALS, DIK_STOP, DIK_UNDERLINE, DIK_YEN�DIK_APOSTROPHE, DIK_BACKSLASH, DIK_EQUALS, DIK_GRAVE, DIK_NUMLOCK, DIK_NUMPADENTER, DIK_RCONTROL, DIK_RMENU, DIK_RSHIFT, DIK_SCROLL ������AX Keyboard�DIK_AX, DIK_CONVERT, DIK_KANJI, DIK_NOCONVERT, DIK_YEN�DIK_RCONTROL, DIK_RMENU ������J-3100 Keyboard�DIK_KANA, DIK_KANJI, DIK_NOLABEL, DIK_YEN�DIK_RCONTROL, DIK_RMENU ��

Error Codes

This table lists the error codes that can be returned by DirectInput methods and functions. Errors are represented by negative values and cannot be combined.

For a list of the errors each method or function can raise, see the individual descriptions. Lists of error codes in the documentation are necessarily incomplete. For example, any DirectInput method can return DIERR_OUTOFMEMORY even though the error code is not explicitly listed as a possible return value in the documentation for that method.

DI_BUFFEROVERFLOW

The input buffer overflowed and data was lost.

DIERR_ACQUIRED

The operation cannot be performed while the device is acquired.

DIERR_ALREADYINITIALIZED

This object is already initialized

DIERR_BADDRIVERVER

The object could not be created due to an incompatible driver version or mismatched or incomplete driver components.

DIERR_BETADIRECTINPUTVERSION

The application was written for an unsupported prerelease version of DirectInput.

DIERR_DEVICEFULL

The device is full.

DIERR_DEVICENOTREG

The device or device instance is not registered with DirectInput. This value is equal to the REGDB_E_CLASSNOTREG standard COM return value.

DIERR_EFFECTPLAYING

The parameters were updated in memory but were not downloaded to the device because the device does not support updating an effect while it is still playing.

DIERR_HASEFFECTS

The device cannot be reinitialized because there are still effects attached to it.

DIERR_GENERIC

An undetermined error occurred inside the DirectInput subsystem. This value is equal to the E_FAIL standard COM return value.

DIERR_HANDLEEXISTS

The device already has an event notification associated with it. This value is equal to the E_ACCESSDENIED standard COM return value.

DIERR_INCOMPLETEEFFECT

The effect could not be downloaded because essential information is missing. For example, no axes have been associated with the effect, or no type-specific information has been supplied.

DIERR_INPUTLOST

Access to the input device has been lost. It must be reacquired.

DIERR_INVALIDHANDLE

An invalid window handle was passed to the method.

DIERR_INVALIDPARAM

An invalid parameter was passed to the returning function, or the object was not in a state that permitted the function to be called. This value is equal to the E_INVALIDARG standard COM return value.

DIERR_MOREDATA

Not all the requested information fitted into the buffer.

DIERR_NOAGGREGATION

This object does not support aggregation.

DIERR_NOINTERFACE

The specified interface is not supported by the object. This value is equal to the E_NOINTERFACE standard COM return value.

DIERR_NOTACQUIRED

The operation cannot be performed unless the device is acquired.

DIERR_NOTBUFFERED

The device is not buffered. Set the DIPROP_BUFFERSIZE property to enable buffering.

DIERR_NOTDOWNLOADED

The effect is not downloaded.

DIERR_NOTEXCLUSIVEACQUIRED

The operation cannot be performed unless the device is acquired in DISCL_EXCLUSIVE mode.

DIERR_NOTINITIALIZED

The object has not been initialized.

DIERR_NOTFOUND

The requested object does not exist.

DIERR_OBJECTNOTFOUND

The requested object does not exist.

DIERR_OLDDIRECTINPUTVERSION

The application requires a newer version of DirectInput.

DIERR_OTHERAPPHASPRIO

Another application has a higher priority level, preventing this call from succeeding. This value is equal to the E_ACCESSDENIED standard COM return value. This error can be returned when an application has only foreground access to a device but is attempting to acquire the device while in the background.

DIERR_OUTOFMEMORY

The DirectInput subsystem couldn't allocate sufficient memory to complete the call. This value is equal to the E_OUTOFMEMORY standard COM return value.

DIERR_READONLY

The specified property cannot be changed. This value is equal to the E_ACCESSDENIED standard COM return value.

DIERR_REPORTFULL

More information was requested to be sent than can be sent to the device.

DIERR_UNPLUGGED

The operation could not be completed because the device is not plugged in.

DIERR_UNSUPPORTED

The function called is not supported at this time. This value is equal to the E_NOTIMPL standard COM return value.

E_PENDING

Data is not yet available.

DirectInput Tutorials

The following sections contain tutorials providing step-by-step instructions for implementing basic Microsoft® DirectInput® functionality:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInput C/C++ Tutorials

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInput Visual Basic Tutorials

DirectInput C/C++ Tutorials

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

This section contains four tutorials, each providing step-by-step instructions for implementing basic DirectInput functionality in a C or C++ application.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Tutorial 1: Using the Keyboard

The first tutorial shows how to add DirectInput keyboard support to an existing application.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Tutorial 2: Using the Mouse

The next tutorial takes you through the steps of providing DirectInput mouse support in an application. The tutorial is based on the Scrawl sample, and focuses on buffered data.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Tutorial 3: Using the Joystick

This tutorial shows how to enumerate all the joysticks connected to a system, how to create and initialize DirectInputDevice objects for each of them in a callback function, and how to retrieve immediate data. Sample code is based on the Space Donuts sample.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Tutorial 4: Using Force Feedback

The final tutorial illustrates the creation and manipulation of a simple effect on a force-feedback joystick.

Tutorial 1: Using the Keyboard

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

To prepare for keyboard input, you first create an instance of a DirectInput object. Then you use the IDirectInput7::CreateDeviceEx method to create an instance of an IDirectInputDevice7 interface. The IDirectInputDevice7 interface methods are used to manipulate the device, set its behavior, and retrieve data.

The tutorial breaks down the required tasks into the following steps:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 1: Create the DirectInput Object

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 2: Create the DirectInput Keyboard Device

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 3: Set the Keyboard Data Format

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 4: Set the Keyboard Behavior

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 5: Gain Access to the Keyboard

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 6: Retrieve Data from the Keyboard

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 7: Close Down the DirectInput System

Adding DirectInput keyboard support to an application is relatively simple, so this tutorial is not accompanied by a complete sample application. All of the tutorial steps are illustrated by code within the text. The related steps for initializing the system are gathered in Sample Function 1: DI_Init. Another function, Sample Function 2: DI_Term, is called whenever the system needs to be closed down.

Step 1: Create the DirectInput Object

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

The first step in setting up the DirectInput system is to create a single DirectInput object as overall manager. This is done with a call to the DirectInputCreateEx function.

// HINSTANCE hinst; // initialized earlier

HRESULT hr;

LPDIRECTINPUT7 g_lpdi;

hr = DirectInputCreateEx(hinst, DIRECTINPUT_VERSION,

 IID_IDirectInput7, (void**)&g_lpdi, NULL);

if FAILED(hr)

{

 // DirectInput not available; take appropriate action

}

The first parameter for DirectInputCreateEx is the instance handle to the application or DLL that is creating the object.

The second parameter tells the DirectInput object which version of the DirectInput system should be used. You can design your application to be compatible with earlier versions of DirectInput. For more information, see Designing for Previous Versions of DirectInput.

The third parameter determines which interface is returned. Most applications will obtain the most recent version, by passing IID_IDirectInput7.

The fourth parameter is the address of a variable that will be initialized with a valid interface pointer if the call succeeds.

The last parameter specifies the address of the controlling object's IUnknown interface for use in COM aggregation. Most applications will not be using aggregation and so will pass NULL.

Next: Step 2: Create the DirectInput Keyboard Device

Step 2: Create the DirectInput Keyboard Device

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

After creating the DirectInput object, your application must create the keyboard object—the device—and retrieve a pointer to an IDirectInputDevice7 interface. The device will perform most of the keyboard-related tasks, using the methods of the interface.

To do this your application must call the IDirectInput7::CreateDeviceEx method, as shown in Sample Function 1: DI_Init. CreateDeviceEx accepts four parameters.

The first parameter is the GUID for the device being created. Since the system keyboard will be used, your application should pass the GUID_SysKeyboard predefined global variable.

The second parameter is the GUID for the desired interface. Most applications will obtain the most recent version, by passing IID_IDirectInputDevice7.

The third parameter is the address of a variable that will be initialized with the interface pointer if the call succeeds.

The fourth parameter specifies the address of the controlling object's IUnknown interface for use in COM aggregation. Your application will likely not use aggregation, in which case the parameter is NULL.

The following example attempts to retrieve a pointer to an IDirectInputDevice7 interface. If this fails, it calls the DI_Term application-defined sample function to deallocate existing DirectInput objects, if any.

Note

In all the examples, g_lpdi is the initialized pointer to the DirectInput object. The method calls are in the C++ form.

HRESULT hr;

LPDIRECTINPUTDEVICE7 g_lpDIDEVICE

hr = g_lpDI->CreateDeviceEx(GUID_SysKeyboard, IID_IDirectInputDevice7,

 (void**)&g_lpDIDevice, NULL);

if FAILED(hr)

{

 DI_Term();

 return FALSE;

}

Next: Step 3: Set the Keyboard Data Format

Step 3: Set the Keyboard Data Format

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

After retrieving an IDirectInputDevice7 pointer, your application must set the device's data format, as shown in Sample Function 1: DI_Init. For keyboards, this is a very simple task. Call the IDirectInputDevice7::SetDataFormat method, specifying the data format provided for your convenience by DirectInput in the c_dfDIKeyboard global variable.

The following example attempts to set the data format. If this fails, it calls the DI_Term sample function to deallocate existing DirectInput objects, if any.

hr = g_lpDIDevice->SetDataFormat(&c_dfDIKeyboard);

if FAILED(hr){

 DI_Term();

 return FALSE;

}

Next: Step 4: Set the Keyboard Behavior

Step 4: Set the Keyboard Behavior

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

Before your application can gain access to the keyboard, it must set the device's behavior using the IDirectInputDevice7::SetCooperativeLevel method, as shown in Sample Function 1: DI_Init. This method accepts the handle to the window to be associated with the device and a combination of flags that determine the cooperative level. In this case the application is requesting foreground, nonexclusive access.

The following example attempts to set the device's cooperative level. If this fails, it calls the DI_Term application-defined sample function to deallocate existing DirectInput objects, if any.

// Set the cooperative level

hr = g_lpDIDevice->SetCooperativeLevel(g_hwndMain,

 DISCL_FOREGROUND | DISCL_NONEXCLUSIVE);

if FAILED(hr){

 DI_Term();

 return FALSE;

}

Next: Step 5: Gain Access to the Keyboard

Step 5: Gain Access to the Keyboard

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

After your application sets the keyboard's behavior, it can acquire access to the device by calling the IDirectInputDevice7::Acquire method. The application must acquire the device before retrieving data from it. The Acquire method accepts no parameters.

The following line of code acquires the keyboard device that was created in Step 2: Create the DirectInput Keyboard Device:

if (g_lpDIDevice) g_lpDIDevice->Acquire();

Next: Step 6: Retrieve Data from the Keyboard

Step 6: Retrieve Data from the Keyboard

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

Once a device is acquired, your application can start retrieving data from it. The simplest way to do this is to call the IDirectInputDevice7::GetDeviceState method, which takes a snapshot of the device's state at the time of the call.

The GetDeviceState method accepts two parameters: the size of a buffer to be filled with device state data, and a pointer to that buffer. For keyboards, always declare a buffer of 256 unsigned bytes.

The following sample attempts to retrieve the state of the keyboard. If this fails, it calls an application-defined sample function to deallocate existing DirectInput objects, if any. (See Sample Function 2: DI_Term.)

After retrieving the keyboard's current state, your application may respond to specific keys that were down at the time of the call. Each element in the buffer represents a key. If an element's high bit is on, the key was down at the moment of the call; otherwise, the key was up. To check the state of a given key, use the DirectInput Keyboard Device Constants to index the buffer for a given key.

The following skeleton function, called from the main loop of a hypothetical spaceship game, uses the IDirectInputDevice7::GetDeviceState method to poll the keyboard. It then checks to see if the LEFT ARROW, RIGHT ARROW, UP ARROW or DOWN ARROW keys were pressed when the device state was retrieved. This is accomplished with the KEYDOWN macro defined in the body of the function. The macro accepts a buffer's variable name and an index value, then checks the byte at the specified index to see if the high bit is set and returns TRUE if it is.

void WINAPI ProcessKBInput()

{

 #define KEYDOWN(name,key) (name[key] & 0x80)

 char buffer[256];

 HRESULT hr;

 hr = g_lpDIDevice->GetDeviceState(sizeof(buffer),(LPVOID)&buffer);

 if FAILED(hr)

 {

 // If it failed, the device has probably been lost.

 // We should check for (hr == DIERR_INPUTLOST)

 // and attempt to reacquire it here.

 return;

 }

 // Turn the ship right or left

 if (KEYDOWN(buffer, DIK_RIGHT));

 // Turn right.

 else if(KEYDOWN(buffer, DIK_LEFT));

 // Turn left.

 // Thrust or stop the ship

 if (KEYDOWN(buffer, DIK_UP)) ;

 // Move the ship forward.

 else if (KEYDOWN(buffer, DIK_DOWN));

 // Stop the ship.

}

Next: Step 7: Close Down the DirectInput System

Step 7: Close Down the DirectInput System

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

When an application is about to close, it should destroy all DirectInput objects. This is a three-step process:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Unacquire all DirectInput devices (IDirectInputDevice7::Unacquire)

�SYMBOL 183 \f "Symbol" \s 11 \h �	Release all DirectInput devices (IDirectInputDevice7::Release)

�SYMBOL 183 \f "Symbol" \s 11 \h �	Release the DirectInput object (IDirectInput7::Release)

For a sample function that closes down the DirectInput system, see Sample Function 2: DI_Term.

Sample Function 1: DI_Init

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

This application-defined sample function creates a DirectInput object, initializes it, and retrieves the necessary interface pointers, assigning them to global variables. When initialization is complete, it acquires the device.

If any part of the initialization fails, this function calls the DI_Term application-defined sample function to deallocate DirectInput objects and interface pointers in preparation for terminating the program. (See Sample Function 2: DI_Term.)

Besides creating the DirectInput object, the DI_Init function performs the tasks discussed in the following tutorial steps:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 2: Create the DirectInput Keyboard Device

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 3: Set the Keyboard Data Format

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 4: Set the Keyboard Behavior

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 5: Gain Access to the Keyboard

Here is the DI_Init function:

/ * The following variables are presumed initialized:

HINSTANCE g_hinst; // application instance

HWND g_hwndMain; // application window

*/

LPDIRECTINPUT7 g_lpDI;

LPDIRECTINPUTDEVICE7 g_lpDIDevice;

BOOL WINAPI DI_Init()

{

 HRESULT hr;

 // Create the DirectInput object.

 hr = DirectInputCreateEx(g_hinst, DIRECTINPUT_VERSION,

 IID_IDirectInput7, (void**)&g_lpDI, NULL);

 if FAILED(hr) return FALSE;

 // Retrieve a pointer to an IDirectInputDevice7 interface

 hr = g_lpDI->CreateDeviceEx(GUID_SysKeyboard,

 IID_IDirectInputDevice7, (void**)&g_lpDIDevice, NULL);

 if FAILED(hr)

 {

 DI_Term();

 return FALSE;

 }

// Now that you have an IDirectInputDevice7 interface, get

// it ready to use.

 // Set the data format using the predefined keyboard data

 // format provided by the DirectInput object for keyboards.

 hr = g_lpDIDevice->SetDataFormat(&c_dfDIKeyboard);

 if FAILED(hr)

 {

 DI_Term();

 return FALSE;

 }

 // Set the cooperative level

 hr = g_lpDIDevice->SetCooperativeLevel(g_hwndMain,

 DISCL_FOREGROUND | DISCL_NONEXCLUSIVE);

 if FAILED(hr)

 {

 DI_Term();

 return FALSE;

 }

 // Get access to the input device.

 hr = g_lpDIDevice->Acquire();

 if FAILED(hr)

 {

 DI_Term();

 return FALSE;

 }

 return TRUE;

}

Sample Function 2: DI_Term

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

This application-defined sample function deallocates existing DirectInput interface pointers in preparation for program shutdown or in the event of a failure to properly initialize a device.

/* The following variables are presumed initialized:

LPDIRECTINPUT7 g_lpDI;

LPDIRECTINPUTDEVICE7 g_lpDIDevice;

*/

void WINAPI DI_Term()

{

 if (g_lpDI)

 {

 if (g_lpDIDevice)

 {

 /*

Always unacquire device before calling Release(). */

 g_lpDIDevice->Unacquire();

 g_lpDIDevice->Release();

 g_lpDIDevice = NULL;

 }

 g_lpDI->Release();

 g_lpDI = NULL;

 }

}

Tutorial 2: Using the Mouse

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

This tutorial guides you through the process of setting up a mouse device and retrieving buffered input data. The examples are based on the Scrawl sample.

To prepare for mouse input, you first create an instance of a DirectInput object. Then you use the IDirectInput7::CreateDeviceEx method to create an instance of an IDirectInputDevice7 interface. The IDirectInputDevice7 interface methods are used to manipulate the device, set its behavior, and retrieve data.

The preliminary step of setting up the DirectInput system and the final step of closing it down are the same for any application and are covered in Tutorial 1: Using the Keyboard.

This tutorial breaks down the required tasks into the following steps:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 1: Create the DirectInput Mouse Device

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 2: Set the Mouse Data Format

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 3: Set the Mouse Behavior

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 4: Prepare for Buffered Input from the Mouse

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 5: Manage Access to the Mouse

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 6: Retrieve Buffered Data from the Mouse

Note

When an application acquires the mouse at the exclusive cooperative level, Windows does not show a mouse pointer on the screen. For this, your application needs a simple sprite engine. The Scrawl sample application uses the Win32 function DrawIcon to display a crosshair cursor.

Step 1: Create the DirectInput Mouse Device

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

After creating the DirectInput object, your application should retrieve a pointer to an IDirectInputDevice7 interface, which will be used to perform most mouse-related tasks. To do this, call the IDirectInput7::CreateDeviceEx method.

The first parameter of CreateDeviceEx is the globally unique identifier (GUID) for the device your application is creating. In this case, since the system mouse will be used, your application should pass the predefined global variable GUID_SysMouse.

The second parameter is the GUID of the desired DirectInputDevice interface. Most applications will want the latest interface and so will pass IID_IDirectInputDevice7.

The third parameter is the address of a variable that will be initialized with a valid IDirectInputDevice7 interface pointer if the call succeeds.

The fourth parameter specifies the address of the controlling object's IUnknown interface for use in COM aggregation. Your application probably won't be using aggregation, in which case the parameter will be NULL.

The following sample code attempts to retrieve a pointer to an IDirectInputDevice7 interface. If the call fails, FALSE is returned. It is assumed that g_pdi is a valid pointer to IDirectInput7.

LPDIRECTINPUTDEVICE g_pMouse;

HRESULT hr;

hr = g_pdi->CreateDeviceEx(GUID_SysMouse, IID_IDirectInputDevice7,

 (void**)&g_pMouse, NULL);

if (FAILED(hr)) {

 return FALSE;

}

Next: Step 2: Set the Mouse Data Format

Step 2: Set the Mouse Data Format

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

After retrieving an IDirectInputDevice7 pointer, your application must set the device's data format. For mouse devices, this is a very simple task. Call the IDirectInputDevice7::SetDataFormat method, specifying the data format provided for your convenience by DirectInput in the c_dfDIMouse global variable.

The following code attempts to set the device's data format. If the call fails, FALSE is returned.

hr = g_pMouse->SetDataFormat(&c_dfDIMouse);

if (FAILED(hr)) {

 return FALSE;

}

Next: Step 3: Set the Mouse Behavior

Step 3: Set the Mouse Behavior

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

Before it can gain access to the mouse, your application must set the mouse device's behavior using the IDirectInputDevice7::SetCooperativeLevel method. This method accepts the handle to the window to be associated with the device. In Scrawl, the DISCL_EXCLUSIVE flag is included to ensure that this application is the only one that can have exclusive access to the device. This flag is combined with DISCL_FOREGROUND because Scrawl is not interested in what the mouse is doing when another application is in the foreground.

The following code attempts to set the device's cooperative level. If this attempt fails, FALSE is returned.

hr = g_pMouse->SetCooperativeLevel(hwnd,

 DISCL_EXCLUSIVE | DISCL_FOREGROUND);

if (FAILED(hr)) {

 return FALSE;

}

Next: Step 4: Prepare for Buffered Input from the Mouse

Step 4: Prepare for Buffered Input from the Mouse

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

The Scrawl application demonstrates how to use event notification to find out about mouse activity, and how to read buffered input from the mouse. Both these techniques require some setup. You can perform these steps at any time after creating the mouse device and before acquiring it.

First, create an event and associate it with the mouse device. You are instructing DirectInput to notify the mouse device object whenever a hardware interrupt indicates that new data is available.

This is how it's done in Scrawl, where g_hevtMouse is a global HANDLE.

g_hevtMouse = CreateEvent(0, 0, 0, 0);

if (g_hevtMouse == NULL) {

 return FALSE;

}

hr = g_pMouse->SetEventNotification(g_hevtMouse);

if (FAILED(hr)) {

 return FALSE;

}

Now you need to set the buffer size so that DirectInput can store any input data until you're ready to look at it. Remember, by default the buffer size is zero, so this step is essential if you want to use buffered data.

It's not necessary to used buffered data with event notification; if you prefer, you can retrieve immediate data when an event is signaled.

To set the buffer size you need to initialize a DIPROPDWORD structure with information about itself and about the property you wish to set. Most of the values are boilerplate; the key value is the last one, dwData, which is initialized with the number of items you want the buffer to hold.

#define DINPUT_BUFFERSIZE 16

DIPROPDWORD dipdw =

 {

 // the header

 {

 sizeof(DIPROPDWORD), // diph.dwSize

 sizeof(DIPROPHEADER), // diph.dwHeaderSize

 0, // diph.dwObj

 DIPH_DEVICE, // diph.dwHow

 },

 // the data

 DINPUT_BUFFERSIZE, // dwData

 };

You then pass the address of the header (the DIPROPHEADER structure within the DIPROPDWORD structure), along with the identifier of the property you want to change, to the IDirectInputDevice7::SetProperty method, as follows:

hr = g_pMouse->SetProperty(DIPROP_BUFFERSIZE, &dipdw.diph);

if (FAILED(hr)) {

 return FALSE;

 }

The setup is now complete, and you're ready to acquire the mouse and start collecting data.

Next: Step 5: Manage Access to the Mouse

Step 5: Manage Access to the Mouse

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

DirectInput provides the IDirectInputDevice7::Acquire and IDirectInputDevice7::Unacquire methods to manage device access. Your application must call the Acquire method to gain access to the device before requesting mouse information with the IDirectInputDevice7::GetDeviceState and IDirectInputDevice7::GetDeviceData methods.

Most of the time your application will have the device acquired. However, if you have only foreground access the mouse will automatically be unacquired whenever your application moves to the background. You are responsible for reacquiring it when you get the focus back again. This can be done in response to a WM_ACTIVATE message.

Scrawl handles this message by setting a global variable, g_fActive, according to whether the application is gaining or losing the focus. It then calls a helper function, Scrawl_SyncAcquire, which acquires the mouse if g_fActive is TRUE and unacquires it otherwise.

case WM_ACTIVATE:

 g_fActive = wParam == WA_ACTIVE || wParam == WA_CLICKACTIVE;

 Scrawl_SyncAcquire(hwnd);

 break;

If you have exclusive access, your application may need to let go of the mouse to let the user interact with Windows—for example, to access a menu or a dialog box. In Scrawl this can happen when the user opens the system menu with ALT+SPACEBAR.

The Scrawl window procedure has a handler for WM_ENTERMENULOOP that responds by setting the global variable g_fActive to FALSE and calling the Scrawl_SyncAcquire function. This handler allows Windows to have the mouse and display its own cursor.

When the user is done using a menu, Windows sends the application a WM_EXITMENULOOP message. In this case, the Scrawl window process posts an application-defined message, WM_SYNCACQUIRE, to its own message queue. This allows other pending messages to be processed before the mouse is reacquired with the Scrawl_SyncAcquire function.

Scrawl also unacquires the mouse in response to a right button click, which opens up a context menu. Although the mouse would get unacquired later, in the WM_ENTERMENULOOP handler, it's done here first so that the position of the Windows cursor can be set before the menu appears.

Finally, Scrawl tries to reacquire the mouse if it receives a DIERR_INPUTLOST error after an attempt to retrieve data. This is just in case the device has been unacquired by some mechanism not covered elsewhere; for instance, if the user has pressed CTRL+ALT+DEL.

In summary, your application needs to acquire the mouse before it can get data from it. This needs to be done only once, as long as nothing happens to force your application to give up access to it. In exclusive mode, you are responsible for giving up control of the mouse when Windows needs it. You are also responsible for reacquiring the mouse whenever your program needs access to it after losing it to Windows or another application.

Next: Step 6: Retrieve Buffered Data from the Mouse

Step 6: Retrieve Buffered Data from the Mouse

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

Once the mouse is acquired, your application can begin to retrieve data from it.

In the Scrawl sample, retrieval is triggered by a signaled event. In the WinMain function, the application sleeps until MsgWaitForMultipleObjects indicates that there is either a signal or a message. If there's a signal associated with the mouse, the Scrawl_OnMouseInput function is called. This function is a good illustration of how buffered input is handled, so we'll look at it in detail.

First the function makes sure the old cursor position will be cleaned up. Remember, Scrawl is maintaining its own cursor and is wholly responsible for drawing and erasing it.

void Scrawl_OnMouseInput(HWND hwnd)

{

 /* Invalidate the old cursor so it will be erased */

 InvalidateCursorRect(hwnd);

Now the function enters a loop to read and respond to the entire contents of the buffer. Because it retrieves just one item at a time, it needs only a single DIDEVICEOBJECTDATA structure to hold the data.

Another way to go about handling input would be to read the entire buffer at once and then loop through the retrieved items, responding to each one in turn. In that case, dwElements would be the size of the buffer, and od would be an array with the same number of elements.

 while (!fDone) {

 DIDEVICEOBJECTDATA od;

 DWORD dwElements = 1; // number of items to be retrieved

The application calls the IDirectInputDevice7::GetDeviceData method in order to fetch the data. The second parameter tells DirectInput where to put the data, and the third tells it how many items are wanted. The final parameter would be DIGDD_PEEK if the data was to be left in the buffer, but in this case the data is not going to be needed again, so it is removed.

 HRESULT hr = g_pMouse->GetDeviceData(

 sizeof(DIDEVICEOBJECTDATA),

 &od,

 &dwElements, 0);

Now the application checks to see if access to the device has been lost and, if so, tells itself to try to reacquire the mouse at the first opportunity. This step was discussed in Step 5: Manage Access to the Mouse.

 if (hr == DIERR_INPUTLOST) {

 PostMessage(hwnd, WM_SYNCACQUIRE, 0, 0L);

 break;

 }

Next the application makes sure the call to the GetDeviceData method succeeded and that there was actually data to be retrieved. Remember, after the call to GetDeviceData the dwElements variable shows how many items were actually retrieved.

 /* Unable to read data or no data available */

 if (FAILED(hr) || dwElements == 0) {

 break;

 }

If execution has proceeded to this point, everything is fine: the call succeeded and there is an item of data in the buffer. Now the application looks at the dwOfs member of the DIDEVICEOBJECTDATA structure to determine which object on the device reported a change of state, and calls helper functions to respond appropriately. The value of the dwData member, which gives information about what happened, is passed to these functions.

 /* Look at the element to see what happened */

 switch (od.dwOfs) {

 /* DIMOFS_X: Mouse horizontal motion */

 case DIMOFS_X: UpdateCursorPosition(od.dwData, 0); break;

 /* DIMOFS_Y: Mouse vertical motion */

 case DIMOFS_Y: UpdateCursorPosition(0, od.dwData); break;

 /* DIMOFS_BUTTON0: Button 0 pressed or released */

 case DIMOFS_BUTTON0:

 if (od.dwData & 0x80) { /* Button pressed */

 fDone = 1;

 Scrawl_OnButton0Down(hwnd); /* Go into button-down

 mode */

 }

 break;

 /* DIMOFS_BUTTON1: Button 1 pressed or released */

 case DIMOFS_BUTTON1:

 if (!(od.dwData & 0x80)) { /* Button released */

 fDone = 1;

 Scrawl_OnButton1Up(hwnd); /* Context menu time */

 }

 }

 }

Finally, the Scrawl_OnMouseInput sample function invalidates the screen rectangle occupied by the cursor, in case the cursor has been moved by one of the helper functions.

 /* Invalidate the new cursor so it will be drawn */

 InvalidateCursorRect(hwnd);

}

Scrawl also collects mouse data in the Scrawl_OnButton0Down function. This is where the application keeps track of mouse movements while the primary button is being held down—that is, while the user is drawing. This function does not rely on event notification, but repeatedly polls the DirectInput buffer until the button is released.

A key point to note in the Scrawl_OnButton0Down function is that no actual drawing is done until all pending data has been read. The reason is that each horizontal or vertical movement of the mouse is reported as a separate event. (Both events are, however, placed in the buffer at the same time.) If a line were immediately drawn in response to each separate axis movement, a diagonal movement of the mouse would produce two lines at right angles.

Another way you can be sure that the movement in both axes is taken into account before responding in your application is to check the sequence numbers of the x-axis item and the y-axis item. If the numbers are the same, the two events took place simultaneously. For more information, see Time Stamps and Sequence Numbers.

Tutorial 3: Using the Joystick

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

This tutorial shows you how to enumerate joysticks on a system and set up two or more joysticks for input. Code samples are based on the Space Donuts sample. The method calls are in the C form.

The preliminary step of setting up the DirectInput system and the final step of closing it down are the same for any application and are covered in Tutorial 1: Using the Keyboard.

The first step in the tutorial is to enumerate devices; that is, to see what joysticks are available. As part of this process you initialize each joystick device and set its desired characteristics. You then use the IDirectInputDevice7 interface methods to retrieve data from each joystick.

The tutorial breaks down the required tasks into the following steps:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 1: Enumerate the Joysticks

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 2: Create the DirectInput Joystick Device

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 3: Set the Joystick Data Format

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 4: Set the Joystick Behavior

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 5: Gain Access to the Joystick

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 6: Retrieve Data from the Joystick

Step 1: Enumerate the Joysticks

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

After creating the DirectInput system, call the IDirectInput7::EnumDevices method to enumerate the joysticks. The following code accomplishes this.

// pdi is an initialized pointer to IDirectInput7

pdi->lpVtbl->EnumDevices(pdi, DIDEVTYPE_JOYSTICK,

 InitJoystickInput, pdi, DIEDFL_ATTACHEDONLY);

The method call is in the C form. Note that you could use the IDirectInput7_EnumDevices macro to simplify the call. All DirectInput methods have corresponding macros defined in Dinput.h that expand to the appropriate C or C++ syntax.

The DIDEVTYPE_JOYSTICK constant, passed as the second parameter, specifies the type of device to be enumerated.

InitJoystickInput is the address of a callback function to be called each time a joystick is found. This is where the individual devices will be initialized in the following steps of the tutorial.

The fourth parameter can be any 32-bit value that you want to make available to the callback function. In this case it's a pointer to the DirectInput interface, which the callback function needs to know so it can call the IDirectInput7::CreateDeviceEx method.

The last parameter, DIEDFL_ATTACHEDONLY, is a flag that restricts enumeration to devices that are attached to the computer.

Next: Step 2: Create the DirectInput Joystick Device

Step 2: Create the DirectInput Joystick Device

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

After creating the DirectInput object, the application must retrieve a pointer to an IDirectInputDevice7 interface, which will be used to perform most joystick-related tasks. In the Space Donuts sample, this is done in the callback function InitJoystickInput, which is called each time a joystick is enumerated.

Here is the first part of the callback function:

BOOL FAR PASCAL InitJoystickInput(LPCDIDEVICEINSTANCE pdinst,

 LPVOID pvRef)

{

 LPDIRECTINPUT7 pdi = pvRef;

 LPDIRECTINPUTDEVICE7 pdev;

 // Create the DirectInput joystick device.

 if (pdi->lpVtbl->CreateDeviceEx(pdi, &pdinst->guidInstance,

 IID_IDirectInputDevice7, (void**)&pdev, NULL) != DI_OK)

 {

 OutputDebugString("IDirectInput7::CreateDeviceEx FAILED\n");

 return DIENUM_CONTINUE;

 }

The parameters to the callback function InitJoystickInput are:

�SYMBOL 183 \f "Symbol" \s 11 \h �	A pointer to the device instance, supplied by the DirectInput system when the device is enumerated.

�SYMBOL 183 \f "Symbol" \s 11 \h �	A pointer to the DirectInput interface, which you supplied as an parameter to IDirectInput7::EnumDevices. This parameter could have been any 32-bit value but in this case you want the DirectInput interface so that you can call the IDirectInput7::CreateDeviceEx method.

The InitJoystickInput sample function declares a local pointer to the DirectInput object, pdi, and assigns it the value passed into the callback. It also declares a local pointer to a DirectInput device, pdev, which is initialized when the device is created.

The first task of the callback function, then, is to create the device. The IDirectInput7::CreateDeviceEx method accepts four parameters.

The first, unnecessary in C++, is a this pointer to the calling DirectInput interface.

The second parameter is a reference to the globally unique identifier (GUID) for the instance of the device. In this case, the GUID is taken from the DIDEVICEINSTANCE structure supplied by DirectInput when it enumerated the device.

The third parameter is the address of the variable that will be initialized with a valid interface pointer if the call succeeds.

The fourth parameter specifies the address of the controlling object's IUnknown interface for use in COM aggregation. Space Donuts doesn't use aggregation, so the parameter is NULL.

Note that if for some reason the device interface cannot be created, DIENUM_CONTINUE is returned from the callback function. This flag instructs DirectInput to keep enumerating as long as there are devices to be enumerated.

Next: Step 3: Set the Joystick Data Format

Step 3: Set the Joystick Data Format

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

Now that the application has a pointer to a DirectInput device, it can call the IDirectInputDevice7 methods to manipulate that device. The first step, which is an essential one, is to set the data format for the joystick. This step tells DirectInput how to format the input data.

The Space Donuts sample performs this action inside the callback function introduced in the previous step.

 if (pdev->lpVtbl->SetDataFormat(pdev, &c_dfDIJoystick) != DI_OK)

 {

 OutputDebugString("IDirectInputDevice7::SetDataFormat FAILED\n");

 pdev->lpVtbl->Release(pdev);

 return DIENUM_CONTINUE;

 }

The pdev variable is a pointer to the device interface created by IDirectInput7::CreateDeviceEx.

The IDirectInputDevice7::SetDataFormat method takes two parameters. The first is a this pointer to the calling instance of the interface and is unnecessary in C++. The second is a pointer to a DIDATAFORMAT structure containing information about how the data for the device is to be formatted. For the joystick, the predefined global variable c_dfDIJoystick can be used here.

As in the previous step, the callback function returns DIENUM_CONTINUE if it fails to initialize the device. This flag instructs DirectInput to keep enumerating as long as there are devices to be enumerated.

Next: Step 4: Set the Joystick Behavior

Step 4: Set the Joystick Behavior

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

The joystick device has been created, and its data format has been set. The next step is to set its cooperative level. In the Space Donuts sample, this is done in the callback function called when the device is enumerated. As in the previous step, pdev is a pointer to the device interface.

 if(pdev->lpVtbl->SetCooperativeLevel(pdev, hWndMain,

 DISCL_NONEXCLUSIVE | DISCL_FOREGROUND) != DI_OK)

 {

 OutputDebugString("IDirectInputDevice7::SetCooperativeLevel

 FAILED\n");

 pdev->lpVtbl->Release(pdev);

 return DIENUM_CONTINUE;

 }

Once again, the first parameter to IDirectInputDevice7::SetCooperativeLevel is a this pointer.

The second parameter is a window handle. In this case the handle to the main program window is passed in.

The final parameter is a combination of flags describing the desired cooperative level. Space Donuts requires input from the joystick only when it is the foreground application, and does not care whether another program is using the joystick in exclusive mode, so the flags are set to DISCL_NONEXCLUSIVE | DISCL_FOREGROUND. (See Cooperative Levels for a full explanation of these flags.)

The final step carried out for each joystick enumerated in the callback function is to set the properties of the device. In the sample, the properties changed include the range and the dead zone for both the x-axis and y-axis.

By setting the range, you are telling DirectInput what maximum and minimum values you want returned for an axis. If you set a range of -1,000 to +1,000 for the x-axis, as in the example, you are asking that a value of -1,000 be returned when the stick is at the extreme left, +1,000 when it is at the extreme right, and zero when it is in the middle.

The dead zone is a region of tolerance in the middle of the axis, measured in ten-thousandths of the physical range of axis travel. If you set a dead zone of 1,000 for the x-axis, you are saying that the stick can travel one-tenth of its range to the left or right of center before a non-center value will be returned. For more information on the dead zone, see Interpreting Joystick Axis Data.

Here's the code to set the range of the x-axis:

 DIPROPRANGE diprg;

 diprg.diph.dwSize = sizeof(diprg);

 diprg.diph.dwHeaderSize = sizeof(diprg.diph);

 diprg.diph.dwObj = DIJOFS_X;

 diprg.diph.dwHow = DIPH_BYOFFSET;

 diprg.lMin = -1000;

 diprg.lMax = +1000;

 if FAILED(pdev->lpVtbl->SetProperty(pdev,

 DIPROP_RANGE, &diprg.diph))

 {

 OutputDebugString("IDirectInputDevice7::SetProperty(DIPH_RANGE)

 FAILED\n");

 pdev->lpVtbl->Release(pdev);

 return FALSE;

 }

The first task here is to set up the DIPROPRANGE structure diprg, whose address will be passed into the IDirectInputDevice7::SetProperty method. Actually, it's not the address of the structure itself that is passed but rather the address of its first member, which is a DIPROPHEADER structure. For more information, see Device Properties.

The property header is initialized with the following values:

�SYMBOL 183 \f "Symbol" \s 11 \h �	The size of the property structure

�SYMBOL 183 \f "Symbol" \s 11 \h �	The size of the header structure

�SYMBOL 183 \f "Symbol" \s 11 \h �	The value returned by the DIJOFS_X joystick device constant macro, which points to the object whose property is being changed

�SYMBOL 183 \f "Symbol" \s 11 \h �	A flag to indicate how the third parameter is to be interpreted

The lmin and lmax members of the DIPROPRANGE structure are assigned the desired range values.

The application now calls the IDirectInputDevice7::SetProperty method. As usual, the first parameter is a this pointer. The second parameter is a flag indicating which property is being changed. The third parameter is the address of the DIPROPHEADER member of the property structure.

Setting the dead zone of the x-axis requires a similar procedure. The Space Donuts sample uses a helper function, SetDIDwordProperty, to initialize a DIPROPDWORD property structure. Unlike DIPROPRANGE, this structure contains only one data member, which in the example is set to 5,000, indicating that the stick must move half of its range from the center before the axis is reported to be off-center.

 // set X axis dead zone to 50% (to avoid accidental turning)

 if FAILED(SetDIDwordProperty(pdev, DIPROP_DEADZONE, DIJOFS_X,

 DIPH_BYOFFSET, 5000))

 {

 OutputDebugString("IDirectInputDevice7::

 SetProperty(DIPH_DEADZONE) FAILED\n");

 pdev->lpVtbl->Release(pdev);

 return FALSE;

 }

Next: Step 5: Gain Access to the Joystick

Step 5: Gain Access to the Joystick

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

After your application sets a joystick's behavior, it can acquire access to the device by calling the IDirectInputDevice7::Acquire method. The application must acquire the device before retrieving data from it. The Acquire method accepts no parameters.

The Space Donuts application takes care of acquisition in the ReacquireInput function. This function does double duty, serving both to acquire the device on startup and to reacquire it if for some reason a DIERR_INPUTLOST error is returned when the application tries to get input data.

In the following code, g_pdevCurrent is a global pointer to whatever DirectInput device is currently in use.

BOOL ReacquireInput(void)

{

 HRESULT hRes;

 // if we have a current device

 if (g_pdevCurrent)

 {

 // acquire the device

 hRes = IDirectInputDevice_Acquire(g_pdevCurrent);

 // The call above is a macro that expands to:

 // g_pdevCurrent->lpVtbl->Acquire(g_pdevCurrent);

 if (SUCCEEDED(hRes))

 {

 // acquisition successful

 return TRUE;

 }

 else

 {

 // acquisition failed

 return FALSE;

 }

 }

 else

 {

 // we don't have a current device

 return FALSE;

 }

}

In this example, acquisition is effected by a call to IDirectInputDevice7_Acquire, a macro defined in Dinput.h that simplifies the C call to the IDirectInputDevice7::Acquire method.

Next: Step 6: Retrieve Data from the Joystick

Step 6: Retrieve Data from the Joystick

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

Since your application is more likely concerned with the position of the joystick axes than with their movement, you will probably want to retrieve immediate rather than buffered data from the device. You can do this by polling with IDirectInputDevice7::GetDeviceState. Remember, not all device drivers will notify DirectInput when the state of the device changes, so it's always good policy to call the IDirectInputDevice7::Poll method before checking the device state.

The Space Donuts application calls the following function on each pass through the rendering loop, provided the joystick is the active input device.

DWORD ReadJoystickInput(void)

{

 DWORD dwKeyState;

 HRESULT hRes;

 DIJOYSTATE js;

 // poll the joystick to read the current state

 hRes = IDirectInputDevice7_Poll(g_pdevCurrent);

 // get data from the joystick

 hRes = IDirectInputDevice7_GetDeviceState(g_pdevCurrent,

 sizeof(DIJOYSTATE), &js);

 if (hRes != DI_OK)

 {

 // did the read fail because we lost input for some reason?

 // if so, then attempt to reacquire. If the second acquire

 // fails, then the error from GetDeviceData will be

 // DIERR_NOTACQUIRED, so we won't get stuck an infinite loop.

 if(hRes == DIERR_INPUTLOST)

 ReacquireInput();

 // return the fact that we did not read any data

 return 0;

 }

 // Now study the position of the stick and the buttons.

 dwKeyState = 0;

 if (js.lX < 0) {

 dwKeyState |= KEY_LEFT;

 } else if (js.lX > 0) {

 dwKeyState |= KEY_RIGHT;

 }

 if (js.lY < 0) {

 dwKeyState |= KEY_UP;

 } else if (js.lY > 0) {

 dwKeyState |= KEY_DOWN;

 }

 if (js.rgbButtons[0] & 0x80) {

 dwKeyState |= KEY_FIRE;

 }

 if (js.rgbButtons[1] & 0x80) {

 dwKeyState |= KEY_SHIELD;

 }

 if (js.rgbButtons[2] & 0x80) {

 dwKeyState |= KEY_STOP;

 }

 return dwKeyState;

}

Note the calls to IDirectInputDevice7_Poll and IDirectInputDevice7_GetDeviceState. These are macros that expand to C calls to the corresponding methods, similar to the macro in the previous step of this tutorial. The parameters to the macro are the same as those you would pass to the method. Here is what the call to GetDeviceState looks like:

 hRes = IDirectInputDevice7_GetDeviceState(g_pdevCurrent,

 sizeof(DIJOYSTATE), &js);

The first parameter is the this pointer; that is, a pointer to the calling object. The second parameter is the size of the structure in which the data will be returned, and the last parameter is the address of this structure, which is of type DIJOYSTATE. This structure holds data for up to six axes, 32 buttons, and a point-of-view hat. The sample program looks at the state of two axes and three buttons.

If the position of an axis is reported as nonzero, that axis is outside the dead zone, and the function responds by setting the dwKeyState variable appropriately. This variable holds the current set of user commands as entered with either the keyboard or the joystick. For example, if the x-axis of the stick is greater than zero, that is considered the same as the RIGHT ARROW key being down.

Joystick buttons work just like keys or mouse buttons: if the high bit of the returned byte is set, the button is down.

Tutorial 4: Using Force Feedback

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

This tutorial takes you through the process of creating, playing, and modifying a simple effect on a force-feedback joystick. The effect is something like a balky chain saw that you're trying to get started. The sample code uses C++ syntax.

The preliminary step of setting up the DirectInput system and the final step of closing it down are essentially the same for any application and are covered in Tutorial 1: Using the Keyboard. However, when closing down the DirectInput force-feedback system you must take the additional step of releasing any effects you have created.

The tutorial breaks down the required tasks into the following steps:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 1: Enumerate Force-Feedback Devices

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 2: Create the DirectInput Force-Feedback Device

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 3: Enumerate Supported Effects

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 4: Create an Effect

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 5: Play an Effect

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 6: Change an Effect

Step 1: Enumerate Force-Feedback Devices

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

The first step is to ensure that a force-feedback device is available on the system. You do this by calling the IDirectInput7::EnumDevices method. In the following example, the global pointer to the game device interface is initialized only if the enumeration has succeeded in finding at least one suitable device:

LPDIRECTINPUTDEVICE7 g_lpdid7 = NULL;

lpdi->EnumDevices(DIDEVTYPE_JOYSTICK,

 DIEnumDevicesProc,

 NULL,

 DIEDFL_FORCEFEEDBACK | DIEDFL_ATTACHEDONLY);

if (g_lpdid7 == NULL)

 {

 // No force-feedback joystick available; take appropriate action.

 }

In the example, lpdi is an initialized pointer to the IDirectInput7 interface. The first parameter to EnumDevices restricts the enumeration to joystick-type devices. The second parameter is the callback function that's going to be called each time DirectInput identifies a device that qualifies for enumeration. The third parameter is for user-defined data to be passed in or out of the callback function; in this case it's not used. Finally, the flags restrict the enumeration further to devices actually attached to the system that support force feedback.

The callback function is a convenient place to initialize the device as soon as it has been found. (It's assumed that the first device found is the one you want to use.) You'll do this next in Step 2: Create the DirectInput Force-Feedback Device.

Step 2: Create the DirectInput Force-Feedback Device

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

In order to have DirectInput enumerate devices, you must create a callback function of the same type as DIEnumDevicesCallback. In Step 1 you passed the address of this function to the IDirectInput7::EnumDevices method.

DirectInput passes into the callback, as the first parameter, a pointer to a DIDEVICEINSTANCE structure that tells you what you need to know about the device. The structure member of chief interest in the example is guidInstance, the unique identifier for the particular piece of hardware on the user's system. You will need to pass this GUID to the IDirectInput7::CreateDeviceEx method.

Here's the first part of the callback, which extracts the GUID and creates the device object:

BOOL CALLBACK DIEnumDevicesProc(LPCDIDEVICEINSTANCE lpddi,

 LPVOID pvRef)

 {

 HRESULT hr;

 GUID DeviceGuid = lpddi->guidInstance;

 // Create game device.

 hr = lpdi->CreateDeviceEx(DeviceGuid, IID_IDirectInputDevice7,

 (void**)&g_lpdid7, NULL);

 if (FAILED(hr))

 {

 OutputDebugString("Failed to create device.\n");

 return DIENUM_STOP;

 }

The next steps, still within the callback function, are similar to those for setting up any input device. Note that you need the exclusive cooperative level for any force-feedback device. You also need to set the data format.

 // Set cooperative level.

 if (FAILED(g_lpdid7->SetCooperativeLevel(hMainWindow,

 DISCL_EXCLUSIVE | DISCL_FOREGROUND)))

 {

 OutputDebugString(

 "Failed to set cooperative level.\n");

 g_lpdid7->Release();

 g_lpdid7 = NULL;

 return DIENUM_STOP;

 }

 // set game data format

 if (FAILED(g_lpdid7->SetDataFormat(&c_dfDIJoystick)))

 {

 OutputDebugString("Failed to set game device data format.\n");

 g_lpdid7->Release();

 g_lpdid7 = NULL;

 return DIENUM_STOP;

 }

Finally. you may want to turn off the device's autocenter feature. Autocenter is essentially a condition effect that uses the motors to simulate the springs in a standard joystick. It's a good idea to turn it off so that it doesn't interfere with other effects.

 DIPROPDWORD DIPropAutoCenter;

 DIPropAutoCenter.diph.dwSize = sizeof(DIPropAutoCenter);

 DIPropAutoCenter.diph.dwHeaderSize = sizeof(DIPROPHEADER);

 DIPropAutoCenter.diph.dwObj = 0;

 DIPropAutoCenter.diph.dwHow = DIPH_DEVICE;

 DIPropAutoCenter.dwData = 0;

 if (FAILED(lpdid7->SetProperty(DIPROP_AUTOCENTER,

 &DIPropAutoCenter.diph)))

 {

 OutputDebugString("Failed to change device property.\n");

 }

 return DIENUM_STOP; // One is enough.

 } // end DIEnumDevicesProc

Before using the device, you must acquire it. See Step 5: Gain Access to the Joystick in the previous tutorial for an example of how to handle acquisition.

Next: Step 3: Enumerate Supported Effects

Step 3: Enumerate Supported Effects

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

Now that you've successfully enumerated and created a force-feedback device, you can enumerate the effect types it supports.

Effect enumeration is not strictly necessary if you want to create only standard effects that will be available on any device, such as constant forces. When creating the effect object, you can identify the desired effect type simply by using one of the predefined GUIDs, such as GUID_ConstantForce. (For a complete list of these identifiers, see IDirectInputDevice7::CreateEffect.)

Another, more flexible approach is to enumerate supported effects of a particular type, and obtain the GUID for the effect from the callback function. This is the approach taken in the FFDonuts sample, and you'll adopt it here as well. You could, of course, use the callback to obtain more information about the device's support for the effect— for example, whether it supports an envelope—but in this tutorial you'll get only the effect GUID.

First, create the callback function that will be called by DirectInput for each effect enumerated. For information on this standard callback, see DIEnumEffectsCallback. You can give the function any name you like.

BOOL EffectFound = FALSE; // global flag

BOOL CALLBACK DIEnumEffectsProc(LPCDIEFFECTINFO pei, LPVOID pv)

 {

 *((GUID *)pv) = pei->guid;

 EffectFound = TRUE;

 return DIENUM_STOP; // one is enough

 }

The GUID variable pointed to by the application-defined value pv is assigned the value passed in the DIEFFECTINFO structure created by DirectInput for the effect.

In order to obtain the effect GUID, you set the callback in motion by calling the IDirectInputDevice7::EnumEffects method, as follows:

HRESULT hr;

GUID guidEffect;

hr = g_lpdid7->EnumEffects(

 (LPDIENUMEFFECTSCALLBACK) DIEnumEffectsProc,

 &guidEffect,

 DIEFT_PERIODIC);

if (FAILED(hr))

 {

 OutputDebugString("Effect enumeration failed\n");

 // Note: success doesn't mean any effects were found,

 // only that the process went smoothly.

 }

Note that you pass the address of a GUID variable, guidEffect, to the EnumEffects method. This address is passed in turn to the callback as the pv parameter. You also restrict the enumeration to periodic effects by setting the flag DIEFT_PERIODIC.

Next: Step 4: Create an Effect

Step 4: Create an Effect

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

If the EffectFound value is no longer FALSE after effect enumeration, you can safely assume that DirectInput has found support for at least one effect of the type you requested. (Of course, in real life you would probably not be content with finding just any periodic effect; you would want to use a particular kind such as a sine or sawtooth.) Armed with the effect GUID, you can now create the effect object.

Before calling the IDirectInputDevice7::CreateEffect method, you need to set up the following arrays and structures:

�SYMBOL 183 \f "Symbol" \s 11 \h �	An array of axes that will be involved in the effect. For a joystick this array will normally consist of the identifiers for the x-axis and the y-axis.

�SYMBOL 183 \f "Symbol" \s 11 \h �	An array of values for setting the direction. The values will differ according to the number of axes, and according to whether you want to use polar, spherical, or Cartesian coordinates. For a full explanation of this rather complicated business, see Effect Direction.

�SYMBOL 183 \f "Symbol" \s 11 \h �	A structure of type-specific parameters. In the example, since you are creating a periodic effect, this will be of type DIPERIODIC.

�SYMBOL 183 \f "Symbol" \s 11 \h �	A DIENVELOPE structure for defining the envelope to be applied to the effect.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Finally, a DIEFFECT structure to contain the basic parameters for the effect.

First, declare the arrays and structures. You can initialize the arrays at the same time:

DWORD dwAxes[2] = { DIJOFS_X, DIJOFS_Y };

LONG lDirection[2] = { 0, 0 };

DIPERIODIC diPeriodic; // type-specific parameters

DIENVELOPE diEnvelope; // envelope

DIEFFECT diEffect; // general parameters

Now initialize the type-specific parameters. If you use the values in the example, you will create a full-force periodic effect with a period of one-twentieth of a second.

diPeriodic.dwMagnitude = DI_FFNOMINALMAX;

diPeriodic.lOffset = 0;

diPeriodic.dwPhase = 0;

diPeriodic.dwPeriod = (DWORD) (0.05 * DI_SECONDS);

To get the effect of the chain-saw motor trying to start, briefly coughing into life, and then slowly dying, you will set an envelope with an attack time of half a second and a fade time of one second. You'll get to the sustain value in a moment.

diEnvelope.dwSize = sizeof(DIENVELOPE);

diEnvelope.dwAttackLevel = 0;

diEnvelope.dwAttackTime = (DWORD) (0.5 * DI_SECONDS);

diEnvelope.dwFadeLevel = 0;

diEnvelope.dwFadeTime = (DWORD) (1.0 * DI_SECONDS);

Now you set up the basic effect parameters. These include flags to determine how the directions and device objects (buttons and axes) are identified, the sample period and gain for the effect, and pointers to the other data that you have just prepared. You also associate the effect with the fire button of the joystick, so that it will automatically be played whenever that button is pressed.

diEffect.dwSize = sizeof(DIEFFECT);

diEffect.dwFlags = DIEFF_POLAR | DIEFF_OBJECTOFFSETS;

diEffect.dwDuration = (DWORD) (2 * DI_SECONDS);

diEffect.dwSamplePeriod = 0; // = default

diEffect.dwGain = DI_FFNOMINALMAX; // no scaling

diEffect.dwTriggerButton = DIJOFS_BUTTON0;

diEffect.dwTriggerRepeatInterval = 0;

diEffect.cAxes = 2;

diEffect.rgdwAxes = dwAxes;

diEffect.rglDirection = &lDirection[0];

diEffect.lpEnvelope = &diEnvelope;

diEffect.cbTypeSpecificParams = sizeof(diPeriodic);

diEffect.lpvTypeSpecificParams = &diPeriodic;

So much for the setup. At last you can create the effect:

LPDIEFFECT g_lpdiEffect; // global effect object

HRESULT hr = g_lpdid7->CreateEffect(

 guidEffect, // GUID from enumeration

 &diEffect, // where the data is

 &g_lpdiEffect, // where to put interface pointer

 NULL); // no aggregation

if (FAILED(hr))

 {

 OutputDebugString("Failed to create periodic effect");

 }

Remember that, by default, the effect is downloaded to the device as soon as it has been created, provided that the device is in an acquired state at the exclusive cooperative level. So if everything has gone according to plan, you should be able to compile, run, press the "fire" button, and feel the sputtering of a chain saw that's out of gas.

Next: Step 5: Play an Effect

Step 5: Play an Effect

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

The effect created in the previous step starts in response to the press of a button. In order to create an effect that is to be played in response to an explicit call, you need to go back to Step 4 and modify the dwTriggerButton member of the DIEFFECT structure, as follows:

diEffect.dwTriggerButton = DIEB_NOTRIGGER;

Now, suppose you want to make a chain saw that actually starts and keeps going. This is simply a matter of changing the dwDuration member as follows:

diEffect.dwDuration = INFINITE;

Starting the effect is very simple:

g_lpdiEffect->Start(1, 0);

The effect will keep running until you stop it:

g_lpdiEffect->Stop();

Note that you don't need to change the envelope you created in the previous step. The attack is played as the effect starts, but the fade value is ignored.

Next: Step 6: Change an Effect

Step 6: Change an Effect

[Visual Basic]

The information in this topic pertains only to applications written in C++. See DirectInput Visual Basic Tutorials.

[C++]

Your chain saw is merrily rattling away, and now you want to modify the effect to simulate the slowing down of the engine as the saw bites into wood. Fortunately, DirectInput lets you modify the parameters of an effect while it is playing.

To change the effect, you need to set up a DIEFFECT structure or have access to the one you used to create the effect. If you are setting up a new structure with local scope, you need to initialize only the dwSize member and any members that contain or point to data that is to be changed.

In this case you want to change a type-specific parameter—the period of the effect—so you need to have access to the DIPERIODIC structure you used when creating the effect, or else create a local copy with all members initialized. Make sure that the address of the DIPERIODIC structure is in the lpvTypeSpecificParams member of the DIEFFECT structure.

Now set the new period of the effect:

diPeriodic.dwPeriod = (DWORD) (0.08 * DI_SECONDS);

Then call the method that actually makes the changes:

HRESULT hr = g_lpdiEffect->SetParameters(&diEffect,

 DIEP_TYPESPECIFICPARAMS)

Note the flag that restricts the changes to a single member of the DIEFFECT structure.

You can control the way changes are handled by using other flags. For example, by using the DIEP_NODOWNLOAD flag you could change the parameters immediately after starting the effect but delay the implementation until the user actually started cutting wood. Then you would call the IDirectInputEffect::Download method. For more information on how to use the various control flags, see IDirectInputEffect::SetParameters.

DirectInput Visual Basic Tutorials

[C++]

This section pertains only to application development in Visual Basic. See DirectInput C/C++ Tutorials.

[Visual Basic]

This section contains the following tutorials, each providing step-by-step instructions for implementing DirectInput in a Visual Basic application:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Tutorial 1: Using the Keyboard

The first tutorial shows how to add DirectInput keyboard support to an existing application, using event polling.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Tutorial 2: Using the Mouse

The next tutorial takes you through the steps of providing DirectInput mouse support in an application, using the exclusive cooperative level and event notification. The tutorial is based on the ScrawlB sample, and focuses on buffered data.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Tutorial 3: Using the Joystick

This tutorial shows how to enumerate all the joysticks connected to a system, how to create and initialize DirectInputDevice objects for each of them in a callback function, and how to retrieve immediate data.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Tutorial 4: Using Force Feedback

The final tutorial shows how to implement simple force-feedback effects in an application.

Tutorial 1: Using the Keyboard

[C++]

This topic pertains only to application development in Visual Basic. See DirectInput C/C++ Tutorials.

[Visual Basic]

To prepare for keyboard input, you first create a DirectInput object. Then you create a DirectInputDevice object representing the keyboard. The DirectInputDevice class methods are used to set the behavior of the device and retrieve data.

The tutorial breaks down the required tasks into the following steps:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 1: Create DirectInput and the Keyboard Device

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 2: Set the Keyboard Parameters

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 3: Gain Access to the Keyboard

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 4: Retrieve Immediate Data from the Keyboard

Step 1: Create DirectInput and the Keyboard Device

[C++]

This topic pertains only to application development in Visual Basic. See DirectInput C/C++ Tutorials.

[Visual Basic]

The first step in setting up the DirectInput system is to create a single DirectInput object as overall manager. This is done with a call to the DirectX7.DirectInputCreate method, typically in the Load event handler for the main form or in Sub Main:

Dim dx As New DirectX7

Dim di As DirectInput

Set di = dx.DirectInputCreate()

The keyboard is then created as a standard device by passing the keyboard GUID alias to DirectInput.CreateDevice:

Dim didev As DirectInputDevice

Set didev = di.CreateDevice("GUID_SysKeyboard")

Next: Step 2: Set the Keyboard Parameters

Step 2: Set the Keyboard Parameters

[C++]

This topic pertains only to application development in Visual Basic. See DirectInput C/C++ Tutorials.

[Visual Basic]

After creating a DirectInputDevice, your application must set the device's data format. For keyboards, as with other standard devices, this is a very simple task. Call the DirectInputDevice.SetCommonDataFormat method, specifying the data format provided for your convenience by DirectInput when you pass DIFORMAT_KEYBOARD as the parameter.

Call didev.SetCommonDataFormat(DIFORMAT_KEYBOARD)

Remember, you have to set the data format even if you intend to retrieve buffered data. DirectInput identifies the device objects by their offset within the data format. In the case of the keyboard, keys are identified by their offsets within the DIKEYBOARDSTATE type.

Before your application can gain access to the keyboard, it must set the device's behavior using the DirectInputDevice.SetCooperativeLevel method, as follows:

didev.SetCooperativeLevel Me.hWnd, _

 DISCL_NONEXCLUSIVE Or DISCL_BACKGROUND

This method accepts the handle to the window to be associated with the device, and exactly two flags (one of DISCL_EXCLUSIVE and DISCL_NONEXCLUSIVE, and one of DISCL_FOREGROUND and DISCL_BACKGROUND), indicating the desired cooperative level. DirectInput does not support exclusive access to keyboard devices, so the DISCL_NONEXCLUSIVE flag must be included in this case.

The example also sets the background cooperative level, so input will be available regardless of whether the form is in the foreground. Note also that keystrokes continue to be passed through to whatever application has the focus. Most applications don't need input when they're in the background, and in such cases the DISCL_FOREGROUND flag should be set instead.

Next: Step 3: Gain Access to the Keyboard

Step 3: Gain Access to the Keyboard

[C++]

This topic pertains only to application development in Visual Basic. See DirectInput C/C++ Tutorials.

[Visual Basic]

After your application sets the keyboard's behavior, it can acquire access to the device by calling the DirectInputDevice.Acquire method. The application must acquire the device before retrieving data from it. The Acquire method accepts no parameters.

Call didev.Acquire

In the sample, the application is unlikely to fail to acquire the keyboard, or to lose it later, because it is using the background, nonexclusive cooperative level. However, in general it is good practice to handle errors on calls to Acquire as well as when attempting to retrieve data.

Next: Step 4: Retrieve Immediate Data from the Keyboard

Step 4: Retrieve Immediate Data from the Keyboard

[C++]

This topic pertains only to application development in Visual Basic. See DirectInput C/C++ Tutorials.

[Visual Basic]

Once a device is acquired, your application can start retrieving data from it. The simplest way to do this is to call the DirectInputDevice.GetDeviceStateKeyboard method, which takes a snapshot of the device's state at the time of the call.

The GetDeviceStateKeyboard method accepts as its single parameter a DIKEYBOARDSTATE type, which simply contains an array of 256 bytes.

The following sample retrieves the state of the keyboard:

Dim state As DIKEYBOARDSTATE

Call didev.GetDeviceStateKeyboard(state)

After retrieving the keyboard's current state, your application may respond to specific keys that were down at the time of the call. Each element in the buffer represents a key. If an element's high bit is on, the key was down at the moment of the call; otherwise, the key was up. To check the state of a given key, use the constants of the CONST_DIKEYFLAGS enumeration to index the buffer for a given key.

The following sample code shows how an application might move a vehicle around in response to the arrow keys:

If state.Key(DIK_UP) And &H80 Then

 ' Move the vehicle up

End If

if state.Key(DIK_DOWN) And &H80 Then

 ' Move the vehicle down

End If

' And so on.

The following works just as well:

If state.Key(DIK_UP)

 ' Move the vehicle up

End If

The value of the key state is 0 if the key is up, as is the case with all buttons in the current version of DirectInput. However, future versions might support "analog" keys with more than two states and hence more than a single nonzero value, so this shorter version of the code should be used with caution, especially for devices other than the keyboard.

Remember also that DIK_UP is a single key, the dedicated up arrow key. DirectInput treats the 8 key on the numerical keypad as a distinct key, and gives it the same identifier regardless of whether NUM LOCK is on. In order to allow input from either of the arrow keys, you would have to write code like this:

If state.Key(DIK_UP) Or state.Key(DIK_NUMPAD8) Then

 ' Move the vehicle up

End If

Tutorial 2: Using the Mouse

[C++]

This topic pertains only to application development in Visual Basic. See DirectInput C/C++ Tutorials.

[Visual Basic]

This tutorial focuses on using the mouse at the exclusive cooperative level and shows how to retrieve buffered data in response to notifications. The sample code is based on the ScrawlB sample.

The tutorial is divided into the following steps:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 1: Set Up the Mouse

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 2: Set Up Notifications

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 3: Manage Exclusive Access to the Mouse

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 4: Retrieve Buffered Data from the Mouse

Step 1: Set Up the Mouse

[C++]

This topic pertains only to application development in Visual Basic. See DirectInput C/C++ Tutorials.

[Visual Basic]

First steps in setting up the mouse for use under DirectInput are similar to those taken in Tutorial 1: Using the Keyboard. In the ScrawlB sample, initialization takes place in Sub Main after some global declarations:

Public objDX As New DirectX7

Public objDI As DirectInput

.

.

.

Set objDIDev = objDI.CreateDevice("guid_SysMouse")

Call objDIDev.SetCommonDataFormat(DIFORMAT_MOUSE)

Call objDIDev.SetCooperativeLevel(frmCanvas.hwnd, _

 DISCL_FOREGROUND Or DISCL_EXCLUSIVE)

This time the device takes exclusive control of the device. The result is that as long as the application has the mouse in the acquired state, Windows does not generate mouse messages or display the system cursor. Note that DISCL_EXCLUSIVE must be combined with DISCL_FOREGROUND; it is not possible for an application to have exclusive access to the mouse and also receive input when it loses the focus.

Because the ScrawlB sample application is taking over full responsibility for the mouse, it must also track the position of its private cursor and also must scale movement of the cursor to movements of the mouse. The following global variables are used to store the cursor coordinates (in pixels relative to the upper left corner of the main form) and movement scaling:

Public g_cursorx As Long

Public g_cursory As Long

Public g_Sensitivity

Back in Sub Main, the application sets the buffer size so that it can receive buffered data, using the DirectInputDevice.SetProperty method:

Dim diProp As DIPROPLONG

diProp.lHow = DIPH_DEVICE

diProp.lObj = 0

diProp.lData = BufferSize ' BufferSize is a constant

diProp.lSize = Len(diProp)

Call objDIDev.SetProperty("DIPROP_BUFFERSIZE", diProp)

Next: Step 2: Set Up Notifications

Step 2: Set Up Notifications

[C++]

This topic pertains only to application development in Visual Basic. See DirectInput C/C++ Tutorials.

[Visual Basic]

Rather than polling for mouse input in Sub Main, the ScrawlB sample application relies on DirectInput to notify it whenever a mouse event takes place. As part of initialization, the application gets an event handle and passes it to DirectInputDevice.SetEventNotification:

Dim EventHandle As Long

EventHandle = objDX.CreateEvent(frmCanvas)

Call objDIDev.SetEventNotification(EventHandle)

DirectInput will now notify any object that implements the DirectXEvent class. In the case of ScrawlB, the implementing object is the frmCanvas form, whose declarations section contains the following line:

Implements DirectXEvent

This line causes frmCanvas to inherit all the methods of the DirectXEvent class. As it happens, the only visible method of that class is DirectXEvent.DXCallback, and the inheriting class must implement this method. DirectInput will call this method whenever an input event is signaled.

The implementation of DXCallback is covered under Step 4: Retrieve Buffered Data from the Mouse.

Next: Step 3: Manage Exclusive Access to the Mouse

Step 3: Manage Exclusive Access to the Mouse

[C++]

This topic pertains only to application development in Visual Basic. See DirectInput C/C++ Tutorials.

[Visual Basic]

The ScrawlB sample demonstrates using the mouse with the exclusive foreground cooperative level. At this level, Windows does not track the mouse while it is acquired by the application. There are three major consequences for the application:

�SYMBOL 183 \f "Symbol" \s 11 \h �	It is entirely responsible for displaying a cursor if one is needed, and for moving it at an appropriate speed in response to DirectInput data.

�SYMBOL 183 \f "Symbol" \s 11 \h �	It loses acquisition when the user switches to another application by using the keyboard, and must reacquire the mouse when the user switches back.

�SYMBOL 183 \f "Symbol" \s 11 \h �	It must provide a means for Windows to get the mouse back whenever the user needs to use the system cursor—for example, to navigate a menu within the application.

ScrawlB handles the first responsibility by keeping a private record of mouse movements, adjusted by a user-defined sensitivity value, and displaying an icon that serves as a cursor for drawing.

ScrawlB loses acquisition of the mouse involuntarily whenever the application window moves to the background. When it comes to the foreground again, the application automatically reacquires the mouse by calling DirectInputDevice.Acquire in the MouseMove event handler, which is called whenever Windows sends a mouse message to the application. This happens as soon as the system cursor moves over the client window, or the client window gains the focus under the system cursor. Once ScrawlB reacquires the mouse, of course, no more Windows mouse messages are sent, so the Form_MouseMove method is not called in response to subsequent mouse events.

In order to let the user navigate the context menu, or to display the system cursor for some other purpose such as resizing the window, ScrawlB calls the DirectInputDevice.Unacquire method whenever the user opens the menu. When the menu is closed, Form_MouseMove is called and the mouse is reacquired, unless the user has chosen Suspend from the menu, in which case a flag is set. This flag prevents Form_MouseMove from reacquiring, so that the user can continue using the system cursor.

The sample application demonstrates one more technique for releasing the mouse. If the user opens the system menu by pressing ALT+SPACE, Windows sends a WM_ENTERMENULOOP message. This message is intercepted by a subclassed window procedure, which then unacquires the mouse. As long as Windows is using the system cursor for navigating the menu or allowing the user to move or resize the window, it sends no mouse messages to frmCanvas, so the application doesn't attempt to reacquire the mouse in Form_MouseMove. A similar technique could be used for intercepting other Windows messages such as WM_ACTIVATE or WM_ACTIVATEAPP, so that the application could fully control acquisition and unacquisition of the mouse in response to gaining and losing the focus.

Next: Step 4: Retrieve Buffered Data from the Mouse

Step 4: Retrieve Buffered Data from the Mouse

[C++]

This topic pertains only to application development in Visual Basic. See DirectInput C/C++ Tutorials.

[Visual Basic]

The ScrawlB sample retrieves buffered mouse data inside the DirectXEvent.DXCallback method implemented by frmCanvas. This method is called each time an input event is signaled.

The method declares a buffer of the same size as the buffer DirectInput is using to store the data. This is the size that was set previously by a call to DirectInputDevice.SetProperty.

Dim diDeviceData(1 To BufferSize) As DIDEVICEOBJECTDATA

Also required are a variable to receive the number of items actually retrieved, a loop counter, and a variable to track the previous sequence number of an event:

Dim NumItems As Integer

Dim i As Integer

Static OldSequence As Long

The application now retrieves all the data available, in a single call to DirectInputDevice.GetDeviceData:

On Error GoTo INPUTLOST

NumItems = objDIDev.GetDeviceData(diDeviceData, 0)

On Error GoTo 0

Note the error trap. One of the events that DirectInput will signal is loss of acquisition. If the user switches to another application, for instance, ScrawlB will no longer have the mouse in the acquired state. An event will be signaled and this method will be called, but GetDeviceData will fail, because data can only be retrieved from an acquired device.

The application now iterates through the retrieved items and examines the data in the DIDEVICEOBJECTDATA type, comparing the lOfs member with the constants for the various buttons and axes that are of interest. For the x-axis, for instance, the application extracts the change in axis position from the lData member and uses this to adjust the cursor position, taking into account the user-defined sensitivity:

For i = 1 To NumItems

 Select Case diDeviceData(i).lOfs

 Case DIMOFS_X

 g_cursorx = g_cursorx + diDeviceData(i).lData * _

 g_Sensitivity

The application also examines the sequence number and compares it with the previous one. If two axis events have the same sequence number, the mouse has been moved diagonally, and it's not desirable to update the cursor position or draw a line until both movements have been taken into account.

 If OldSequence <> diDeviceData(i).lSequence Then

 UpdateCursor ' Move cursor and maybe draw line

 OldSequence = diDeviceData(i).lSequence

 Else

 OldSequence = 0

 End If

For the buttons, the method determines the kind of event by checking the appropriate bit in lData. If the bit is set, the mouse button was pressed; otherwise, it was released. Remember, GetDeviceData does not return the current state of the device, so it is up to the application to keep a private record of whether a button is being held down. For the left button, ScrawlB keeps this information in the Drawing Boolean variable.

 Case DIMOFS_BUTTON0

 If diDeviceData(i).lData And &H80 Then

 Drawing = True

 ' Keep record for Line function

 CurrentX = g_cursorx

 CurrentY = g_cursory

 ' Draw point in case button-up follows immediately

 PSet (g_cursorx, g_cursory)

 Else

 Drawing = False

 End If

.

.

.

 End Select

Next i

Tutorial 3: Using the Joystick

[C++]

This topic pertains only to application development in Visual Basic. See DirectInput C/C++ Tutorials.

[Visual Basic]

This tutorial shows how to create a joystick device, set its properties, and retrieve immediate data. The example code is based on the Joystick sample.

The tutorial breaks down the required tasks into the following steps:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 1: Enumerate and Create the Joystick

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 2: Get Joystick Capabilities

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 3: Set Joystick Properties

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 4: Retrieve Immediate Data from the Joystick

Step 1: Enumerate and Create the Joystick

[C++]

This topic pertains only to application development in Visual Basic. See DirectInput C/C++ Tutorials.

[Visual Basic]

Because there is no system joystick, in the sense that there can be a system keyboard or mouse, in order to create a DirectInputDevice object for a joystick you first need to obtain an instance GUID, or globally unique identifier. Generally this is done by enumerating the available joysticks, presenting the user with a choice, and then obtaining the information for the selected device.

The following function initializes DirectInput and enumerates attached joysticks:

Dim dx As New DirectX7

Dim di As DirectInput

Dim diDev As DirectInputDevice

Dim diDevEnum As DirectInputEnumDevices

Sub InitDirectInput()

 On Error GoTo Error_Out

 Set di = dx.DirectInputCreate()

 Set diDevEnum = di.GetDIEnumDevices(_

 DIDEVTYPE_JOYSTICK, DIEDFL_ATTACHEDONLY)

 If diDevEnum.GetCount = 0 Then

 MsgBox "No joystick attached."

 Unload Me

 End If

 'Add attached joysticks to the listbox

 Dim i As Integer

 For i = 1 To diDevEnum.GetCount

 Call lstJoySticks.AddItem(_

 diDevEnum.GetItem(i).GetInstanceName)

 Next

 ' Get an event handle to associate with the device

 EventHandle = dx.CreateEvent(Me)

 Exit Sub

Error_Out:

 MsgBox "Error initializing DirectInput."

 Unload Me

End Sub

When the user selects a joystick from the list, the device is created and initialized in the lstJoySticks_Click procedure:

Set diDev = di.CreateDevice(diDevEnum.GetItem(_

 lstJoySticks.ListIndex + 1).GetGuidInstance)

diDev.SetCommonDataFormat DIFORMAT_JOYSTICK

diDev.SetCooperativeLevel Me.hWnd, _

 DISCL_FOREGROUND Or DISCL_NONEXCLUSIVE

The call to DirectInput.CreateDevice takes as its parameter the GUID for a DirectInputDeviceInstance object obtained from the enumeration. Note that like all enumerated collections in DirectX for Visual Basic, the device enumeration is 1-based, so the index is one greater than the index of the selected item in the list box. The list box must also be unsorted.

You must set the data format before attempting to enumerate objects on the device or manipulate its properties.

Next: Step 2: Get Joystick Capabilities

Step 2: Get Joystick Capabilities

[C++]

This topic pertains only to application development in Visual Basic. See DirectInput C/C++ Tutorials.

[Visual Basic]

Getting basic information about the buttons, axes, and point-of-view controllers on the device requires a simple call to DirectInputDevice.GetCapabilities:

Dim joyCaps As DIDEVCAPS

Call diDev.GetCapabilities joyCaps

The Joystick sample is interested only in the number of buttons and point-of-view controllers on the device. Although the DIDEVCAPS type also reports the number of axes on the device, it does not reveal anything about what those axes are. For this information, the sample calls the IdentifyAxes procedure:

Sub IdentifyAxes(diDev As DirectInputDevice)

 Dim didoEnum As DirectInputEnumDeviceObjects

 Dim dido As DirectInputDeviceObjectInstance

 Dim i As Integer

 For i = 1 To 8

 AxisPresent(i) = False

 Next

After declaring a few variables and clearing out the AxisPresent array (which stores Boolean values for each possible axis), the procedure goes on to enumerate all device objects:

 Set didoEnum = diDev.GetDeviceObjectsEnum(DIDFT_AXIS)

It then queries each DirectInputDeviceObjectInstance for its offset within the data format that was established earlier by the call to DirectInputDevice.SetCommonDataFormat. This offset identifies the conventional role or type of the axis; for instance, you know that a DIJOFS_RZ axis likely corresponds to a twisting motion on the main stick. Keep in mind, though, that device drivers are free to assign any designation to an axis. It is always a good idea to allow users to change the mapping of the axes to actions within your application.

 For i = 1 To didoEnum.GetCount

 Set dido = didoEnum.GetItem(i)

 Select Case dido.GetOfs

 Case DIJOFS_X

 AxisPresent(1) = True

 Case DIJOFS_Y

 AxisPresent(2) = True

' and so on

.

.

.

 End Select

 Next

End Sub

The application now passes the event handle created earlier to the device, so that notifications will be sent to the form when an input event takes place.

Call diDev.SetEventNotification(EventHandle)

Next: Step 3: Set Joystick Properties

Step 3: Set Joystick Properties

[C++]

This topic pertains only to application development in Visual Basic. See DirectInput C/C++ Tutorials.

[Visual Basic]

Property changes are made through the DirectInputDevice.SetProperty method, and must be made after the data format of the device is established, but before it is acquired.

Because different devices might return different ranges of axis values, it is a good idea to set a range that will apply to all devices. The Joystick sample requests that all axis values be within the range 0 to 10,000.

Dim DiProp_Range As DIPROPRANGE

With DiProp_Range

 .lHow = DIPH_DEVICE ' Set for all axes

 .lSize = Len(DiProp_Range)

 .lMin = 0

 .lMax = 10000

End With

diDev.SetProperty "DIPROP_RANGE", DiProp_Range

Note that you must specify the length of the DIPROPRANGE type within its lSize member, because the method can handle parameters of different types, and must know how much memory to allocate. If you're used to programming in C++, you should also note that Len(DIPROPRANGE) is not valid, because it returns zero.

The Joystick sample also sets the dead zone and saturation zones for the stick. In this case, it's not desirable to set these values for other axes such as a throttle or rudder, so the lHow member of the property type is set to indicated that the property change applies to a device object identified by its offset within the data format, and the lObj member is set to that offset value.

Dim DiProp_Dead As DIPROPLONG

With DiProp_Dead

 .lData = 1000

 .lObj = DIJOFS_X

 .lSize = Len(DiProp_Dead)

 .lHow = DIPH_BYOFFSET

' Set for x-axis

 .lObj = DIJOFS_X

 diDev.SetProperty "DIPROP_DEADZONE", DiProp_Dead

' Set for y-axis

 .lObj = DIJOFS_Y

 diDev.SetProperty "DIPROP_DEADZONE", DiProp_Dead

End With

The value in lData is the proportion of the range of travel, in units of 10,000, that is set up as a dead zone. The value of 1000 used in the example specifies that the middle 10 percent of the range of travel on the x-axis and y-axis will be reported as 5000, which happens to be the center of the range set in the previous step.

Note

Dead zone and saturation values are always in units of 10,000, regardless of the range of values reported by the device.

The saturation zones for the device are set similarly. In this case lData is 9500, because it represents the proportion of the range of travel that lies outside the saturation zones at the extremities. In other words, the bottom and top 5 percent of the raw values returned by the stick will be reported as the minimum or maximum range value set for the device (in this case, 0 or 10,000).

Next: Step 4: Retrieve Immediate Data from the Joystick

Step 4: Retrieve Immediate Data from the Joystick

[C++]

This topic pertains only to application development in Visual Basic. See DirectInput C/C++ Tutorials.

[Visual Basic]

Now that the necessary properties have been set, the device can be acquired and data can be collected from the joystick. In the Joystick sample, the device is polled in a loop after its properties have been set. In a real-world multimedia application, polling would take place in the main game loop or rendering loop.

diDev.Acquire

While DoEvents

 diDev.Poll

Wend

The sample application does not actually retrieve immediate data each time the device is polled. To avoid unnecessary screen updates, it relies on notification, and the call to Poll is only to ensure that notifications are issued by devices that do not generate interrupts. Polling is not necessary for some game devices (such as HIDs), but it is just as efficient to make a redundant call to DirectInputDevice.Poll as it would be to check a flag for the device before calling Poll.

Notifications are handled, as usual, in the implementation of the DirectXEvent.DXCallback method. Each time this procedure is called, the application knows that some joystick event has occurred. At this point it could call DirectInputDevice.GetDeviceData to retrieve any pending axis changes or button events. However, with a game controller it would be more usual to retrieve the state of the entire device, so the sample uses DirectInputDevice.GetDeviceStateJoystick.

Dim js As DIJOYSTATE

diDev.GetDeviceStateJoystick js

The values in the DIJOYSTATE type now tell the application everything it needs to know about the state of the device objects. Since it knows from Step 2: Get Joystick Capabilities what buttons, axes, and point-of-view controllers are actually present, it also knows which members of the type to ignore.

Tutorial 4: Using Force Feedback

[C++]

This topic pertains only to application development in Visual Basic. See DirectInput C/C++ Tutorials.

[Visual Basic]

This tutorial shows how to test for the presence of a force-feedback device, how to create and play an effect, and how to change the parameters of an effect as it is playing.

The tutorial breaks down the tasks into the following steps:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 1: Initialize the Force-Feedback Device�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 2: Set Device Properties

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 3: Create an Effect

�SYMBOL 183 \f "Symbol" \s 11 \h �	Step 4: Modify an Effect

Step 1: Initialize the Force-Feedback Device

[C++]

This topic pertains only to application development in Visual Basic. See DirectInput C/C++ Tutorials.

[Visual Basic]

In order to implement force feedback, you must first determine whether an appropriate device is available, and if so, create a DirectInputDevice object for it. Let's presume that your application requires a device that can play effects on the x-axis and y-axis.

The following example starts by creating a DirectInput object, then using that to enumerate the available devices in a DirectInputEnumDevices object. The enumeration is restricted to attached devices of type DIDEVTYPE_JOYSTICK, since all force-feedback devices are of this type.

' dx is the global DirectX object, already initialized

' di is the global DirectInput object

Dim diDevInst As DirectInputDeviceInstance

Dim diDevObjEnum As DirectInputEnumDeviceObjects

Dim devobj As DirectInputDeviceObjectInstance

Dim devcaps As DIDEVCAPS

Dim ForceX As Boolean, ForceY As Boolean

Dim FoundForce As Boolean

Dim efftype As Long

Dim strObjGuid As String

Dim i As Integer, iAxes As Integer

Set di = dx.DirectInputCreate

Set diEnumDev = di.GetDIEnumDevices(DIDEVTYPE_JOYSTICK, _

 DIEDFL_ATTACHEDONLY)

The example now iterates through the available devices till it finds one that has force-feedback capabilities.

For i = 1 To diEnumDev.GetCount

 Set diDevInst = diEnumDev.GetItem(i)

 Set didev = di.CreateDevice(diDevInst.GetGuidInstance)

 Call didev.GetCapabilities(devcaps)

 If devcaps.lFlags And DIDC_FORCEFEEDBACK Then

Now the example enumerates the axes on the device in a DirectInputEnumDeviceObjects collection:

 Set diDevObjEnum = didev.GetDeviceObjectsEnum(DIDFT_AXIS)

 ForceX = False

 ForceY = False

It then goes through the axes looking for the x-axis and y-axis, and checks to see whether they support force-feedback effects:

 For iAxes = 1 To diDevObjEnum.GetCount

 Set devobj = diDevObjEnum.GetItem(iAxes)

 strObjGuid = devobj.GetGuidType

 If strObjGuid = "GUID_XAxis" Then

 If devobj.GetFlags And DIDOI_FFACTUATOR Then

 ForceX = True

 End If

 ElseIf strObjGuid = "GUID_YAxis" Then

 If devobj.GetFlags And DIDOI_FFACTUATOR Then

 ForceY = True

 End If

 End If

 Next iAxes

 FoundForce = ForceX And ForceY

 if FoundForce Then Exit For

 End If

Next i

If Not FoundForce Then

 MsgBox "Two force feedback axes required."

End

Next: Step 2: Set Device Properties

Step 2: Set Device Properties

[C++]

This topic pertains only to application development in Visual Basic. See DirectInput C/C++ Tutorials.

[Visual Basic]

Presuming you have found a suitable force-feedback device, the DirectInputDevice object created in the last step in order to check capabilities can be left in place. It requires some further initialization, as covered in Tutorial 3: Using the Joystick: setting the data format and cooperative level, and setting the range properties for input. Note that the cooperative level must include DISCL_EXCLUSIVE. Although you probably won't need background access to the device, the DISCL_BACKGROUND flag makes debugging easier, because you won't keep losing acquisition when you switch to the code window.

Call didev.SetCommonDataFormat(DIFORMAT_JOYSTICK2)

Call didev.SetCooperativeLevel(Me.hWnd, _

 DISCL_BACKGROUND Or DISCL_EXCLUSIVE)

' Set range properties...

.

.

.

For force feedback, you might also want to disable the autocenter property of the device, so that the default spring action will not interfere with effects you create:

Dim prop As DIPROPLONG

prop.lData = 0

prop.lHow = DIPH_DEVICE

prop.lObj = 0

prop.lSize = Len(prop)

Call didev.SetProperty("DIPROP_AUTOCENTER", prop)

didev.Acquire

Next: Step 3: Create an Effect

Step 3: Create an Effect

[C++]

This topic pertains only to application development in Visual Basic. See DirectInput C/C++ Tutorials.

[Visual Basic]

Let's suppose that in your application you wish to simulate the pull of a stationary object (say a magnet) on a movable object (say an iron ball) controlled by the joystick. At the beginning of the simulation, the iron ball is due south of the magnet and experiencing one-half the maximum possible pull.

You will simulate the pull of the magnet by a constant force. First you set up the DIEFFECT type that describes the force:

Dim EffectInfo as DIEFFECT

With EffectInfo

 .constantForce.lMagnitude = 5000

 .lDuration = -1 ' Infinite

 .x = 18000

 .lGain = 10000 ' Play at full magnitude

 .lTriggerButton = -1 ' No trigger button

End With

All the other members of DIEFFECT are either not relevant to a constant force or are valid as 0.

Now create the effect:

Dim di_effect As DirectInputEffect

Set di_effect = didev.CreateEffect("GUID_ConstantForce", EffectInfo)

If the device is in an acquired state at this time, the effect is automatically downloaded. If not, the effect will be downloaded when it is started.

di_effect.Start(1, 0)

Only one iteration of the effect is needed, since it has infinite duration, and no flags are required in this case.

Next: Step 4: Modify an Effect

Step 4: Modify an Effect

[C++]

This topic pertains only to application development in Visual Basic. See DirectInput C/C++ Tutorials.

[Visual Basic]

As the user moves the iron ball around, the application will adjust the direction and magnitude of the effect. First of all, though, you may want to check whether the device allows you to change the direction of the effect without stopping and restarting it. DirectInput will stop and restart the effect automatically if necessary, but you might want to modify the behavior of your application to avoid breaks in continuity.

In order to examine the capabilities for any effect, you need to enumerate supported effects and then look for the particular one you are interested in.

Dim diEnumEffects As DirectInputEnumEffects

Dim params As Long

Dim i As Long

' Enumerate constant forces

Set diEnumEffects = didev.GetEffectsEnum(DIEFT_CONSTANTFORCE)

For i = 1 To diEnumEffects.GetCount

 ' Look for the standard constant force. There could be others.

 If diEnumEffects.GetEffectGuid(i) = "GUID_ConstantForce" Then

 params = diEnumEffects.GetDynamicParams(i)

 Exit For

 End If

Next i

If Not (params And DIEP_DIRECTION) Then

 ' Cannot change direction dynamically. Take remedial action such

 ' as limiting points at which modifications will be made.

End If

Similarly, to learn whether you can change the magnitude of the effect dynamically, perform the following check:

if Not (params And DIEP_TYPESPECIFICPARAMS)

 ' Can't change type-specific parameters dynamically.

End If

Now you wish to modify the effect each time the device has been polled for input and the iron ball has moved. Let's presume that you have calculated the new magnitude in CurrentMag and the new direction (in degrees) in CurrentBearing. In order to make the necessary changes, you need to initialize only those members of DIEFFECT that are relevant.

EffectInfo.constantForce.lMagnitude = CurrentMag

EffectInfo.x = CurrentBearing * 100

You now pass the DIEFFECT type to DirectInputEffect.SetParameters along with flags indicating which members contain valid data:

di_effect.SetParameters(EffectInfo, _

 DIEP_DIRECTION Or DIEP_TYPESPECIFICPARAMS)

The DIEP_TYPESPECIFICPARAMS flag indicates that any member containing information particular to that type of effect is valid. In the case of a constant force, this means the constantForce member.

DirectInput Tools and Samples

This section describes tools and sample applications included with the DirectX SDK that pertain to DirectInput. Descriptions are organized as follows:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInput Tools

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInput C/C++ Samples

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInput Visual Basic Samples

DirectInput Tools

The following tools are provided for use with DirectInput:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DirectInput QuickTest

�SYMBOL 183 \f "Symbol" \s 11 \h �	Force Editor

DirectInput QuickTest

Description

The DirectInput QuickTest application allows you to see the properties of devices and device objects, and to see the input data from a device.

Path

Executable: (SDK root)\Samples\Multimedia\DInput\Bin\Diquick.exe

User's Guide

On the opening screen, select a device and click the Create button. If the device is successfully created, you see a property sheet with four different tabbed pages.

On the Mode tabbed page, choose a cooperative level, a data mode, and an axis mode. For a joystick, you will have to choose the polled data mode. You also need to confirm the device type in the “Form of” box. If you want to see buffered data, you must set the buffer size to greater than zero on this tabbed page.

The Caps tabbed page gives you miscellaneous information about the device.

On the Objects tabbed page you can enumerate selected buttons and axes on the device. The Properties button brings up a summary of the data represented by the DIDEVICEOBJECTINSTANCE structure (C++) or DirectInputDeviceObjectInstance object (Visual Basic) for the selected object. You can also set the range, deadzone, and saturation for an axis on this property sheet.

Finally, on the Data tabbed page you see input data from the device: immediate data on the left, and buffered data (if you’ve set a buffer size) on the right.

Force Editor

Description

The Force Editor application lets you design force-feedback effects and test them singly or in combination. Effects can be saved to file and then loaded into DirectInput applications.

Path

Executable: (SDK root)\Bin\Dxutils\Fedit.exe

User's Guide

Press F1 for online help.

DirectInput C/C++ Samples

[Visual Basic]

This section pertains only to application development in C and C++. See DirectInput Visual Basic Samples.

[C++]

The following sample programs demonstrate the use and capabilities of DirectInput:

�SYMBOL 183 \f "Symbol" \s 11 \h �	DIGame Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	FFDonuts Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	FFFileRead Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	JoyFFeed Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	JoystImm Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	KeybdBuf Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	KeybdExc Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	KeybdImm Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	MouseExc Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	MouseNon Sample

�SYMBOL 183 \f "Symbol" \s 11 \h �	Scrawl Sample

In addition, amply commented source code illustrating basic DirectInput functionality is available at the following location:

(SDK root)\Samples\Multimedia\DInput\Src\Tutorials

Although DirectX samples include Microsoft® Visual C++® project workspace files, you might need to verify other settings in your development environment to ensure that the samples compile properly. For more information, see Compiling DirectX Samples and Other DirectX Applications.

DIGame Sample

[Visual Basic]

This topic pertains only to application development in C and C++. See DirectInput Visual Basic Samples.

[C++]

Description

The DIGame sample application is a simple shooting game that can be played with keyboard, mouse, or joystick.

Path

Source: (SDK root)\Samples\Multimedia\DInput\Src\DIGame

Executable: (SDK root)\Samples\Multimedia\DInput\Bin

User's Guide

The default input device is the keyboard. Change the device by choosing Select Input Device from the File menu.

Move the ship up and down with the arrow keys, the mouse, or the joystick. Change directions by moving left or right. Fire by pressing the spacebar, the left mouse button, or the primary button on the joystick.

To start again, select New Game from the File menu.

Programming Notes

The input code is all in Digame.cpp.

FFDonuts Sample

[Visual Basic]

This topic pertains only to application development in C and C++. See DirectInput Visual Basic Samples.

[C++]

Description

This is a variation on the Space Donuts sample program that adds force-feedback output if a force-feedback joystick is installed in your computer.

Path

Source: (SDK root)\Samples\Multimedia\DInput\Src\FFdonuts

Executable: (SDK root)\Samples\Multimedia\DInput\Bin

User's Guide

When the program is started, you see a dialog box that lets you set the magnitude of the force-feedback effects.

When your ship appears, move the joystick forward to accelerate forward and pull it back to decelerate or move backward. Moving the joystick left or right rotates the ship. Press the trigger button to fire. Press the second button to activate the shields. Observe the force-feedback effects as you fire, collide with objects, and bounce off the edge of the screen.

Programming Notes

The force-feedback routines are in the Input.c file. The program illustrates the use of constant and periodic effects, envelopes, and gain. Note that the fire-button effect is played in response to an ordinary input event rather than being associated with a trigger button in the DIEFFECT structure.

See Also

Space Donuts (DirectDraw sample)

FFFileRead Sample

[Visual Basic]

This topic pertains only to application development in C and C++. See DirectInput Visual Basic Samples.

[C++]

Description

This sample shows how to read and create effects from a file created by Force Editor.

Path

Source: (SDK root)\Samples\Multimedia\DInput\Src\FFFileRead

Executable: (SDK root)\Samples\Multimedia\DInput\Bin\FFeedFileRead.exe

Media: (SDK root)\Samples\Multimedia\DInput\Media

User's Guide

Click Read File and load a supplied .ffe file from the Media folder or one of your own files. Then click Play Effects.

Programming Notes

For each file effect enumerated, the EnumAndCreateEffectsCallback function initializes an IDirectInputEffect pointer and adds it to a linked list. The OnPlayEffects function traverses this list and plays all effects.

JoyFFeed Sample

[Visual Basic]

This topic pertains only to application development in C and C++. See DirectInput Visual Basic Samples.

[C++]

Description

This application applies raw forces to a force-feedback joystick, illustrating how a simulator-type application can use force feedback to generate forces computed by a physics engine.

You must have a force-feedback device connected to your system in order to run the application.

Path

Source: (SDK root)\Samples\Multimedia\DInput\Src\JoyFFeed

Executable: (SDK root)\Samples\Multimedia\DInput\Bin

User's Guide

When you run the application, it displays a window with a crosshair and a black spot in it. Click the mouse anywhere within the window's client area to move the black spot. (Note that moving the joystick handle does not do anything.) JoyFFeed exerts a constant force on the joystick handle from the direction of the spot, in proportion to the distance from the crosshair. You can also hold down the mouse button and move the spot continuously.

Programming Notes

This sample program enumerates the input devices and acquires the first force-feedback joystick that it finds. If none are detected, it displays a message and terminates.

When the user moves the black spot, the joySetForcesXY function converts the cursor coordinates to a force direction and magnitude. This data is used to modify the parameters of the constant force effect.

JoystImm Sample

[Visual Basic]

This topic pertains only to application development in C and C++. See DirectInput Visual Basic Samples.

[C++]

Description

The JoystImm sample obtains and displays joystick data.

Path

Source: (SDK root)\Samples\Multimedia\DInput\Src\JoystImm

Executable: (SDK root)\Samples\Multimedia\DInput\Bin

User's Guide

Observe how the displayed data changes when you move and twist the stick, rotate the throttle wheel, and press buttons in various combinations.

Programming Notes

The application polls the joystick for immediate data in response to a timer set inside the dialog procedure.

KeybdBuf Sample

[Visual Basic]

This topic pertains only to application development in C and C++. See DirectInput Visual Basic Samples.

[C++]

Description

The KeybdBuf program obtains and displays keyboard data.

Path

Source: (SDK root)\Samples\Multimedia\DInput\src\KeybdBuf

Executable: (SDK root)\Samples\Multimedia\DInput\bin

User's Guide

Each time you press or release a key, the event is recorded on the screen. Keys are identified by their index values (see Keyboard Device Constants).

Programming Notes

This sample illustrates how an application can use DirectInput to obtain buffered keyboard data.

KeybdExc Sample

[Visual Basic]

This topic pertains only to application development in C and C++. See DirectInput Visual Basic Samples.

[C++]

Description

The KeybdExc sample shows how to use the keyboard at the exclusive cooperative level.

Path

Source: (SDK root)\Samples\Multimedia\DInput\Src\KeybdExc

Executable: (SDK root)\Samples\Multimedia\DInput\Bin\KeybdExc.exe

User's Guide

Hold down one or more keys and the index value of each key (see Keyboard Device Constants) is shown. Note that the Windows key does not activate the system Start menu, as it does in the KeybdImm Sample.

Programming Notes

This sample illustrates how an application can use DirectInput to obtain immediate keyboard data at the exclusive foreground cooperative level. The application repeatedly calls IDirectInputDevice7::GetDeviceState and displays a string containing the values of all the keys that are down.

KeybdImm Sample

[Visual Basic]

This topic pertains only to application development in C and C++. See DirectInput Visual Basic Samples.

[C++]

Description

The KeybdImm program obtains and displays keyboard data.

Path

Source: (SDK root)\Samples\Multimedia\DInput\Src\KeybdImm

Executable: (SDK root)\Samples\Multimedia\DInput\Bin

User's Guide

Hold down one or more keys and the index value of each key (see Keyboard Device Constants) is shown.

Programming Notes

This sample illustrates how an application can use DirectInput to obtain immediate keyboard data at the nonexclusive foreground cooperative level. The application repeatedly calls IDirectInputDevice7::GetDeviceState and displays a string containing the values of all the keys that are down.

MouseExc Sample

[Visual Basic]

This topic pertains only to application development in C and C++. See DirectInput Visual Basic Samples.

[C++]

Description

The MouseExc program demonstrates how to initialize and get immediate data from a DirectInput device.

Path

Source: (SDK root)\Samples\Multimedia\DInput\Src\MouseExc

Executable: (SDK root)\Samples\Multimedia\DInput\Bin

User's Guide

Move the mouse around and observe how the change in coordinates is displayed. Hold down a mouse button and its number is shown. Note that the system cursor is not present.

Programming Notes

This sample illustrates how an application can use DirectInput to obtain relative mouse data in exclusive foreground mode. Approximately 30 times per second the program displays the change in mouse coordinates since the last call to IDirectInputDevice7::GetDeviceState.

MouseNon Sample

[Visual Basic]

This topic pertains only to application development in C and C++. See DirectInput Visual Basic Samples.

[C++]

Description

The MouseNon program demonstrates how to initialize and get immediate data from a DirectInput device.

Path

Source: (SDK root)\Samples\Multimedia\DInput\Src\MouseNon

Executable: (SDK root)\Samples\Multimedia\DInput\Bin

User's Guide

Move the mouse around and observe how the change in coordinates is displayed. Hold down a mouse button and its number is shown. Note that the cursor doesn't have to be in the application window, but the application does have to be in the foreground.

Programming Notes

This sample illustrates how an application can use DirectInput to obtain relative mouse data in non-exclusive foreground mode. Approximately 30 times per second the program displays the change in mouse coordinates since the last call to IDirectInputDevice7::GetDeviceState.

Scrawl Sample

[Visual Basic]

This topic pertains only to application development in C and C++. See DirectInput Visual Basic Samples.

[C++]

Description

The Scrawl application demonstrates use of the mouse in exclusive mode in a windowed application.

Path

Source: (SDK root)\Samples\Multimedia\DInput\Src\Scrawl

Executable: (SDK root)\Samples\Multimedia\DInput\Bin

User's Guide

The main mouse button is always the left button, and the secondary button is always the right button, regardless of any settings the user may have made in Control Panel.

To scrawl, hold down the left button and move the mouse. Click the right mouse button to invoke a pop-up menu. From the pop-up menu you can clear the client window, set the mouse sensitivity, or close the application.

Programming Notes

The Scrawl application demonstrates many aspects of DirectInput programming, including the following:

�SYMBOL 183 \f "Symbol" \s 11 \h �	Using the mouse in exclusive mode in a windowed application.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Releasing the mouse when Windows needs to use it for menu access.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Reacquiring the mouse when Windows no longer needs it.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Reading buffered device data.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Deferring screen updates till movement on both axes has been fully processed.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Event notifications of device activity.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Restricting the cursor to an arbitrary region.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Scaling raw mouse coordinates before using them.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Using relative axis mode.

IDH_DirectInput_dinput_vb

IDH_DirectInput.CreateDevice_dinput_vb

IDH_DirectInput.GetDeviceStatus_dinput_vb

IDH_DirectInput.GetDIEnumDevices_dinput_vb

IDH_DirectInput.RunControlPanel_dinput_vb

IDH_DirectInputDevice_dinput_vb

IDH_DirectInputDevice.Acquire_dinput_vb

IDH_DirectInputDevice.CreateCustomEffect_dinput_vb

IDH_DirectInputDevice.CreateEffect_dinput_vb

IDH_DirectInputDevice.GetCapabilities_dinput_vb

IDH_DirectInputDevice.GetDeviceData_dinput_vb

IDH_DirectInputDevice.GetDeviceInfo_dinput_vb

IDH_DirectInputDevice.GetDeviceObjectsEnum_dinput_vb

IDH_DirectInputDevice.GetDeviceState_dinput_vb

IDH_DirectInputDevice.GetDeviceStateJoystick_dinput_vb

IDH_DirectInputDevice.GetDeviceStateJoystick2_dinput_vb

IDH_DirectInputDevice.GetDeviceStateKeyboard_dinput_vb

IDH_DirectInputDevice.GetDeviceStateMouse_dinput_vb

IDH_DirectInputDevice.GetEffectsEnum_dinput_vb

IDH_DirectInputDevice.GetForceFeedbackState_dinput_vb

IDH_DirectInputDevice.GetObjectInfo_dinput_vb

IDH_DirectInputDevice.GetProperty_dinput_vb

IDH_DirectInputDevice.Poll_dinput_vb

IDH_DirectInputDevice.RunControlPanel_dinput_vb

IDH_DirectInputDevice.SendDeviceData_dinput_vb

IDH_DirectInputDevice.SendForceFeedbackCommand_dinput_vb

IDH_DirectInputDevice.SetCommonDataFormat_dinput_vb

IDH_DirectInputDevice.SetCooperativeLevel_dinput_vb

IDH_DirectInputDevice.SetDataFormat_dinput_vb

IDH_DirectInputDevice.SetEventNotification_dinput_vb

IDH_DirectInputDevice.SetProperty_dinput_vb

IDH_DirectInputDevice.Unacquire_dinput_vb

IDH_DirectInputDeviceInstance_dinput_vb

IDH_DirectInputDeviceInstance.GetDevType_dinput_vb

IDH_DirectInputDeviceInstance.GetGuidFFDriver_dinput_vb

IDH_DirectInputDeviceInstance.GetGuidInstance_dinput_vb

IDH_DirectInputDeviceInstance.GetGuidProduct_dinput_vb

IDH_DirectInputDeviceInstance.GetInstanceName_dinput_vb

IDH_DirectInputDeviceInstance.GetProductName_dinput_vb

IDH_DirectInputDeviceInstance.GetUsage_dinput_vb

IDH_DirectInputDeviceInstance.GetUsagePage_dinput_vb

IDH_DirectInputDeviceObjectInstance_dinput_vb

IDH_DirectInputDeviceObjectInstance.GetCollectionNumber_dinput_vb

IDH_DirectInputDeviceObjectInstance.GetDesignatorIndex_dinput_vb

IDH_DirectInputDeviceObjectInstance.GetDimension_dinput_vb

IDH_DirectInputDeviceObjectInstance.GetExponent_dinput_vb

IDH_DirectInputDeviceObjectInstance.GetFlags_dinput_vb

IDH_DirectInputDeviceObjectInstance.GetGuidType_dinput_vb

IDH_DirectInputDeviceObjectInstance.GetName_dinput_vb

IDH_DirectInputDeviceObjectInstance.GetOfs_dinput_vb

IDH_DirectInputDeviceObjectInstance.GetType_dinput_vb

IDH_DirectInputDeviceObjectInstance.GetUsage_dinput_vb

IDH_DirectInputDeviceObjectInstance.GetUsagePage_dinput_vb

IDH_DirectInputEffect_dinput_vb

IDH_DirectInputEffect.Download_dinput_vb

IDH_DirectInputEffect.GetEffectGuid_dinput_vb

IDH_DirectInputEffect.GetEffectStatus_dinput_vb

IDH_DirectInputEffect.GetParameters_dinput_vb

IDH_DirectInputEffect.SetParameters_dinput_vb

IDH_DirectInputEffect.Start_dinput_vb

IDH_DirectInputEffect.Stop_dinput_vb

IDH_DirectInputEffect.Unload_dinput_vb

IDH_DirectInputEnumDeviceObjects_dinput_vb

IDH_DirectInputEnumDeviceObjects.GetCount_dinput_vb

IDH_DirectInputEnumDeviceObjects.GetItem_dinput_vb

IDH_DirectInputEnumDevices_dinput_vb

IDH_DirectInputEnumDevices.GetCount_dinput_vb

IDH_DirectInputEnumDevices.GetItem_dinput_vb

IDH_DirectInputEnumEffects_dinput_vb

IDH_DirectInputEnumEffects.GetCount_dinput_vb

IDH_DirectInputEnumEffects.GetDynamicParams_dinput_vb

IDH_DirectInputEnumEffects.GetEffectGuid_dinput_vb

IDH_DirectInputEnumEffects.GetName_dinput_vb

IDH_DirectInputEnumEffects.GetStaticParams_dinput_vb

IDH_DirectInputEnumEffects.GetType_dinput_vb

IDH_DICONDITION_dinput_vb

IDH_DICONSTANTFORCE_dinput_vb

IDH_DIDATAFORMAT_dinput_vb

IDH_DIDEVCAPS_dinput_vb

IDH_DIDEVICEOBJECTDATA_dinput_vb

IDH_DIEFFECT_dinput_vb

IDH_DIENVELOPE_dinput_vb

IDH_DIJOYSTATE_dinput_vb

IDH_DIJOYSTATE2_dinput_vb

IDH_DIKEYBOARDSTATE_dinput_vb

IDH_DIMOUSESTATE_dinput_vb

IDH_DIOBJECTDATAFORMAT_dinput_vb

IDH_DIPERIODICFORCE_dinput_vb

IDH_DIPROPLONG_dinput_vb

IDH_DIPROPRANGE_dinput_vb

IDH_DIRAMPFORCE_dinput_vb

IDH_CONST_DICOMMONDATAFORMATS_dinput_vb

IDH_CONST_DICONDITIONFLAGS_dinput_vb

IDH_CONST_DIDATAFORMATFLAGS_dinput_vb

IDH_CONST_DIDEVCAPSFLAGS_dinput_vb

IDH_CONST_DIDEVICEOBJINSTANCEFLAGS_dinput_vb

IDH_CONST_DIDEVICETYPE_dinput_vb

IDH_CONST_DIDFTFLAGS_dinput_vb

IDH_CONST_DIDGDDFLAGS_dinput_vb

IDH_CONST_DIEFFFLAGS_dinput_vb

IDH_CONST_DIEFTFLAGS_dinput_vb

IDH_CONST_DIEGESFLAGS_dinput_vb

IDH_CONST_DIENUMDEVICESFLAGS_dinput_vb

IDH_CONST_DIEPFLAGS_dinput_vb

IDH_CONST_DIESFLAGS_dinput_vb

IDH_CONST_DIGFFSFLAGS_dinput_vb

IDH_CONST_DIJOYSTICKOFS_dinput_vb

IDH_CONST_DIKEYFLAGS_dinput_vb

IDH_CONST_DIMOUSEOFS_dinput_vb

IDH_CONST_DINPUT_dinput_vb

IDH_CONST_DINPUTERR_dinput_vb

IDH_CONST_DIPHFLAGS_dinput_vb

IDH_CONST_DISCLFLAGS_dinput_vb

IDH_CONST_DISDDFLAGS_dinput_vb

IDH_CONST_DISFFCFLAGS_dinput_vb

IDH_Keyboard_Device_Constants_dinput_vb

IDH_DirectInput_and_Japanese_Keyboards_dinput_vb

� FILENAME * MERGEFORMAT �DIOVER.doc� – page � PAGE * MERGEFORMAT �6�

