WinUnet API

WinInet API

WinInet API

This section covers the Win32(r) Internet functions, which provide a high-level interface that abstracts the underlying protocols. This section also includes automatic dialing functions to handle dial-up connections.

WinInet API
1

Microsoft Win32 Internet Functions Overview
6

Introduction to the Microsoft Win32 Internet Functions
7

Internet Protocols
7

Establishing a Dial-Up Connection to the Internet
7

Enabling Internet Functionality
7

Using InternetOpen
8

Setting the User Agent
8

Setting Access Types
8

Listing Proxy Servers
9

Listing the Proxy Bypass
9

Using InternetConnect
10

Defining the User Name and Password
10

Defining the Session
11

Common Functions
11

Using Common Functions
11

Reading Files
12

Finding the Next File
15

Manipulating Options
16

Setting Up Asynchronous Operations
17

Closing HINTERNET Handles
18

Locking and Unlocking Resources
18

Handling Uniform Resource Locators
18

What Is a Canonicalized URL?
18

Using the Win32 Internet Functions to Handle URLs
19

Canonicalizing URLs
19

Combining Base and Relative URLs
19

Cracking URLs
19

Creating URLs
21

Accessing URLs Directly
22

Handling Authentication
24

About HTTP Authentication
24

Registering Authentication Keys
25

Server Authentication
26

Proxy Authentication
26

Handling HTTP Authentication
26

Utilizing the Win32 Internet Functions Asynchronously
28

Benefits
28

Scenarios
28

Related Topics
29

FTP Sessions
30

FTP Function Handles
31

Using the Win32 Internet Functions for FTP Sessions
31

Starting an FTP Session
32

Enumerating Directories
32

Navigating Directories
34

Manipulating Directories on an FTP Server
35

Getting Files on an FTP Server
36

Placing Files on an FTP Server
37

Deleting Files from an FTP Server
39

Renaming Files and Directories on an FTP Server
39

Gopher Sessions
40

Using the Win32 Internet Functions for Gopher Sessions
40

Creating Locators
40

Enumerating Directories
41

Downloading Gopher Resources
42

HTTP Sessions
42

Using the Win32 Internet Functions to Access the WWW
43

Initiating a Connection to the WWW
43

Opening a Request
43

Adding Request Headers
44

Sending a Request
45

Posting Data to the Server
45

Getting Information About a Request
45

Downloading Resources from the WWW
46

Managing Cookies
48

Using Cookie Functions
48

Getting a Cookie
48

Setting a Cookie
49

HTTP Cookies
49

Cookie-Related Headers
49

Set-Cookie Header
49

Cookie Header
50

Generating Cookies
50

Generating a Cookie Using the DHTML Object Model
50

Generating a Cookie Using the Win32 Internet Functions
51

Generating a Cookie Using a CGI Script
51

Caching
51

Using Flags to Control Caching
51

Persistent Caching Functions
52

Using the Persistent URL Cache Functions
52

Enumerating the Cache
53

Retrieving Cache Entry Information
55

Creating a Cache Entry
56

Deleting a Cache Entry
57

Retrieving a Cache Entry Stream
57

Retrieving Cache Entry Files
59

Cache Groups
59

Handling Structures with Variable Size Information
59

Appendix A: HINTERNET Handles
59

About HINTERNET Handles
59

Handle Hierarchy
60

FTP Hierarchy
60

Gopher Hierarchy
61

HTTP Hierarchy
61

Appendix B: Using Buffers
62

Appendix C: Handling Errors
62

Microsoft Win32 Internet Functions Reference
64

Win32 Internet Functions Syntax
64

Win32 Internet API Functions
65

Alphabetical list of the functions
65

General Win32 Internet Functions
68

InternetAttemptConnect Function
68

InternetCheckConnection Function
69

InternetCloseHandle Function
69

InternetConfirmZoneCrossing Function
71

InternetConnect Function
71

InternetErrorDlg Function
73

InternetFindNextFile Function
75

InternetGetLastResponseInfo Function
76

Syntax
76

InternetInitializeAutoProxyDll Function
77

InternetLockRequestFile Function
77

InternetOpen Function
78

InternetQueryDataAvailable Function
80

InternetQueryOption Function
81

InternetReadFile Function
82

InternetReadFileEx Function
83

InternetSetFilePointer Function
84

InternetSetOption Function
85

InternetSetOptionEx Function
86

InternetSetStatusCallback Function
86

FtpSetCurrentDirectory Function
87

InternetTimeToSystemTime Function
88

InternetUnlockRequestFile Function
89

InternetWriteFile Function
89

Automatic Dialing Functions
90

InternetAutodial Function
90

InternetAutodialHangup Function
91

InternetDial Function
91

InternetGetConnectedState Function
92

InternetGetConnectedStateEx Function
93

InternetGoOnline Function
94

InternetHangUp Function
95

InternetSetDialState Function
95

Uniform Resource Locator (URL) Functions
95

InternetCanonicalizeUrl Function
96

InternetCombineUrl Function
97

InternetCrackUrl Function
99

InternetCreateUrl Function
100

InternetOpenUrl Function
101

FTP Functions
103

FtpCommand Function
103

FtpCreateDirectory Function
104

FtpDeleteFile Function
105

FtpFindFirstFile Function
106

FtpGetCurrentDirectory Function
107

FtpGetFile Function
108

FtpGetFileSize Function
110

FtpOpenFile Function
110

FtpPutFile Function
112

FtpRemoveDirectory Function
113

FtpRenameFile Function
114

FtpSetCurrentDirectory Function
115

Gopher Functions
116

GopherCreateLocator Function
116

GopherFindFirstFile Function
117

GopherGetAttribute Function
119

GopherGetLocatorType Function
120

GopherOpenFile Function
121

HTTP Functions
122

HttpAddRequestHeaders Function
122

HttpEndRequest Function
123

HttpOpenRequest Function
124

HttpQueryInfo Function
126

HttpSendRequest Function
127

HttpSendRequestEx Function
128

Cookie Functions
129

InternetGetCookie Function
130

InternetSetCookie Function
131

Persistent URL Cache Functions
132

CommitUrlCacheEntry Function
132

CreateUrlCacheEntry Function
134

CreateUrlCacheGroup Function
135

DeleteUrlCacheEntry Function
135

DeleteUrlCacheGroup Function
136

FindCloseUrlCache Function
137

FindFirstUrlCacheEntry Function
137

FindFirstUrlCacheEntryEx Function
138

FindFirstUrlCacheGroup Function
140

FindNextUrlCacheEntry Function
140

FindNextUrlCacheEntryEx Function
141

FindNextUrlCacheGroup Function
142

GetUrlCacheEntryInfo Function
143

GetUrlCacheEntryInfoEx Function
144

GetUrlCacheGroupAttribute Function
145

ReadUrlCacheEntryStream Function
146

RetrieveUrlCacheEntryStream Function
147

RetrieveUrlCacheEntryFile Function
148

SetUrlCacheEntryGroup Function
149

SetUrlCacheEntryInfo Function
150

SetUrlCacheGroupAttribute Function
151

UnlockUrlCacheEntryFile Function
152

UnlockUrlCacheEntryStream Function
153

Win32 Internet API Function Prototypes
153

GOPHER_ATTRIBUTE_ENUMERATOR Prototype
154

INTERNET_STATUS_CALLBACK Prototype
154

Win32 Internet API Structures
157

GOPHER_ATTRIBUTE_TYPE Structure
157

GOPHER_FIND_DATA Structure
158

HTTP_VERSION_INFO Structure
159

INTERNET_ASYNC_RESULT Structure
160

INTERNET_AUTH_NOTIFY_DATA Structure
160

INTERNET_BUFFERS Structure
161

INTERNET_CACHE_ENTRY_INFO Structure
162

INTERNET_CACHE_GROUP_INFO Structure
164

INTERNET_CACHE_TIMESTAMPS Structure
165

INTERNET_CERTIFICATE_INFO Structure
165

INTERNET_CONNECTED_INFO Structure
166

INTERNET_PER_CONN_OPTION Structure
167

INTERNET_PER_CONN_OPTION_LIST Structure
168

INTERNET_PROXY_INFO Structure
169

INTERNET_VERSION_INFO Structure
170

URL_COMPONENTS Structure
170

Win32 Internet API Enumerated Types
172

INTERNET_SCHEME Enumerated Type
172

Win32 Internet API Constants
172

API Flags
173

HTTP Status Codes
175

Option Flags
178

Query Info Flags
184

Cache Group Constants
187

Gopher Type Values
188

Error Messages
189

Microsoft Win32 Internet Functions Tutorials
193

Creating Status Callback Functions
193

Requirements and Dependencies
193

Implementation Steps
193

Defining the Context Value
194

Creating the Status Callback Function
194

Calling Win32 Internet Functions Asynchronously
196

Requirements and Dependencies
196

Implementation Steps
196

Creating a Context Value
197

Creating the Skeleton of the Status Callback Function
197

Creating the Code to Handle the Status Values
198

Starting the Internet Session in Asynchronous Mode
200

Setting the Status Callback Function
200

Starting a Request with the Context Value
200

Related Information
201

Retrieving HTTP Headers
201

Requirements and Dependencies
201

Retrieving Headers Using a Constant
202

Retrieving Headers Using HTTP_QUERY_CUSTOM
202

Setting and Retrieving Internet Options
203

Requirements and Dependencies
204

General Steps
204

Choosing Internet Options
204

Choosing the HINTERNET handle
204

Setting or Retrieving the Options
204

Scope of HINTERNET Handle
205

Setting Individual Options
206

Retrieving Individual Options
206

Complete Sample
207

Setting Connection Options
207

Retrieving Connection Options
208

Related Topics
208

· Microsoft Win32 Internet Functions Overview

· Microsoft Win32 Internet Functions Reference
· Microsoft Win32 Internet Functions Tutorials

1WinInet API

Microsoft Win32 Internet Functions Overview
6
Introduction to the Microsoft Win32 Internet Functions
7
Internet Protocols
7
Establishing a Dial-Up Connection to the Internet
7
Enabling Internet Functionality
7
Using InternetOpen
8
Setting the User Agent
8
Setting Access Types
8
Listing Proxy Servers
9
Listing the Proxy Bypass
9
Using InternetConnect
10
Defining the User Name and Password
10
Defining the Session
11
Common Functions
11
Using Common Functions
11
Reading Files
12
Finding the Next File
15
Manipulating Options
16
Setting Up Asynchronous Operations
17
Closing HINTERNET Handles
18
Locking and Unlocking Resources
18
Handling Uniform Resource Locators
18
What Is a Canonicalized URL?
18
Using the Win32 Internet Functions to Handle URLs
19
Canonicalizing URLs
19
Combining Base and Relative URLs
19
Cracking URLs
19
Creating URLs
21
Accessing URLs Directly
22
Handling Authentication
24
About HTTP Authentication
24
Registering Authentication Keys
25
Server Authentication
26
Proxy Authentication
26
Handling HTTP Authentication
26
Utilizing the Win32 Internet Functions Asynchronously
28
Benefits
28
Scenarios
28
Related Topics
29
FTP Sessions
30
FTP Function Handles
31
Using the Win32 Internet Functions for FTP Sessions
31
Starting an FTP Session
32
Enumerating Directories
32
Navigating Directories
34
Manipulating Directories on an FTP Server
35
Getting Files on an FTP Server
36
Placing Files on an FTP Server
37
Deleting Files from an FTP Server
39
Renaming Files and Directories on an FTP Server
39
Gopher Sessions
40
Using the Win32 Internet Functions for Gopher Sessions
40
Creating Locators
40
Enumerating Directories
41
Downloading Gopher Resources
42
HTTP Sessions
42
Using the Win32 Internet Functions to Access the WWW
43
Initiating a Connection to the WWW
43
Opening a Request
43
Adding Request Headers
44
Sending a Request
45
Posting Data to the Server
45
Getting Information About a Request
45
Downloading Resources from the WWW
46
Managing Cookies
48
Using Cookie Functions
48
Getting a Cookie
48
Setting a Cookie
49
HTTP Cookies
49
Cookie-Related Headers
49
Set-Cookie Header
49
Cookie Header
50
Generating Cookies
50
Generating a Cookie Using the DHTML Object Model
50
Generating a Cookie Using the Win32 Internet Functions
51
Generating a Cookie Using a CGI Script
51
Caching
51
Using Flags to Control Caching
51
Persistent Caching Functions
52
Using the Persistent URL Cache Functions
52
Enumerating the Cache
53
Retrieving Cache Entry Information
55
Creating a Cache Entry
56
Deleting a Cache Entry
57
Retrieving a Cache Entry Stream
57
Retrieving Cache Entry Files
59
Cache Groups
59
Handling Structures with Variable Size Information
59
Appendix A: HINTERNET Handles
59
About HINTERNET Handles
59
Handle Hierarchy
60
FTP Hierarchy
60
Gopher Hierarchy
61
HTTP Hierarchy
61
Appendix B: Using Buffers
62
Appendix C: Handling Errors
62
Microsoft Win32 Internet Functions Reference
64
Win32 Internet Functions Syntax
64
Win32 Internet API Functions
65
Alphabetical list of the functions
65
General Win32 Internet Functions
68
InternetAttemptConnect Function
68
InternetCheckConnection Function
69
InternetCloseHandle Function
69
InternetConfirmZoneCrossing Function
71
InternetConnect Function
71
InternetErrorDlg Function
73
InternetFindNextFile Function
75
InternetGetLastResponseInfo Function
76
Syntax
76
InternetInitializeAutoProxyDll Function
77
InternetLockRequestFile Function
77
InternetOpen Function
78
InternetQueryDataAvailable Function
80
InternetQueryOption Function
81
InternetReadFile Function
82
InternetReadFileEx Function
83
InternetSetFilePointer Function
84
InternetSetOption Function
85
InternetSetOptionEx Function
86
InternetSetStatusCallback Function
86
FtpSetCurrentDirectory Function
87
InternetTimeToSystemTime Function
88
InternetUnlockRequestFile Function
89
InternetWriteFile Function
89
Automatic Dialing Functions
90
InternetAutodial Function
90
InternetAutodialHangup Function
91
InternetDial Function
91
InternetGetConnectedState Function
92
InternetGetConnectedStateEx Function
93
InternetGoOnline Function
94
InternetHangUp Function
95
InternetSetDialState Function
95
Uniform Resource Locator (URL) Functions
95
InternetCanonicalizeUrl Function
96
InternetCombineUrl Function
97
InternetCrackUrl Function
99
InternetCreateUrl Function
100
InternetOpenUrl Function
101
FTP Functions
103
FtpCommand Function
103
FtpCreateDirectory Function
104
FtpDeleteFile Function
105
FtpFindFirstFile Function
106
FtpGetCurrentDirectory Function
107
FtpGetFile Function
108
FtpGetFileSize Function
110
FtpOpenFile Function
110
FtpPutFile Function
112
FtpRemoveDirectory Function
113
FtpRenameFile Function
114
FtpSetCurrentDirectory Function
115
Gopher Functions
116
GopherCreateLocator Function
116
GopherFindFirstFile Function
117
GopherGetAttribute Function
119
GopherGetLocatorType Function
120
GopherOpenFile Function
121
HTTP Functions
122
HttpAddRequestHeaders Function
122
HttpEndRequest Function
123
HttpOpenRequest Function
124
HttpQueryInfo Function
126
HttpSendRequest Function
127
HttpSendRequestEx Function
128
Cookie Functions
129
InternetGetCookie Function
130
InternetSetCookie Function
131
Persistent URL Cache Functions
132
CommitUrlCacheEntry Function
132
CreateUrlCacheEntry Function
134
CreateUrlCacheGroup Function
135
DeleteUrlCacheEntry Function
135
DeleteUrlCacheGroup Function
136
FindCloseUrlCache Function
137
FindFirstUrlCacheEntry Function
137
FindFirstUrlCacheEntryEx Function
138
FindFirstUrlCacheGroup Function
140
FindNextUrlCacheEntry Function
140
FindNextUrlCacheEntryEx Function
141
FindNextUrlCacheGroup Function
142
GetUrlCacheEntryInfo Function
143
GetUrlCacheEntryInfoEx Function
144
GetUrlCacheGroupAttribute Function
145
ReadUrlCacheEntryStream Function
146
RetrieveUrlCacheEntryStream Function
147
RetrieveUrlCacheEntryFile Function
148
SetUrlCacheEntryGroup Function
149
SetUrlCacheEntryInfo Function
150
SetUrlCacheGroupAttribute Function
151
UnlockUrlCacheEntryFile Function
152
UnlockUrlCacheEntryStream Function
153
Win32 Internet API Function Prototypes
153
GOPHER_ATTRIBUTE_ENUMERATOR Prototype
154
INTERNET_STATUS_CALLBACK Prototype
154
Win32 Internet API Structures
157
GOPHER_ATTRIBUTE_TYPE Structure
157
GOPHER_FIND_DATA Structure
158
HTTP_VERSION_INFO Structure
159
INTERNET_ASYNC_RESULT Structure
160
INTERNET_AUTH_NOTIFY_DATA Structure
160
INTERNET_BUFFERS Structure
161
INTERNET_CACHE_ENTRY_INFO Structure
162
INTERNET_CACHE_GROUP_INFO Structure
164
INTERNET_CACHE_TIMESTAMPS Structure
165
INTERNET_CERTIFICATE_INFO Structure
165
INTERNET_CONNECTED_INFO Structure
166
INTERNET_PER_CONN_OPTION Structure
167
INTERNET_PER_CONN_OPTION_LIST Structure
168
INTERNET_PROXY_INFO Structure
169
INTERNET_VERSION_INFO Structure
170
URL_COMPONENTS Structure
170
Win32 Internet API Enumerated Types
172
INTERNET_SCHEME Enumerated Type
172
Win32 Internet API Constants
172
API Flags
173
HTTP Status Codes
175
Option Flags
178
Query Info Flags
184
Cache Group Constants
187
Gopher Type Values
188
Error Messages
189
Microsoft Win32 Internet Functions Tutorials
193
Creating Status Callback Functions
193
Requirements and Dependencies
193
Implementation Steps
193
Defining the Context Value
194
Creating the Status Callback Function
194
Calling Win32 Internet Functions Asynchronously
196
Requirements and Dependencies
196
Implementation Steps
196
Creating a Context Value
197
Creating the Skeleton of the Status Callback Function
197
Creating the Code to Handle the Status Values
198
Starting the Internet Session in Asynchronous Mode
200
Setting the Status Callback Function
200
Starting a Request with the Context Value
200
Related Information
201
Retrieving HTTP Headers
201
Requirements and Dependencies
201
Retrieving Headers Using a Constant
202
Retrieving Headers Using HTTP_QUERY_CUSTOM
202
Setting and Retrieving Internet Options
203
Requirements and Dependencies
204
General Steps
204
Choosing Internet Options
204
Choosing the HINTERNET handle
204
Setting or Retrieving the Options
204
Scope of HINTERNET Handle
205
Setting Individual Options
206
Retrieving Individual Options
206
Complete Sample
207
Setting Connection Options
207
Retrieving Connection Options
208
Related Topics
208

Microsoft Win32 Internet Functions Overview

The Microsoft® Win32® Internet (WinInet) API provides stand-alone applications with easy access to standard Internet protocols such as Gopher, FTP, and HTTP, abstracting the protocols into a high-level interface that is familiar to Win32 developers. See the Microsoft Win32 Internet Functions Reference for descriptions of the individual functions.

Note The Win32 Internet functions do not support server implementations and should not be used from a service.

· Introduction to the Microsoft Win32 Internet Functions

· Establishing a Dial-Up Connection to the Internet
· Enabling Internet Functionality
· Common Functions
· Handling Uniform Resource Locators
· Handling Authentication
· Utilizing the Win32 Internet Functions Asynchronously
· FTP Sessions
· Gopher Sessions
· HTTP Sessions
· Managing Cookies
· HTTP Cookies

· Caching
· Appendix A: HINTERNET Handles
· Appendix B: Using Buffers
· Appendix C: Handling Errors
Introduction to the Microsoft Win32 Internet Functions

The following sections contain an overview of the Microsoft® Win32® Internet (WinInet) functions, which provide developers with a set of functions to interact with Gopher, FTP, and HTTP protocols. As the standards evolve, the Win32 Internet functions will handle the changes in underlying protocols, allowing the functions to maintain a consistent behavior. This overview describes how to use these functions to access the vast resources on the Internet.

The Win32 Internet functions do require an understanding of C/C++, a familiarity with Win32 programming, and a basic understanding of the FTP, Gopher, and HTTP protocols.

Internet Protocols

The three major protocols used on the Internet are the FTP, Gopher, and HTTP protocols.

For the more information on these protocols, see the Request For Comments (RFC) documents that cover FTP, Gopher, and HTTP specifications. The following documents on these protocols can be found on the Internet:

· RFC 959, File Transfer Protocol (FTP), can be found at
ftp://ftp.isi.edu/in-notes/rfc959.txt

· RFC 1436, The Internet Gopher Protocol, can be found at
ftp://ftp.isi.edu/in-notes/rfc1436.txt

· RFC 1945, Hypertext Transfer Protocol - HTTP/1.0, can be found at
ftp://ftp.isi.edu/in-notes/rfc1945.txt

· RFC 2068, Hypertext Transfer Protocol - HTTP/1.1, can be found at
ftp://ftp.isi.edu/in-notes/rfc2068.txt

Establishing a Dial-Up Connection to the Internet

The Win32 Internet functions include seven functions that handle modem connections.

	PRIVATE
InternetAutodial FunctionInternetAutodial
	Initiates an unattended dial-up connection.

	InternetAutodialHangup
	Disconnects a modem connection initiated by InternetAutodial

	InternetDial
	Initiates a dial-up connection.

	InternetGetConnectedState
	Retrieves the current state of the Internet connection.

	InternetHangUp
	Disconnects a modem connect initiated by InternetDial

	InternetGoOnline
	Prompts the user for permission to initiate a dial-up connection to the given URL.

	InternetSetDialState
	Sets the current state of the Internet connection.

Detailed information on how to use these functions will be included in a future version of this documentation. <!-- CONTENTS_END --></DIV>
Enabling Internet Functionality

To compile programs that utilize the Win32® Internet functions, the header file, Wininet.h, must be in the include directory and the library file, Wininet.lib, must be in the library directory of the C/C++ compiler being used.

Before using the Win32 Internet functions, the application should attempt to make a connection to the Internet by using the InternetAttemptConnect function. This function calls the dial-up dialog box to initiate a connection to the Internet or check if a connection already exists. If this function fails, the application can enter offline mode, which allows it to access information that was cached during previous connections to the Internet.

The InternetCheckConnection function can be used to check the connection to the Internet. It attempts to ping the server designated by the Uniform Resource Locator (URL) that is passed to the function. If the FLAG_ICC_FORCE_CONNECTION flag is set and NULL was given as the URL, the function checks to see if there is an entry in the Win32 Internet API server database for the nearest server. If one exists, the function pings that server.

To begin using the Win32 Internet functions, use the InternetOpen function to establish the characteristics of the Internet connection being used. InternetOpen creates the root HINTERNET handle that is used to establish HTTP, FTP, and Gopher sessions. InternetOpen does not test the connection to the Internet to verify that the characteristics passed to the function are correct.

Use the InternetConnect function to create a specific session. InternetConnect initializes an FTP, Gopher, or HTTP session for the specified site using the arguments passed to it and creates an HINTERNET handle that is a branch off the root handle. InternetConnect does not attempt to access or establish a connection to the specified site, except in the case of an FTP session. FtpFindFirstFile, FtpOpenFile, GopherFindFirstFile, GopherOpenFile, and HttpOpenRequest functions use the handle created by InternetConnect to establish a connection to the specified site.

The following diagram illustrates the hierarchy of the HINTERNET handles.

The InternetOpen function, which creates the root HINTERNET handle, is at the top level. The next level contains the InternetOpenUrl function and the InternetConnect function. The functions that use the HINTERNET handle returned by InternetConnect make up the last level. For more information about HINTERNET handles and the handle hierarchy, see Appendix A: HINTERNET Handles

Using InternetOpen

To enable a connection to the Internet, a root HINTERNET handle must be created by using InternetOpen. Information about the user agent (the application calling the Internet functions), the type of access to the Internet, the proxy names, the hosts and addresses that bypass the proxy, and the behavior are passed to InternetOpen.

Setting the User Agent

The lpszAgent parameter of InternetOpen should be given a string that contains the name of the application or entity accessing the Internet. This string is used as the user agent in the HTTP protocol. For example, Microsoft® Internet Explorer uses "Microsoft Internet Explorer".

Setting Access Types

InternetOpen supports three access types:

· Use INTERNET_OPEN_TYPE_DIRECT if the system on which the application is running uses a direct connection to the Internet. The lpszProxyName and lpszProxyBypass parameters of InternetOpen are not used and should be set to NULL.

· Use INTERNET_OPEN_TYPE_PROXY if the system on which the application is running uses one or more proxy servers to access the Internet. InternetOpen uses the proxy servers indicated by lpszProxyName and bypasses the proxy for any host names or IP addresses specified by lpszProxyBypass.

· Use INTERNET_OPEN_TYPE_PRECONFIG to instruct your application to retrieve the configuration from the registry.

INTERNET_OPEN_TYPE_PRECONFIG looks at the registry values ProxyEnable, ProxyServer, and ProxyOverride. These values are located under
 HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Internet Settings.

If ProxyEnable is zero, the application uses INTERNET_OPEN_TYPE_DIRECT. Otherwise, the application uses INTERNET_OPEN_TYPE_PROXY and uses the ProxyServer and ProxyOverride information.

The Win32 Internet functions provide support for SOCKS type proxies only if Internet Explorer is installed. The installation of Internet Explorer installs the Wsock32n.dll file, which the Win32 Internet functions need to support SOCKS proxies. Wsock32n.dll is not redistributable.

Listing Proxy Servers

The Win32 Internet functions recognize two types of proxies: CERN type proxies (HTTP only) and TIS FTP proxies (FTP only). If Internet Explorer is installed, the Win32 Internet functions also support SOCKS type proxies. InternetConnect assumes, by default, that the specified proxy is a CERN proxy. If the access type is set to INTERNET_OPEN_TYPE_DIRECT or INTERNET_OPEN_TYPE_PRECONFIG, the lpszProxyName parameter of InternetOpen should be set to NULL. Otherwise, the value passed to lpszProxyName must contain the proxies in a space-delimited string. The proxy listings can contain the port number that is used to access the proxy.

To list a proxy for a specific protocol, the string must follow the format "<protocol> = <protocol>://<proxy_name>". The valid protocols are http, https, ftp, and gopher. For example, to list an FTP proxy, a valid string would be "ftp=ftp://ftp_proxy_name:21", where "ftp_proxy_name" is the name of the FTP proxy and "21" is the port number that must be used to access the proxy. If the proxy uses the default port number for that protocol, the port number can be omitted. If a proxy name is listed by itself, it is used as the default proxy for any protocols that do not have a specific proxy specified. For example, "http=http://http_proxy other" would use "http_proxy" for any HTTP operations, while all other protocols (such as FTP and Gopher) would use "other".

By default, the function assumes that the proxy specified by lpszProxyName is a CERN proxy. For example, "proxy" defaults to a CERN proxy called "proxy" that listens at port 80 (decimal). An application can specify more than one proxy, including different proxies for the different protocols. For example, if you specify "ftp=ftp://ftp-gw gopher=http://jericho:99 proxy", FTP requests are made through the FTP proxy "ftp-gw", which listens at port 21 (default for FTP), and Gopher requests are made through a CERN proxy called "jericho", which listens at port 99. All other requests (for example, HTTP requests) are made through the CERN proxy called "proxy", which listens at port 80. Note that if the application is only using FTP, for example, it would not need to specify "ftp=ftp://ftp-gw:21". It could specify just "ftp-gw". An application is only required to specify the protocol names if it will be using more than one protocol per handle returned by InternetOpen.

Listing the Proxy Bypass

Host names or IP addresses that are known locally can be listed in the proxy bypass. This list can contain wildcards, "*", which cause the application to bypass the proxy server for addresses that fit the specified pattern. To list multiple addresses and host names, separate them with blank spaces in the proxy bypass string. If the "<local>" macro is specified, the function bypasses any host name that does not contain a period.

The following example shows sample calls to InternetOpen using different proxy bypass strings. The comments above each call describe what effect the bypass string has on the host names that are accessed from the HINTERNET handle it creates.

/* bypass the proxy for any host name that does not contain a period */

hInternetRoot = InternetOpen("WinInet Example",

 INTERNET_OPEN_TYPE_PROXY,"proxy","<local>", 0);

/* bypass the proxy for any host name that starts with the letters "ms" */

hInternetRoot = InternetOpen("WinInet Example",

 INTERNET_OPEN_TYPE_PROXY,"proxy","ms*", 0);

/* bypass the proxy for any host name that contains "int", such as "internet" and "painter" */

hInternetRoot = InternetOpen("WinInet Example",

 INTERNET_OPEN_TYPE_PROXY,"proxy","*int*", 0);

/* bypass the proxy for the host name "example" and any

 host name that contains "test" */

hInternetRoot = InternetOpen("WinInet Example",

 INTERNET_OPEN_TYPE_PROXY,"proxy","example *test*", 0);

Using InternetConnect

To begin a Gopher, FTP, or HTTP session, the InternetConnect function must create a handle off the root handle returned by the InternetOpen function. InternetConnect sets the server address, port number, user name, password, and type of service.

InternetConnect uses the root HINTERNET handle created by InternetOpen to establish a session handle. If the INTERNET_FLAG_ASYNC flag was set in the call to InternetOpen, the call to InternetConnect should include a nonzero context value.

The server name can be a constant string or a variable containing a string value of type LPSTR. This string can contain either the host name (for example, www.servername.com) or IP number of the site in ASCII dotted-decimal format (for example, 11.0.1.45).

The server port is the TCP/IP port number to connect to on the server. InternetConnect uses the default port for the selected service type if the INTERNET_INVALID_PORT_NUMBER value is used. The following list contains the server port defaults included with the Win32 Internet functions.

	PRIVATE
INTERNET_DEFAULT_FTP_PORT
	Use the default port for FTP servers (port 21).

	INTERNET_DEFAULT_GOPHER_PORT
	Use the default port for Gopher servers (port 70).

	INTERNET_DEFAULT_HTTP_PORT
	Use the default port for HTTP servers (port 80).

	INTERNET_DEFAULT_HTTPS_PORT
	Use the default port for HTTPS servers (port 443).

	INTERNET_DEFAULT_SOCKS_PORT
	Use the default port for SOCKS firewall servers (port 1080).

Defining the User Name and Password

The user name is the address of a NULL-terminated string that contains the name of the user to log on. If this parameter is NULL, the function uses an appropriate default, except for HTTP. A NULL parameter in HTTP causes the server to return an error. For the FTP protocol, the default is anonymous.

The password is the address of a NULL-terminated string that contains the password to use to log on. If both lpszUsername and lpszPassword are NULL, the function uses the default anonymous password. In the case of FTP, the default anonymous password is the user's e-mail name. If lpszUsername is not NULL and lpszPassword is NULL, the function uses a blank password. There are four possible settings of lpszUsername and lpszPassword, which produce the behaviors shown in the following table.

	PRIVATE
lpszUsername
	lpszPassword
	User name sent to FTP server
	Password sent to FTP server

	NULL
	NULL
	"anonymous"
	User's e-mail name

	Non-NULL string
	NULL
	lpszUsername
	""

	NULL
	Non-NULL string
	ERROR
	ERROR

	Non-NULL string
	Non-NULL string
	lpszUsername
	lpszPassword

This information can be changed by using the InternetSetOption and InternetErrorDlg functions. InternetSetOption changes the user name and password values, while InternetErrorDlg displays a dialog box requesting the proper user name and password.

Defining the Session

To define the session that is being established, InternetConnect must have the service type, flags, and context value set.

There are three service types available to InternetConnect: INTERNET_SERVICE_FTP, INTERNET_SERVICE_GOPHER, and INTERNET_SERVICE_HTTP. INTERNET_SERVICE_HTTP is used for both HTTP and HTTPS sessions.

INTERNET_FLAG_PASSIVE is the only service-specific flag used by the Win32 Internet functions. This flag can be set when the service type is INTERNET_SERVICE_FTP in order to use passive FTP semantics.

For all synchronous operations, the value of dwContext should be set to zero. If asynchronous operations were established by setting the INTERNET_FLAG_ASYNC flag in the call to InternetOpen, a nonzero value should be supplied for dwContext. For more information on asynchronous operations, see Setting Up Asynchronous Operations.

For FTP sessions, InternetConnect tries to establish a connection to the server on the Internet. HTTP and Gopher sessions do not establish a connection until a function attempts to get information from the server.

Common Functions

The different Internet protocols (such as FTP, HTTP, and Gopher) use several of the same Win32® Internet functions to handle information on the Internet. These common functions handle their tasks in a consistent manner, regardless of the particular protocol to which they are being applied. Applications can use these functions to create general-purpose functions that handle tasks across the different protocols (such as reading files for FTP, HTTP, and Gopher protocols).

The common functions handle the following tasks:

· Downloading resources from the Internet can be handled by the InternetReadFile, InternetSetFilePointer, InternetFindNextFile, and InternetQueryDataAvailable functions.

· Setting up asynchronous operations is handled by the InternetSetStatusCallback function.

· Viewing and changing options is handled by the InternetSetOption and InternetQueryOption functions.

· Closing all types of HINTERNET handles is handled by the InternetCloseHandle function.

· Placing and removing locks on resources being used with InternetLockRequestFile and InternetUnlockRequestFile functions.

Using Common Functions

The following table lists the common functions included in the Win32 Internet functions. The common functions can be used on different types of HINTERNET handles or can be used during different types of sessions.

	PRIVATE
InternetFindNextFile
	Continues file enumeration or search. Requires a handle created by the FtpFindFirstFile, GopherFindFirstFile, or InternetOpenUrl function.

	InternetLockRequestFile
	Allows the user to place a lock on the file that is being used. This function requires a handle returned by the FtpOpenFile, GopherOpenFile, HttpOpenRequest, or InternetOpenUrl function.

	InternetQueryDataAvailable
	Queries the amount of data available. Requires a handle created by the FtpOpenFile, GopherOpenFile, or HttpOpenRequest function.

	InternetQueryOption
	Queries the setting of an Internet option.

	InternetReadFile
	Reads URL data. Requires a handle created by the InternetOpenUrl, FtpOpenFile, GopherOpenFile, or HttpOpenRequest function.

	InternetSetFilePointer
	Sets the position for the next read in a file. Requires a handle created by InternetOpenUrl (on an HTTP URL only) or a handle created by HttpOpenRequest using the GET method.

	InternetSetOption
	Sets an Internet option.

	InternetSetStatusCallback
	Sets a callback function that is called with status information. Assigns a callback function to the designated HINTERNET handle and all handles derived from it.

	InternetUnlockRequestFile
	Unlocks a file that was locked using the InternetLockRequestFile function.

Reading files, finding the next file, manipulating options, and setting up asynchronous operations are common to various protocols and HINTERNET handle types.

Reading Files

The InternetReadFile function is used to download resources from an HINTERNET handle returned by the InternetOpenUrl, FtpOpenFile, GopherOpenFile, or HttpOpenRequest function.

InternetReadFile accepts a void pointer variable that contains the address of a buffer and a pointer to an unsigned long integer (DWORD) variable that contains the length of the buffer. It returns the data in the buffer and the amount of data downloaded into the buffer.

The Win32 Internet functions provide two techniques to download an entire resource:

· Using the InternetQueryDataAvailable function.

· Using the return values of InternetReadFile.

InternetQueryDataAvailable takes the HINTERNET handle created by InternetOpenUrl, FtpOpenFile, GopherOpenFile, or HttpOpenRequest (after HttpSendRequest has been called on the handle) and returns the number of bytes available. The application should allocate a buffer equal to the number of bytes available +1 for the NULL terminator, and use that buffer with InternetReadFile. This method does not always work because InternetQueryDataAvailable is checking the file size listed in the header and not the actual file. The information in the header file could be outdated or the header file could be missing, since it is not currently required under all standards. <!-- ************************ BRADYA: BEGIN UPDATE ************************ -->
The following example reads the contents of the resource accessed by the hResource handle and displayed in the edit box indicated by intCtrlID.

int WINAPI Dumper(HWND hX, int intCtrlID, HINTERNET hResource)

{

LPSTR lpszData; // buffer for the data

DWORD dwSize; // size of the data available

DWORD dwDownloaded; // size of the downloaded data

DWORD dwSizeSum=0; // size of the data in the textbox

LPSTR lpszHolding; // buffer to merge the textbox data and buffer

// Set the cursor to an hourglass.

SetCursor(LoadCursor(NULL,IDC_WAIT));

// This loop handles reading the data.

do

{

// The call to InternetQueryDataAvailable determines the amount

// of data available to download.

if (!InternetQueryDataAvailable(hResource,&dwSize,0,0))

{

ErrorOut(hX,GetLastError(),"InternetReadFile");

SetCursor(LoadCursor(NULL,IDC_ARROW));

return FALSE;

}

else

{

// Allocate a buffer of the size returned by

// InternetQueryDataAvailable

lpszData = new char[dwSize+1];

// Read the data from the HINTERNET handle.

if(!InternetReadFile(hResource,(LPVOID)lpszData,dwSize,&dwDownloaded))

{

ErrorOut(hX,GetLastError(),"InternetReadFile");

delete[] lpszData;

break;

}

else

{

// Add a null terminator to the end of the data buffer.

lpszData[dwDownloaded]='\0';

// Allocate the holding buffer.

lpszHolding = new char[dwSizeSum + dwDownloaded + 1];

// Check if there has been any data written to the textbox.

if (dwSizeSum != 0)

{

// Retrieve the data stored in the textbox if any.

GetDlgItemText(hX,intCtrlID,(LPSTR)lpszHolding,dwSizeSum);

// Add a null terminator at the end of the textbox data.

lpszHolding[dwSizeSum]='\0';

}

else

{

// Make the holding buffer an empty string.

lpszHolding[0]='\0';

}

// Add the new data to the holding buffer.

strcat(lpszHolding,lpszData);

// Write the holding buffer to the textbox.

SetDlgItemText(hX,intCtrlID,(LPSTR)lpszHolding);

// Delete the two buffers.

delete[] lpszHolding;

delete[] lpszData;

// Add the size of the downloaded data to the textbox data size.

dwSizeSum = dwSizeSum + dwDownloaded + 1;

// Check the size of the remaining data. If it is zero, break.

if (dwDownloaded == 0)

break;

}

}

}

while(TRUE);

// Close the HINTERNET handle.

InternetCloseHandle(hResource);

// Set the cursor back to an arrow.

SetCursor(LoadCursor(NULL,IDC_ARROW));

// Return.

return TRUE;

}

InternetReadFile returns zero bytes read and completes successfully when all available data has been read. This allows an application to use InternetReadFile in a loop to download the data and exit when it returns zero bytes read and completes successfully.

The following example reads the resource from the Internet and displays the resource in the edit box indicated by intCtrlID. The HINTERNET handle, hResource, has been returned by InternetOpenUrl, FtpOpenFile, GopherOpenFile, or HttpOpenRequest (after being sent by HttpSendRequest).

int WINAPI Dump(HWND hX, int intCtrlID, HINTERNET hResource)

{

DWORD dwSize = 0;

LPSTR lpszData;

LPSTR lpszOutPut;

LPSTR lpszHolding;

int nCounter = 1;

int nBufferSize = 0;

DWORD BigSize = 8000;

// Set the cursor to an hourglass.

SetCursor(LoadCursor(NULL,IDC_WAIT));

// Begin the loop that reads the data.

do

{

// Allocate the buffer.

lpszData =new char[BigSize+1];

// Read the data.

if(!InternetReadFile(hResource,(LPVOID)lpszData,BigSize,&dwSize))

{

ErrorOut(hX,GetLastError(),"InternetReadFile");

delete []lpszData;

break;

}

else

{

// Add a null terminator to the end of the buffer.

lpszData[dwSize]='\0';

// Check if all of the data has been read. This should

// never get called on the first time through the loop.

if (dwSize == 0)

{

// Write the final data to the textbox.

SetDlgItemText(hX,intCtrlID,lpszHolding);

// Delete the existing buffers.

delete [] lpszData;

delete [] lpszHolding;

break;

}

// Determine the buffer size to hold the new data and the data

// already written to the textbox (if any).

nBufferSize = (nCounter*BigSize)+1;

// Increment the number of buffers read.

nCounter++;

// Allocate the output buffer.

lpszOutPut = new char[nBufferSize];

// Make sure the buffer is not the initial buffer.

if(nBufferSize != int(BigSize+1))

{

// Copy the data in the holding buffer.

strcpy(lpszOutPut,lpszHolding);

// Concatenate the new buffer with the output buffer.

strcat(lpszOutPut,lpszData);

// Delete the holding buffer.

delete [] lpszHolding;

}

else

{

// Copy the data buffer.

strcpy(lpszOutPut, lpszData);

}

// Allocate a holding buffer.

lpszHolding = new char[nBufferSize];

// Copy the output buffer into the holding buffer.

memcpy(lpszHolding,lpszOutPut,nBufferSize);

// Delete the other buffers.

delete [] lpszData;

delete [] lpszOutPut;

}

}

while (TRUE);

// Close the HINTERNET handle.

InternetCloseHandle(hResource);

// Set the cursor back to an arrow.

SetCursor(LoadCursor(NULL,IDC_ARROW));

// Return.

return TRUE;

}

Finding the Next File

The InternetFindNextFile function is used to find the next file in a file search, using the search parameters and HINTERNET handle from Ошибка! Недопустимый объект гиперссылки., GopherFindFirstFile, or InternetOpenUrl.

To complete a file search, continue to call InternetFindNextFile using the HINTERNET handle returned by FtpFindFirstFile, GopherFindFirstFile, or InternetOpenUrl until the function fails with the extended error message ERROR_NO_MORE_FILES. To get the extended error information, call the GetLastError function.

The following example displays the contents of an FTP directory in the list box indicated by lstDirectory. The HINTERNET handle, hConnect, is a handle returned by the InternetConnect function after it establishes an FTP session. <!-- ************************ BRADYA: BEGIN UPDATE ************************ -->
bool WINAPI DisplayDir(HWND hX, int lstDirectory, HINTERNET hConnect,

 DWORD dwFlag)

{

WIN32_FIND_DATA pDirInfo;

HINTERNET hDir;

char DirList[MAX_PATH];

// Set the cursor to an hourglass.

SetCursor(LoadCursor(NULL,IDC_WAIT));

// Reset the list box.

SendDlgItemMessage(hX, lstDirectory,LB_RESETCONTENT,0,0);

// Find the first file.

if (!(hDir = FtpFindFirstFile(hConnect, TEXT ("*.*"), &pDirInfo,dwFlag,0)))

{

// Check if the error was because there were no files.

if (GetLastError() == ERROR_NO_MORE_FILES)

{

// Alert user.

MessageBox(hX,"There are no files here!!!","Display Dir",MB_OK);

// Close the HINTERNET handle.

InternetCloseHandle(hDir);

// Set the cursor back to an arrow.

SetCursor(LoadCursor(NULL,IDC_ARROW));

// Return.

return TRUE;

}

else

{

// Call error handler.

ErrorOut (hX, GetLastError (), "FindFirst error: ");

// Close the HINTERNET handle.

InternetCloseHandle(hDir);

// Set the cursor back to an arrow.

SetCursor(LoadCursor(NULL,IDC_ARROW));

// Return.

return FALSE;

}

}

else

{

// Write the file name to a string.

sprintf(DirList, pDirInfo.cFileName);

// Check the type of file.

if (pDirInfo.dwFileAttributes == FILE_ATTRIBUTE_DIRECTORY)

{

// Add <DIR> to indicate that this is a directory to the user.

strcat(DirList," <DIR> ");

}

// Add the file name (or directory) to the list box.

SendDlgItemMessage(hX,lstDirectory,LB_ADDSTRING,0,(LPARAM)DirList);

}

do

{

// Find the next file.

if (!InternetFindNextFile (hDir, &pDirInfo))

{

// Check if there are no more files left.

if (GetLastError() == ERROR_NO_MORE_FILES)

{

// Close the HINTERNET handle.

InternetCloseHandle(hDir);

// Set the cursor back to an arrow.

SetCursor(LoadCursor(NULL,IDC_ARROW));

// Return.

return TRUE;

}

else

{

// Handle the error.

ErrorOut (hX,GetLastError(), "InternetFindNextFile");

// Close the HINTERNET handle.

InternetCloseHandle(hDir);

// Set the cursor back to an arrow.

SetCursor(LoadCursor(NULL,IDC_ARROW));

// Return.

return FALSE;

}

}

else

{

// Write the file name to a string.

sprintf(DirList, pDirInfo.cFileName);

// Check the type of file.

if (pDirInfo.dwFileAttributes == FILE_ATTRIBUTE_DIRECTORY)

{

// Add <DIR> to indicate that this is a directory to the user.

strcat(DirList," <DIR> ");

}

// Add the file name (or directory) to the list box.

SendDlgItemMessage(hX,lstDirectory,LB_ADDSTRING,0,(LPARAM)DirList);

}

}

while (TRUE);

}

Manipulating Options

InternetSetOption and InternetQueryOption are used to manipulate the Win32 Internet API options.

InternetSetOption accepts an unsigned long integer value that indicates the option to set, a buffer to hold the option setting, and a pointer that contains the address of the variable containing the length of the buffer.

InternetQueryOption accepts an unsigned long integer value that indicates the option to query, a buffer to hold the option setting, and a pointer that contains the address of the variable containing the length of the buffer. <!-- ************************ BRADYA: BEGIN UPDATE ************************ -->
Setting Up Asynchronous Operations

By default, the Win32 Internet functions operate synchronously. An application can request asynchronous operation by setting the INTERNET_FLAG_ASYNC flag in the call to the InternetOpen function. All future calls made against handles derived from the handle returned from InternetOpen will be made asynchronously.

The rationale for asynchronous versus synchronous operation is to allow a single-threaded application to maximize its utilization of the CPU without having to wait for network I/O to complete. Therefore, depending on the request, the operation might complete synchronously or asynchronously. The application should check the return code. If a function returns FALSE or NULL, and GetLastError returns ERROR_IO_PENDING, the request has been made asynchronously, and the application will be called back with INTERNET_STATUS_REQUEST_COMPLETE when the function has completed.

To begin asynchronous operation, the application must set the INTERNET_FLAG_ASYNC flag in its call to InternetOpen. It must then register a valid callback function, using InternetSetStatusCallback.

After a callback function is registered for a handle, all operations on that handle can generate status indications, provided that the context value that was supplied when the handle was created was not zero. Providing a zero context value forces an operation to complete synchronously, even though INTERNET_FLAG_ASYNC was specified in InternetOpen.

Status indications are intended to give the application feedback about the operation's progress and are concerned with network operations, such as resolving a host name, connecting to a server, and receiving data. Three special-purpose status indications can be made for a handle:

· INTERNET_STATUS_HANDLE_CLOSING is the last status indication that is made for a handle.

· INTERNET_STATUS_HANDLE_CREATED indicates when the handle is initially created.

· INTERNET_STATUS_REQUEST_COMPLETE indicates when an asynchronous operation completes.

The application must check the INTERNET_ASYNC_RESULT structure to determine whether the operation succeeded or failed after receiving an INTERNET_STATUS_REQUEST_COMPLETE indication.

The following sample shows an example of a callback function and a call to InternetSetStatusCallback to register the function as the callback function.

void

CALLBACK

CInternet::InternetCallback(

 HINTERNET hInternet,

 DWORD dwcontext,

 DWORD dwInternetStatus,

 LPVOID lpvStatusInformation,

 DWORD dwStatusInformationLength

)

{

// Insert code here.

};

INTERNET_STATUS_CALLBACK dwISC;

dwISC = InternetSetStatusCallback(hInternet,

 (INTERNET_STATUS_CALLBACK) InternetCallback);

Closing HINTERNET Handles

All HINTERNET handles can be closed by using the InternetCloseHandle function. Client applications must close all HINTERNET handles derived from the HINTERNET handle to be closed before calling InternetCloseHandle. For more information about HINTERNET handles and the handle hierarchy, see Appendix A: HINTERNET Handles.

The following example illustrates the handle hierarchy for the Win32 Internet functions.

HINTERNET hRootHandle, hOpenUrlHandle;

hRootHandle = InternetOpen("Example", INTERNET_OPEN_TYPE_DIRECT, NULL,

 NULL, 0);

hOpenUrlHandle = InternetOpenUrl(hRootHandle,

 "http://www.server.com/default.htm", NULL, 0,

 INTERNET_FLAG_RAW_DATA,0);

// Close the handle created by InternetOpenUrl, so that the

// InternetOpen handle can be closed.

InternetCloseHandle(hOpenUrlHandle);

// Close the handle created by InternetOpen.

InternetCloseHandle(hRootHandle);

Locking and Unlocking Resources

The InternetLockRequestFile function allows an application to ensure that the cached resource associated with the HINTERNET handle passed to it will not disappear from the cache. If another download tries to commit a resource that has the same URL as the locked file, the cache avoids removing the file by doing a safe delete. After the application calls the InternetUnlockRequestFile function, the cache is given permission to delete the file.

If the INTERNET_FLAG_NO_CACHE_WRITE or INTERNET_FLAG_DONT_CACHE flag has been set, InternetLockRequestFile creates a temporary file with the extension TMP, unless the handle is connected to an HTTPS resource. If the function is accessing an HTTPS resource and INTERNET_FLAG_NO_CACHE_WRITE (or INTERNET_FLAG_DONT_CACHE) has been set, InternetLockRequestFile fails. <!-- ************************ BRADYA: END UPDATE ************************** --><!-- CONTENTS_END --></DIV>
Handling Uniform Resource Locators

A Uniform Resource Locator (URL) is a compact representation of the location and access method for a resource located on the Internet. Each URL consists of a scheme (HTTP, HTTPS, FTP, or Gopher) and a scheme-specific string. This string can also include a combination of a directory path, search string, or name of the resource. The Win32® Internet functions provide the ability to create, combine, break down, and canonicalize URLs. For more information on URLs, see RFC 1738, Uniform Resource Locators (URL). This document can be found at ftp://ftp.isi.edu/in-notes/rfc1738.txt PRIVATE "TYPE=PICT;ALT=Non-MS link"

The URL functions operate in a task-oriented manner. The content and format of the URL that is given to the function is not verified. The calling application should track the use of these functions to ensure that the data is in the intended format. For example, the InternetCanonicalizeUrl function would convert the character "%" into the escape sequence "%25" when using no flags. If InternetCanonicalizeUrl is used on the canonicalized URL, the escape sequence "%25" would be converted into the escape sequence "%2525", which would not work properly.

What Is a Canonicalized URL?

The format of all URLs must follow the accepted syntax and semantics in order to access resources through the Internet. Canonicalization is the process of formatting a URL to follow this accepted syntax and semantics.

Characters that must be encoded include any characters that have no corresponding graphic character in the US-ASCII coded character set (hexadecimal 80-FF, which are not used in the US-ASCII coded character set, and hexadecimal 00-1F and 7F, which are control characters), blank spaces, "%" (which is used to encode other characters), and unsafe characters (<, >, ", #, {, }, |, \, ^, ~, [,], and ').

Using the Win32 Internet Functions to Handle URLs

The following table summarizes the URL functions included with the Win32 Internet functions.

	PRIVATE
InternetCanonicalizeUrl
	Canonicalizes the URL.

	InternetCombineUrl
	Combines base and relative URLs.

	InternetCrackUrl
	Parses a URL string into components.

	InternetCreateUrl
	Creates a URL string from components.

	InternetOpenUrl
	Begins retrieving an FTP, Gopher, HTTP, or HTTPS resource.

Canonicalizing URLs

Canonicalizing a URL is the process that converts a URL (that might contain unsafe characters such as blank spaces, reserved characters, and so on) into an accepted format.

The InternetCanonicalizeUrl function can be used to canonicalize URLs. This function is very task-oriented, so the application should track its use carefully. InternetCanonicalizeUrl does not verify that the URL passed to it is already canonicalized and that the URL that it returns is valid.

The following five flags control how InternetCanonicalizeUrl handles a particular URL. The flags can be used in combination. If no flags are used, the function encodes the URL by default.

	PRIVATE
ICU_BROWSER_MODE
	Do not encode or decode characters after "#" or "?", and do not remove trailing white space after "?". If this value is not specified, the entire URL is encoded, and trailing white space is removed.

	ICU_DECODE
	Convert all %XX sequences to characters, including escape sequences, before the URL is parsed.

	ICU_ENCODE_SPACES_ONLY
	Encode spaces only.

	ICU_NO_ENCODE
	Do not convert unsafe characters to escape sequences.

	ICU_NO_META
	Do not remove meta sequences (such as "." and "..") from the URL.

The ICU_DECODE flag should be used only on canonicalized URLs, because it assumes that all %XX sequences are escape codes and converts them into the characters indicated by the code. If the URL has a "%" symbol in it that is not part of an escape code, ICU_DECODE still treats it as one. This characteristic might cause InternetCanonicalizeUrl to create an invalid URL.

To use InternetCanonicalizeUrl to return a completely decoded URL, the ICU_DECODE and ICU_NO_ENCODE flags must be specified. This setup assumes that the URL being passed to InternetCanonicalizeUrl has been previously canonicalized.

Combining Base and Relative URLs

A relative URL is a compact representation of the location of a resource relative to an absolute base URL. The base URL must be known to the parser and usually includes the scheme, network location, and parts of the URL path. An application can call InternetCombineUrl to combine the relative URL with its base URL. InternetCombineUrl will also canonicalize the resultant URL.

Cracking URLs

The InternetCrackUrl function separates a URL into its component parts and returns the components indicated by the URL_COMPONENTS structure that is passed to the function.

The components that make up the URL_COMPONENTS structure are the scheme number, host name, port number, user name, password, URL path, and additional information (such as search parameters). Each component, except the scheme and port numbers, has a string member that holds the information, and a member that holds the length of the string member. The scheme and port numbers have only a member that stores the corresponding value; they are both returned on all successful calls to InternetCrackUrl.

To get the value of a particular component in the URL_COMPONENTS structure, the member that stores the string length of that component must be set to a nonzero value. The string member can be either the address of a buffer or NULL.

If the pointer member contains the address of a buffer, the string length member must contain the size of that buffer. InternetCrackUrl returns the component information as a string in the buffer and stores the string length in the string length member.

If the pointer member is set to NULL, the string length member can be set to any nonzero value. InternetCrackUrl stores the address of the first character of the URL string that contains the component information and sets the string length to the number of characters in the remaining part of the URL string that pertains to the component.

All pointer members set to NULL with a nonzero length member point to the appropriate starting point in the URL string. The length stored in the length member must be used to determine the end of the individual component's information.

To finish initializing the URL_COMPONENTS structure properly, the dwStructSize member must be set to the size of the URL_COMPONENTS structure.

The following example returns the components of the URL in the edit box, IDC_PreOpen1, and returns the components to the list box, IDC_PreOpenList. To display only the information for an individual component, this function copies the character immediately after the component's information in the string and temporarily replaces it with a NULL.

int WINAPI Cracker(HWND hX)

{

URL_COMPONENTS urlcmpTheUrl;

int intTestSize = 80;

LPSTR lpszUrlIn;

LPURL_COMPONENTS lpUrlComp = &urlcmpTheUrl;

char TempOut[256];

char tempChar;

lpszUrlIn = new char[intTestSize];

GetDlgItemText(hX,IDC_PreOpen1,lpszUrlIn,intTestSize);

SendDlgItemMessage(hX,IDC_PreOpenList,LB_RESETCONTENT,0,0);

urlcmpTheUrl.dwStructSize = sizeof(urlcmpTheUrl);

urlcmpTheUrl.lpszScheme = NULL;

urlcmpTheUrl.lpszHostName = NULL;

urlcmpTheUrl.lpszUserName = NULL;

urlcmpTheUrl.lpszPassword = NULL;

urlcmpTheUrl.lpszUrlPath = NULL;

urlcmpTheUrl.lpszExtraInfo = NULL;

/* The following lines set which components will be displayed. */

urlcmpTheUrl.dwSchemeLength = 1;

urlcmpTheUrl.dwHostNameLength = 1;

urlcmpTheUrl.dwUserNameLength = 1;

urlcmpTheUrl.dwPasswordLength = 1;

urlcmpTheUrl.dwUrlPathLength = 1;

urlcmpTheUrl.dwExtraInfoLength = 1;

if (!InternetCrackUrl(lpszUrlIn,strlen(lpszUrlIn),0, lpUrlComp))

{

ErrorOut(hX,GetLastError(),"Cracker");

return FALSE;

}

else

{

if (urlcmpTheUrl.dwSchemeLength != 0)

{

tempChar = urlcmpTheUrl.lpszScheme[urlcmpTheUrl.dwSchemeLength];

urlcmpTheUrl.lpszScheme[urlcmpTheUrl.dwSchemeLength]='\0';

sprintf(TempOut, "Scheme: %s", urlcmpTheUrl.lpszScheme);

SendDlgItemMessage(hX,IDC_PreOpenList,LB_ADDSTRING,0,(LPARAM)TempOut);

urlcmpTheUrl.lpszScheme[urlcmpTheUrl.dwSchemeLength]= tempChar;

}

sprintf(TempOut, "Scheme number: %d", urlcmpTheUrl.nScheme);

SendDlgItemMessage(hX,IDC_PreOpenList,LB_ADDSTRING,0, (LPARAM)TempOut);

if (urlcmpTheUrl.dwHostNameLength != 0)

{

tempChar = urlcmpTheUrl.lpszHostName[urlcmpTheUrl.dwHostNameLength];

urlcmpTheUrl.lpszHostName[urlcmpTheUrl.dwHostNameLength] = '\0';

sprintf(TempOut, "Host Name: %s", urlcmpTheUrl.lpszHostName);

SendDlgItemMessage(hX,IDC_PreOpenList,LB_ADDSTRING,0,(LPARAM)TempOut);

urlcmpTheUrl.lpszHostName[urlcmpTheUrl.dwHostNameLength] = tempChar;

}

sprintf(TempOut, "Port Number: %d", urlcmpTheUrl.nPort);

SendDlgItemMessage(hX,IDC_PreOpenList,LB_ADDSTRING,0,(LPARAM)TempOut);

if (urlcmpTheUrl.dwUserNameLength != 0)

{

tempChar = urlcmpTheUrl.lpszUserName[urlcmpTheUrl.dwUserNameLength];

urlcmpTheUrl.lpszUserName[urlcmpTheUrl.dwUserNameLength] = '\0';

sprintf(TempOut, "User Name: %s", urlcmpTheUrl.lpszUserName);

SendDlgItemMessage(hX,IDC_PreOpenList,LB_ADDSTRING,0,(LPARAM)TempOut);

urlcmpTheUrl.lpszUserName[urlcmpTheUrl.dwUserNameLength] = tempChar;

}

if (urlcmpTheUrl.dwPasswordLength != 0)

{

tempChar= urlcmpTheUrl.lpszPassword[urlcmpTheUrl.dwPasswordLength];

urlcmpTheUrl.lpszPassword[urlcmpTheUrl.dwPasswordLength] = '\0';

sprintf(TempOut, "Password: %s", urlcmpTheUrl.lpszPassword);

SendDlgItemMessage(hX,IDC_PreOpenList,LB_ADDSTRING,0,(LPARAM)TempOut);

urlcmpTheUrl.lpszPassword[urlcmpTheUrl.dwPasswordLength] = tempChar;

}

if (urlcmpTheUrl.dwUrlPathLength != 0)

{

tempChar=urlcmpTheUrl.lpszUrlPath[urlcmpTheUrl.dwUrlPathLength];

urlcmpTheUrl.lpszUrlPath[urlcmpTheUrl.dwUrlPathLength] = '\0';

sprintf(TempOut, "Path: %s", urlcmpTheUrl.lpszUrlPath);

SendDlgItemMessage(hX,IDC_PreOpenList,LB_ADDSTRING,0,(LPARAM)TempOut);

urlcmpTheUrl.lpszUrlPath[urlcmpTheUrl.dwUrlPathLength] = tempChar;

}

if(urlcmpTheUrl.dwExtraInfoLength != 0)

{

tempChar = urlcmpTheUrl.lpszExtraInfo[urlcmpTheUrl.dwExtraInfoLength];

urlcmpTheUrl.lpszExtraInfo[urlcmpTheUrl.dwExtraInfoLength] = '\0';

sprintf(TempOut, "Extra: %s", urlcmpTheUrl.lpszExtraInfo);

SendDlgItemMessage(hX,IDC_PreOpenList,LB_ADDSTRING,0,(LPARAM)TempOut);

urlcmpTheUrl.lpszExtraInfo[urlcmpTheUrl.dwExtraInfoLength] = tempChar;

}

return TRUE;

}

}

Creating URLs

The InternetCreateUrl function uses the information in the URL_COMPONENTS structure to create a Uniform Resource Locator.

The components that make up the URL_COMPONENTS structure are the scheme, host name, port number, user name, password, URL path, and additional information (such as search parameters). Each component, except the port number, has a string member that holds the information, and a member that holds the length of the string member.

For each required component, the pointer member should contain the address of the buffer holding the information. The length member should be set to zero if the pointer member contains the address of a zero-terminated string; the length member should be set to the string length if the pointer member contains the address of a string that is not zero-terminated. The pointer member of any components that are not required must be set to NULL.

Accessing URLs Directly

Gopher, FTP, and HTTP resources on the Internet can be accessed directly by using the InternetOpenUrl, InternetReadFile, and InternetFindNextFile functions. InternetOpenUrl opens a connection to the resource at the URL passed to the function. When this connection is made, there are two possible steps. First, if the resource is a file, InternetReadFile can download it; second, if the resource is a directory, InternetFindNextFile can enumerate the files within the directory (except when using CERN proxies). For more information on InternetReadFile, see Reading Files. For more information on InternetFindNextFile, see Finding the Next File.

For applications that need to operate through a CERN proxy, InternetOpenUrl can be used to access FTP directories and files. The FTP requests are packaged to appear like an HTTP request, which the CERN proxy would accept.

InternetOpenUrl uses the HINTERNET handle created by the InternetOpen function and the URL of the resource. The URL must include the scheme (http:, ftp:, gopher:, file: [for a local file], or https: [for hypertext protocol secure]) and network location (such as www.microsoft.com). The URL can also include a path (for example, /isapi/gomscom.asp?TARGET=/windows/feature/) and resource name (for example, default.htm). For HTTP or HTTPS requests, additional headers can be included.

InternetQueryDataAvailable, InternetFindNextFile, InternetReadFile, and InternetSetFilePointer (HTTP or HTTPS URLs only) can use the handle that is created by InternetOpenUrl to download the resource.

[image: image1.png]InternetOpen

Internetopenur

InternstQuaryDatanuailable

IntermetReadrile

Intermtsstrilepainter

The following diagram illustrates what handles to use with each function.

The root HINTERNET handle created by InternetOpen is used by InternetOpenUrl. The HINTERNET handle created by InternetOpenUrl can be used by InternetQueryDataAvailable, InternetReadFile, InternetFindNextFile (not shown here), and InternetSetFilePointer (HTTP or HTTPS URLs only).

For more information about HINTERNET handles and the handle hierarchy, see Appendix A: HINTERNET Handles.

The following example connects to the resource by using the InternetOpenUrl function. The sample function then uses the InternetReadFile function to download the resource. The function displays the downloaded resource in the edit box indicated by intCtrlID. <!-- ************************ BRADYA: BEGIN UPDATE ************************ -->
int WINAPI UrlDump(HWND hX, int intCtrlID)

{

HINTERNET hUrlDump;

DWORD dwSize=TRUE;

LPSTR lpszData;

LPSTR lpszOutPut;

LPSTR lpszHolding;

int nCounter=1;

int nBufferSize;

DWORD BigSize=8000;

hUrlDump = InternetOpenUrl(hRootHandle, "server.name", NULL, NULL,

 INTERNET_FLAG_RAW_DATA, 0);

do

{

// Allocate the buffer.

lpszData =new char[BigSize+1];

// Read the data.

if(!InternetReadFile(hUrlDump,(LPVOID)lpszData,BigSize,&dwSize))

{

ErrorOut(hX,GetLastError(),"InternetReadFile");

delete []lpszData;

break;

}

else

{

// Add a null terminator to the end of the buffer.

lpszData[dwSize]='\0';

// Check if all of the data has been read. This should

// never get called on the first time through the loop.

if (dwSize == 0)

{

// Write the final data to the textbox.

SetDlgItemText(hX,intCtrlID,lpszHolding);

// Delete the existing buffers.

delete [] lpszData;

delete [] lpszHolding;

break;

}

// Determine the buffer size to hold the new data and the data

// already written to the textbox (if any).

nBufferSize = (nCounter*BigSize)+1;

// Increment the number of buffers read.

nCounter++;

// Allocate the output buffer.

lpszOutPut = new char[nBufferSize];

// Make sure the buffer is not the initial buffer.

if(nBufferSize != int(BigSize+1))

{

// Copy the data in the holding buffer.

strcpy(lpszOutPut,lpszHolding);

// Concatenate the new buffer with the output buffer.

strcat(lpszOutPut,lpszData);

// Delete the holding buffer.

delete [] lpszHolding;

}

else

{

// Copy the data buffer.

strcpy(lpszOutPut, lpszData);

}

// Allocate a holding buffer.

lpszHolding = new char[nBufferSize];

// Copy the output buffer into the holding buffer.

memcpy(lpszHolding,lpszOutPut,nBufferSize);

// Delete the other buffers.

delete [] lpszData;

delete [] lpszOutPut;

}

}

while (TRUE);

// Close the HINTERNET handle.

InternetCloseHandle(hUrlDump);

// Set the cursor back to an arrow.

SetCursor(LoadCursor(NULL,IDC_ARROW));

// Return.

return TRUE;

}

Handling Authentication

Some proxies and servers require authentication before allowing access to resources on the Internet. The Win32® Internet functions support server and proxy authentication for HTTP sessions. Authentication of Gopher and FTP servers must be handled by the InternetConnect function. Currently, there is no support available for FTP gateway authentication.

About HTTP Authentication

If authentication is required, the client program receives a status code of 401 (if the server requires authentication) or 407 (if the proxy requires authentication). Along with the status code, the proxy or server sends one or more authenticate response headers—Proxy-Authenticate (for proxy authentication) or WWW-Authenticate (for server authentication).

Each authenticate response header contains an available authentication scheme and a realm. If multiple authentication schemes are supported, the server returns multiple authenticate response headers. The realm value is case-sensitive and defines a protection space on the proxy or server. For example, the header "WWW-Authenticate: Basic Realm="example"" would be an example of a header returned when server authentication is needed.

The client program that sent the request can authenticate itself by including an Authorization header field with the request. The Authorization header would contain the authentication scheme and the appropriate response required by that scheme. For example, the header "Authorization: Basic <username:password>" would be added to the request and re-sent to the server if the client received the authenticate response header "WWW-Authenticate: Basic Realm="example"".

There are two general types of authentication schemes:

· Basic authentication scheme, where the user name and password are sent in cleartext to the server.

· Challenge-response schemes, which allow for a challenge-response format.

The Basic authentication scheme is based on the model that a client must authenticate itself with a user name and password for each realm. The server services the request if it is re-sent with an Authorization header that includes a valid user name and password.

Challenge-response schemes allow for more secure authentication. If a request requires authentication using a challenge-response scheme, the appropriate status code and Authenticate headers are returned to the client. The client then needs to re-send the request with a negotiate. The server would return an appropriate status code with a challenge, and the client would then need to re-send the request with the proper response to get the requested service.

The following table contains the authentication schemes that are used with the Win32 Internet functions, the authentication type, the DLLs that support them, and a description of the scheme.

	PRIVATE
Scheme
	Type
	DLL
	Description

	Basic (cleartext)
	basic
	Wininet.dll
	Uses a base64 encoded string that contains the user name and password.

	Digest
	challenge-response
	Digest.dll
	A challenge-response scheme that challenges using a nonce (a server-specified data string) value. A valid response contains a checksum of the user name, the password, the given nonce value, the HTTP method, and the requested URI. Digest authentication support was introduced in Internet Explorer 5.

	NT LAN Manager (NTLM)
	challenge-response
	Winsspi.dll
	A challenge-response scheme that bases the challenge on the user name.

	Microsoft Network (MSN)
	challenge-response
	Msnsspc.dll
	The Microsoft Network's authentication scheme.

	Distributed Password Authentication (DPA)
	challenge-response
	Msapsspc.dll
	Similar to MSN authentication and will also be used by the Microsoft Network.

	Remote Passphrase Authentication (RPA)
	CompuServe
	Rpawinet.dll, da.dll
	CompuServe's authentication scheme. For more information, see http://www.compuserve.com/rpa/rpadoco.htm

For anything other than Basic authentication, the registry keys must be set up in addition to installing the appropriate DLL(s). For more information on setting these registry keys, see Registering Authentication Keys.

If authentication is required, the INTERNET_FLAG_KEEP_CONNECTION flag should be used in the call to HttpOpenRequest. The INTERNET_FLAG_KEEP_CONNECTION flag is required for NTLM and other types of authentication in order to maintain the connection while completing the authentication process. If the connection is not maintained, the authentication process must be restarted with the proxy or server.

The Win32 Internet functions InternetOpenUrl and HttpSendRequest complete successfully even when authentication is required. The difference is, the information returned in the header files and InternetReadFile would receive an HTML page informing the user of the status code.

Registering Authentication Keys

INTERNET_OPEN_TYPE_PRECONFIG looks at the registry values ProxyEnable, ProxyServer, and ProxyOverride. These values are located under
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Internet Settings.

For authentication schemes other than Basic, a key needs to be added to the registry under
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet Explorer\Security.
A string value, DLLFile, should contain the name of the DLL that supports the authentication scheme, and a DWORD value, Flags, should be set with the appropriate value. The following list shows the possible values for the Flags value.

PLUGIN_AUTH_FLAGS_UNIQUE_CONTEXT_PER_TCPIP (value=0x01)

Each TCP/IP socket will contain a different context. Otherwise, a new context will be passed for each realm or block URL template.

PLUGIN_AUTH_FLAGS_CAN_HANDLE_UI (value=0x02)

This DLL can handle its own user input.

PLUGIN_AUTH_FLAGS_CAN_HANDLE_NO_PASSWD (value=0x04)

This DLL might be capable of doing an authentication without prompting the user for a password.

PLUGIN_AUTH_FLAGS_NO_REALM (value=0x08)

This DLL does not use a standard HTTP realm string. Any data that appears to be a realm will be scheme-specific information.

PLUGIN_AUTH_FLAGS_KEEP_ALIVE_NOT_REQUIRED (value=0x10)

This DLL does not require a persistent connection for its challenge-response sequence.

For example, to add NTLM authentication, the key NTLM would need to be added to HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet Explorer\Security.
Under HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet Explorer\Security\NTLM, the string value, DLLFile, and a DWORD value, Flags, would need to be added. DLLFile would need to be set to Winsspi.dll, and Flags would need to be set to 0x08.

Server Authentication

When a server receives a request that requires authentication, the server returns a 401 status code message. In that message, the server should include one or more WWW-Authenticate response headers. These headers include the authentication methods the server has available. The Win32 Internet functions pick the first method they recognize.

Basic authentication provides weak security unless the channel is first link-encrypted with SSL or PCT.

The InternetErrorDlg function can be used to obtain the user name and password information from the user, or a customized user interface can be designed to obtain the information.

A custom interface can use the InternetSetOption function to set the INTERNET_OPTION_PASSWORD and INTERNET_OPTION_USERNAME values and then re-send the request to the server.

Proxy Authentication

When a client attempts to use a proxy that requires authentication, the proxy returns a 407 status code message to the client. In that message, the proxy should include one or more Proxy-Authenticate response headers. These headers include the authentication methods available from the proxy. The Win32 Internet functions pick the first method they recognize.

The InternetErrorDlg function can be used to obtain the user name and password information from the user, or a customized user interface can be designed.

A custom interface can use the InternetSetOption function to set the INTERNET_OPTION_PROXY_PASSWORD and INTERNET_OPTION_PROXY_USERNAME values and then re-send the request to the proxy.

If no proxy user name and password are set, the Win32 Internet functions attempt to use the user name and password for the server. This behavior allows clients to implement the same customized user interface that is used to handle server authentication.

Handling HTTP Authentication

HTTP authentication can be handled with either InternetErrorDlg or a customized function that uses InternetSetOption or adds its own authentication headers. InternetErrorDlg can examine the headers associated with an HINTERNET handle to find hidden errors, such as status codes from a proxy or server. InternetSetOption can be used to set the user name and password for the proxy and server. For MSN and DPA authentication, InternetErrorDlg must be used to set the user name and password.

For any customized function that adds its own WWW-Authenticate or Proxy-Authenticate headers, the INTERNET_FLAG_NO_AUTH flag should be set to disable the Win32 Internet API authentication.

The following example shows how InternetErrorDlg can be used to handle HTTP authentication.

HINTERNET hOpenHandle, hConnectHandle, hResourceHandle;

DWORD dwError, dwErrorCode;

hOpenHandle = InternetOpen("Example",INTERNET_OPEN_TYPE_PRECONFIG,NULL,NULL,0);

hConnectHandle = InternetConnect(hOpenHandle, "www.server.com",

 INTERNET_INVALID_PORT_NUMBER, NULL,

 NULL, INTERNET_SERVICE_HTTP,0,0);

hResourceHandle = HttpOpenRequest(hConnectHandle, "GET",

 "/premium/default.htm",

 NULL, NULL, NULL,

 INTERNET_FLAG_KEEP_CONNECTION, 0);

resend:

HttpSendRequest(hResourceHandle, NULL, 0, NULL, 0);

// dwErrorCode stores the error code associated with the call to

// HttpSendRequest.

dwErrorCode = hResourceHandle ? ERROR_SUCCESS : GetLastError();

dwError = InternetErrorDlg(hwnd, hResourceHandle, dwErrorCode,

 FLAGS_ERROR_UI_FILTER_FOR_ERRORS |

 FLAGS_ERROR_UI_FLAGS_CHANGE_OPTIONS |

 FLAGS_ERROR_UI_FLAGS_GENERATE_DATA,

 NULL);

if (dwError == ERROR_INTERNET_FORCE_RETRY)

 goto resend;

// Insert code to read the information from the hResourceHandle

// at this point.

In the example, dwErrorCode is used to store any errors associated with the call to HttpSendRequest. HttpSendRequest will complete successfully, even if the proxy or server requires authentication. When the FLAGS_ERROR_UI_FILTER_FOR_ERRORS flag is passed to InternetErrorDlg, the function checks the headers for any hidden errors. These hidden errors would include any requests for authentication. InternetErrorDlg displays the appropriate dialog box to prompt the user for the necessary information. The FLAGS_ERROR_UI_FLAGS_GENERATE_DATA and FLAGS_ERROR_UI_FLAGS_CHANGE_OPTIONS flags should also be passed to InternetErrorDlg, so that the function constructs the appropriate data structure for the error and stores the results of the dialog box in the HINTERNET handle.

The following example shows how authentication could be handled using InternetSetOption.

HINTERNET hOpenHandle, hResourceHandle;

DWORD dwError, dwStatus;

DWORD dwStatusSize = sizeof(dwStatus);

char strUsername[64], strPassword[64];

hOpenHandle = InternetOpen("Example", INTERNET_OPEN_TYPE_PRECONFIG,

 NULL, NULL, 0);

hConnectHandle = InternetConnect(hOpenHandle, "www.server.com",

 INTERNET_INVALID_PORT_NUMBER, NULL,

 NULL, INTERNET_SERVICE_HTTP,0,0);

hResourceHandle = HttpOpenRequest(hConnectHandle, "GET",

 "/premium/default.htm",

 NULL, NULL, NULL,

 INTERNET_FLAG_KEEP_CONNECTION, 0);

resend:

HttpSendRequest(hResourceHandle, NULL, 0, NULL, 0);

HttpQueryInfo(hResourceHandle, HTTP_QUERY_FLAG_NUMBER |

 HTTP_QUERY_STATUS_CODE, &dwStatus, &dwStatusSize, NULL);

switch (dwStatus)

{

case HTTP_STATUS_PROXY_AUTH_REQ: //Proxy Authentication Required

// Insert code to set strUsername and strPassword.

InternetSetOption(hResourceHandle, INTERNET_OPTION_PROXY_USERNAME,

 strUsername, strlen(strUsername)+1);

InternetSetOption(hResourceHandle, INTERNET_OPTION_PROXY_PASSWORD,

 strPassword, strlen(strPassword)+1);

goto resend;

break;

case HTTP_STATUS_DENIED: //Server Authentication Required

// Insert code to set strUsername and strPassword.

InternetSetOption(hResourceHandle, INTERNET_OPTION_USERNAME,

 strUsername, strlen(strUsername)+1);

InternetSetOption(hResourceHandle, INTERNET_OPTION_PASSWORD,

 strPassword, strlen(strPassword)+1);

goto resend;

break;

}

// Insert code to read the information from the hResourceHandle

// at this point.

Utilizing the Win32 Internet Functions Asynchronously

The amount of time it takes an application to access an Internet resource depends on a number of factors, such as the connection being used, the server on which the resource is located, and the number of users trying to access the resource. For applications that download multiple resources or handle multiple tasks (including one or more downloads), waiting for each download to complete before moving on to the next task can be extremely inefficient. To avoid waiting, many of the Microsoft® Win32® Internet functions provide a way to perform tasks asynchronously.

In asynchronous mode, an application can execute any Win32 Internet function that includes a context value as one of its parameters and can continue to execute other commands or functions while it waits for the Win32 Internet function to complete its task. While the task is completing, a status callback function provided by the application is notified about the progress of the task and when it has completed. At this time, the status callback function can call other functions or perform any other needed tasks that were dependent on the task's completion.

· Benefits

· Scenarios

· Related Topics

Benefits

So what type of benefits can you get by using the Win32 Internet functions asynchronously? You can, for example:

· Start the download of multiple Internet resources simultaneously.

Your application can start connecting to multiple Internet resources at the same time and download them as they become available.

· Increase performance of your application.

An application using the Win32 Internet functions asynchronously does not have to wait until the request is completed, so the application is free to do other tasks that are not dependent on the request, thus improving the application's overall performance.

· Monitor the progress of the download.

The status callback function receives notifications while it is processing a request. If needed, your application can take the information provided by that status callback function to keep the user informed about the progress of the operation or to interrupt requests that are taking too long to complete.

Scenarios

Let's say your application needs to download coffee prices from the Downfall Coffee & Tea and the Fourth Coffee sites and compare prices. The Fourth Coffee site usually has a slower response time, so your application should download the information from Downfall Coffee & Tea first.

Two versions of the application are developed. One works synchronously, downloading the prices from the Downfall Coffee & Tea site first and then the prices from the Fourth Coffee site afterward. The second works asynchronously, sending requests to both sites and downloading the prices when they become available.

The following table illustrates what would happen if the Fourth Coffee site was faster on a particular day.

	PRIVATE
Event
	Synchronous version
	Asynchronous version

	Start
	Send request to Downfall Coffee & Tea
	Send requests to Downfall Coffee & Tea and Fourth Coffee

	Request from the asynchronous version to Fourth Coffee completed
	Waiting
	Download prices from Fourth Coffee

	Request to Downfall Coffee & Tea completed
	Download prices from Downfall Coffee & Tea
	Download prices from Downfall Coffee & Tea

	After Downfall Coffee & Tea's prices are downloaded
	Send request to Fourth Coffee
	Compare prices

	Asynchronous version's comparison completed
	Waiting
	Operation complete

	Request from the synchronous version to Fourth Coffee completed
	Download prices from Fourth Coffee
	n/a

	After Fourth Coffee's prices are downloaded
	Compare prices
	n/a

	Synchronous version's comparison completed
	Operation complete
	n/a

Another example would be a Web browser such as Microsoft® Internet Explorer. When the browser downloads a page, it often needs to download other resources, such as images and sound files. In asynchronous mode, the page and its associated resources can be requested simultaneously and downloaded as they become available, instead of requesting and downloading the page and each resource one at a time.

Related Topics

The following lists contain links to topics related to using the Win32 Internet functions asynchronously.

Tutorials

· Creating Status Callback Functions

· Calling Win32 Functions Asynchronously

Functions needed to set up asynchronous operation

· InternetOpen

· InternetSetStatusCallback

· INTERNET_STATUS_CALLBACK (Function Prototype)

Win32 Internet functions that can be used asynchronously

· FtpCreateDirectory

· FtpDeleteFile

· FtpFindFirstFile

· FtpGetCurrentDirectory

· FtpGetFile

· FtpOpenFile

· FtpPutFile

· FtpRemoveDirectory

· FtpRenameFile

· FtpSetCurrentDirectory

· GopherFindFirstFile

· GopherOpenFile

· HttpEndRequest

· HttpOpenRequest

· HttpSendRequestEx

· InternetConnect

· InternetOpenUrl

· InternetReadFileEx

Note The FtpCreateDirectory, FtpRemoveDirectory, FtpSetCurrentDirectory, FtpGetCurrentDirectory, FtpDeleteFile, and FtpRenameFile functions use the context value provided in the call to the InternetConnect function.

FTP Sessions

The Win32® Internet functions can be used to provide applications with the ability to navigate and manipulate directories and files on an FTP server. Applications that use a CERN proxy exclusively must use the InternetOpenUrl function because CERN proxies do not support FTP. For more information on how to use InternetOpenUrl, see Accessing URLs Directly.

To begin an FTP session, use InternetConnect to create the valid FTP session handle to be used by the FTP functions provided with the Win32 Internet functions.

The Win32 Internet functions provide the capability to navigate between directories; enumerate, create, remove, and rename directories; and rename, upload, download, and delete files on an FTP server.

Navigation is provided by the FtpGetCurrentDirectory and FtpSetCurrentDirectory functions. These functions utilize the FTP session handle created by a previous call to InternetConnect to determine which directory the application is currently in or to change to a different subdirectory.

Directory enumeration is performed by using the FtpFindFirstFile and InternetFindNextFile functions. FtpFindFirstFile uses the FTP session handle created by InternetConnect to find the first file that matches the given search criteria and returns a handle to continue the directory enumeration. InternetFindNextFile uses the handle returned by FtpFindFirstFile to return the next file that matches the original search criteria. The application should continue to call InternetFindNextFile until there are no more files left in the directory.

New directories are created by using the FtpCreateDirectory function. This function uses the FTP session handle created by InternetConnect and creates the directory specified by the string passed to the function. The string can contain a directory name relative to the current directory, or a fully qualified directory path.

To rename either files or directories, the application can call FtpRenameFile. This function replaces the original name with the new name passed to the function. The name of the file or directory can be relative to the current directory, or a fully qualified name.

To upload or place files on an FTP server, the application can use either FtpPutFile or FtpOpenFile (along with InternetWriteFile). FtpPutFile can be used if the file already exists locally, while FtpOpenFile and InternetWriteFile can be used if data needs to be written to a file on the FTP server.

To download or get files, the application can use either FtpGetFile or FtpOpenFile (with InternetReadFile). FtpGetFile is used to retrieve a file from an FTP server and store it locally, while FtpOpenFile and InternetReadFile can be used to control where the downloaded information is going (for example, it could be used to display the information in an edit box).

Deleting files on an FTP server is done by using the FtpDeleteFile function. This function removes a file name that is either relative to the current directory or a fully qualified file name from the FTP server. FtpDeleteFile requires an FTP session handle returned by InternetConnect.

FTP Function Handles

The FTP functions require certain types of HINTERNET handles to work properly. These handles must be created in a set order, starting with the root handle created by InternetOpen. InternetConnect can then create an FTP session handle.

The following diagram shows the FTP functions that are dependent on the FTP session handle returned by InternetConnect. The shaded boxes represent functions that return HINTERNET handles, while the plain boxes represent functions that use the HINTERNET handle created by the function on which they depend.

PRIVATE "TYPE=PICT;ALT=FTP functions dependent on FTP session handle returned by InternetConnect"[image: image2.png]InternetOpen

InternetConnect

FipCreateDirectory

FipDeloteFile

FpGetCurrentDirectory

FipGetile

FipPutFile

FtpRemoveDirectory

FipRenameFile

FipSetCurrentDirectory

The following diagram shows the two FTP functions that return HINTERNET handles and the functions that are dependent on the HINTERNET handles created by them. The shaded boxes represent functions that return HINTERNET handles, while the plain boxes represent functions that use the HINTERNET handle created by the function on which they depend.

PRIVATE "TYPE=PICT;ALT=FTP functions that return HINTERNET handles"[image: image3.png]InternetOpen
T

TnternetConnect

r—‘—\

FtpOpenFile FepFindFirstrile

InternetQueryDatavailable] InternetFindNextile

InternetReadfile

InternetwriteFile

For more information about HINTERNET handles and the handle hierarchy, see Appendix A: HINTERNET Handles.

Using the Win32 Internet Functions for FTP Sessions

The following Win32 Internet functions are used during FTP sessions. These functions are not recognized by CERN proxies. Applications that must function through CERN proxies should use InternetOpenUrl and access the resources directly. For more information on direct resource access, see Accessing URLs Directly.

	PRIVATE
FtpCreateDirectory
	Creates a new directory on the server. This function requires a handle created by InternetConnect.

	FtpDeleteFile
	Deletes a file from the server. This function requires a handle created by InternetConnect.

	FtpFindFirstFile
	Starts file enumeration or file search in the current directory. This function requires a handle created by InternetConnect.

	FtpGetCurrentDirectory
	Returns the client's current directory on the server. This function requires a handle created by InternetConnect.

	FtpGetFile
	Retrieves a file from the server. This function requires a handle created by InternetConnect.

	FtpOpenFile
	Initiates access to a file on the server for either reading or writing. This function requires a handle created by InternetConnect.

	FtpPutFile
	Writes a file to the server. This function requires a handle created by InternetConnect.

	FtpRemoveDirectory
	Deletes a directory on the server. This function requires a handle created by InternetConnect.

	FtpRenameFile
	Renames a file on the server. This function requires a handle created by InternetConnect.

	FtpSetCurrentDirectory
	Changes the client's current directory on the server. This function requires a handle created by InternetConnect.

	InternetWriteFile
	Writes data to an open file on the server. This function requires a handle created by FtpOpenFile.

Starting an FTP Session

The application establishes an FTP session by calling InternetConnect on a handle created by InternetOpen. InternetConnect needs the server name, FTP port number, user name, password, and service type (which must be set to INTERNET_SERVICE_FTP). For passive FTP semantics, the application must also set the INTERNET_FLAG_PASSIVE flag.

The INTERNET_DEFAULT_FTP_PORT and INTERNET_INVALID_PORT_NUMBER values can be used for the FTP port number. INTERNET_DEFAULT_FTP_PORT uses the default FTP port, but the service type still must be set. INTERNET_INVALID_PORT_NUMBER uses the default value for the indicated service type.

The values for the user name and password can be set to NULL. If both values are set to NULL, InternetConnect uses "anonymous" for the user name, and the user's e-mail address for the password. If only the password is set to NULL, the user name passed to InternetConnect is used for the user name, and an empty string is used for the password. If both values are not NULL, the user name and password given to InternetConnect are used.

Enumerating Directories

Enumeration of a directory on an FTP server requires the creation of a handle by FtpFindFirstFile. This handle is a branch of the FTP session handle created by InternetConnect. FtpFindFirstFile locates the first file or directory on the server and returns it in a WIN32_FIND_DATA structure. Use InternetFindNextFile until it returns ERROR_NO_MORE_FILES. This method finds all subsequent files and directories on the server. For more information on InternetFindNextFile, see Finding the Next File.

To determine if the file retrieved by FtpFindFirstFile or InternetFindNextFile is a directory, check the dwFileAttributes member of the WIN32_FIND_DATA structure to see if it is equal to FILE_ATTRIBUTE_DIRECTORY.

If the application makes changes on the FTP server or if the FTP server undergoes changes frequently, the INTERNET_FLAG_NO_CACHE_WRITE and INTERNET_FLAG_RELOAD flags should be set in FtpFindFirstFile. These flags ensure that the directory information being retrieved from the FTP server is current.

After the application completes the directory enumeration, a call to InternetCloseHandle must be made on the handle created by FtpFindFirstFile. Until that handle is closed, the application cannot call FtpFindFirstFile again on the session handle created by InternetConnect. If a call to FtpFindFirstFile is made on the same session handle before the previous call to the same function is closed, the function fails, returning ERROR_FTP_TRANSFER_IN_PROGRESS.

The following example displays the contents of an FTP directory in the list box, IDC_FTPList. The HINTERNET handle, hSecondary, is a handle returned by the InternetConnect function after it establishes an FTP session.

int WINAPI DisplayDir(HWND hX, DWORD dwFlags)

{

WIN32_FIND_DATA pDirInfo;

HINTERNET hDir;

DWORD dError;

char DirList[MAX_PATH];

DWORD dwTemp=MAX_PATH;

LPDWORD temp =&dwTemp;

LPVOID lpOption;

DWORD dwSize;

LPDWORD lpdwSize = &dwSize;

SendDlgItemMessage(hX,IDC_FTPList,LB_RESETCONTENT,0,0);

if (!(hDir = FtpFindFirstFile (hSecondary, TEXT ("*.*"), &pDirInfo,

dwFlags, 0)))

if (GetLastError() == ERROR_NO_MORE_FILES)

{

MessageBox(hX,"There are no files here!!!","Display Dir",MB_OK);

InternetCloseHandle(hDir);

return 1;

}

else

{

ErrorOut (hX, GetLastError (), "FindFirst error: ");

InternetCloseHandle(hDir);

return 0;

}

sprintf(DirList, pDirInfo.cFileName);

if (pDirInfo.dwFileAttributes == FILE_ATTRIBUTE_DIRECTORY)

strcat(DirList," <DIR> ");

SendDlgItemMessage(hX,IDC_FTPList,LB_ADDSTRING,0,(LPARAM)DirList);

dError = NO_ERROR;

do

{

if (!InternetFindNextFile (hDir, &pDirInfo))

{

dError = GetLastError();

if (dError == ERROR_NO_MORE_FILES)

{

InternetCloseHandle(hDir);

return 1;

}

else

{

ErrorOut (hX,GetLastError(), "InternetFindNextFile");

InternetCloseHandle(hDir);

return 0;

}

}

else

{

sprintf(DirList, pDirInfo.cFileName);

if (pDirInfo.dwFileAttributes == FILE_ATTRIBUTE_DIRECTORY)

strcat(DirList," <DIR> ");

SendDlgItemMessage(hX,IDC_FTPList,LB_ADDSTRING,0,(LPARAM)DirList);

}

}

while (TRUE);

if (!InternetCloseHandle(hDir))

{

InternetCloseHandle(hDir);

ErrorOut (hX,GetLastError(), "InternetCloseHandle error");

return 0;

}

else

return 1;

}

Navigating Directories

The Win32 Internet functions FtpGetCurrentDirectory and FtpSetCurrentDirectory handle directory navigation.

FtpGetCurrentDirectory returns the application's current directory on the FTP server. The directory path from the root directory on the FTP server is included.

FtpSetCurrentDirectory changes the working directory on the server. The directory information passed to FtpSetCurrentDirectory can be either a partially or fully qualified path name relative to the current directory. For example, if the application is currently in the directory public/info and the path is ftp/example, FtpSetCurrentDirectory changes the current directory to public/info/ftp/example.

The following example uses an FTP session handle, hSecondary, returned by InternetConnect. The new directory name is stored in the edit box, IDC_FTPEdit2. Before the actual change is made, the function gets the current directory and stores it in the same edit box. DisplayDir is another function that is designed to enumerate the directory.

int WINAPI ChangeDir(HWND hX)

{

DWORD testsz = 320;

LPSTR lpszUrlBuffer; // buffer to hold the URL

LPSTR lpszDirList;

lpszUrlBuffer = new char[testsz];

GetDlgItemText(hX,IDC_FTPEdit2,(LPSTR)lpszUrlBuffer,testsz);

lpszDirList = new char[testsz];

if (!FtpGetCurrentDirectory(hSecondary,(LPSTR)lpszDirList,&testsz))

{

ErrorOut(hX,GetLastError(),"Change Dir");

}

else

SetDlgItemText(hX,IDC_FTPEdit2,(LPSTR)lpszDirList);

delete(lpszDirList);

if (!(FtpSetCurrentDirectory(hSecondary,lpszUrlBuffer)))

{

ErrorOut(hX,GetLastError(),"InternetConnect");

delete(lpszUrlBuffer);

SetDlgItemText(hX,IDC_FTPEdit2,(LPSTR)lpszUrlBuffer);

DisplayDir(hX,INTERNET_FLAG_RELOAD);

return 0;

}

else

{

delete(lpszUrlBuffer);

return DisplayDir(hX,0);

}

}

Manipulating Directories on an FTP Server

The Win32 Internet functions provide the capability to create and remove directories on an FTP server to which the application has the necessary privileges. If the application must log on to a server with a specific user name and password, the values can be used in InternetConnect when creating the FTP session handle.

The FtpCreateDirectory function takes a valid FTP session handle and a NULL-terminated string that contains either a fully qualified path or a name relative to the current directory and creates a directory on the FTP server.

The following example shows two separate calls to FtpCreateDirectory. In both examples, hFtpSession is the session handle created by the InternetConnect function, and the root directory is the current directory.

FtpCreateDirectory(hFtpSession, "test");

/* This will create the directory "test" in the current directory (which is the root directory). */

FtpCreateDirectory(hFtpSession, "\test\example");

/* This will create the directory "example" in the test directory. */

The FtpRemoveDirectory function takes a valid FTP session handle and a NULL-terminated string that contains either a fully qualified path or a name relative to the current directory and removes that directory from the FTP server.

The following example shows two sample calls to FtpRemoveDirectory. In both calls, hFtpSession is the session handle created by the InternetConnect function, and the root directory is the current directory. There is a directory called "test" in the root directory and a directory called "example" in the "test" directory.

FtpRemoveDirectory(hFtpSession,"\test\example");

/* Removes the "example" directory and any files or directories contained

in it from the "test" directory. */

FtpRemoveDirectory(hFtpSession, "test");

/* Removes the "test" directory and any files or directories contained

in it from the root directory. */

The following example creates the directory indicated by the string stored in the edit box, IDC_FTPEdit2. The HINTERNET handle, hSecondary, was created by InternetConnect after establishing an FTP session. DisplayDir is another function that is designed to enumerate the directory.

int WINAPI CreateDir(HWND hX)

{

char strInFile[80];

GetDlgItemText(hX,IDC_FTPEdit2,strInFile,80);

if (strlen(strInFile)==0)

{

MessageBox(hX,"Directory Name Must Be Specified","Create Dir",MB_OK);

return 0;

}

else

{

if(!FtpCreateDirectory(hSecondary,strInFile))

{

ErrorOut(hX,GetLastError(),"Create Dir");

return 0;

}

else

{

return DisplayDir(hX,INTERNET_FLAG_RELOAD);

}

}

}

The following example deletes the directory indicated by the edit box, IDC_FTPEdit2. The HINTERNET handle, hSecondary, was created by InternetConnect after establishing an FTP session. DisplayDir is another function that is designed to enumerate the directory.

int WINAPI RemoveDir(HWND hX)

{

char strInFile[80];

GetDlgItemText(hX,IDC_FTPEdit2,strInFile,80);

if (strlen(strInFile)==0)

{

MessageBox(hX,"Directory Name Must Be Specified!","Remove Dir",MB_OK);

return 0;

}

else

{

if(!FtpRemoveDirectory(hSecondary,strInFile))

{

ErrorOut(hX,GetLastError(),"Remove Dir");

return 0;

}

else

{

MessageBox(hX,"Directory Deleted","Remove Dir",MB_OK);

return DisplayDir(hX,INTERNET_FLAG_RELOAD);

}

}

}

Getting Files on an FTP Server

The Win32 Internet functions offer three methods for retrieving files from an FTP server:

· Using InternetOpenUrl and InternetReadFile.

· Using FtpOpenFile and Ошибка! Недопустимый объект гиперссылки..

· Using FtpGetFile.

For more information about using the InternetReadFile function, see Reading Files.

If the URL of the file is available, the application can call InternetOpenUrl to connect to that URL and then use InternetReadFile to control the download of the file. This setup allows the application to control the download more tightly and is ideal for situations where no other operations need to be made on the FTP server. For more information on how to directly access resources, see Accessing URLs Directly.

If the application has established an FTP session handle to the server with InternetConnect, the application can call FtpOpenFile with the existing file name and with a new name for the locally stored file. The application can then use InternetReadFile to download the file. This allows the application to control the download more tightly and keep the connection to the FTP server, so more commands can be executed.

If the application does not need to tightly control the download, the application can use FtpGetFile with the FTP session handle, remote file name, and local file name to retrieve the file. FtpGetFile performs all the bookkeeping and overhead associated with reading a file from an FTP server and storing it locally.

The following example retrieves the file indicated by the IDC_FTPEdit2 edit box and stores it locally using the file name specified by the IDC_FTPEdit3 edit box. The HINTERNET handle, hSecondary, was created by InternetConnect after establishing an FTP session. DisplayDir is another function that is designed to enumerate the directory.

int WINAPI GetFile(HWND hX)

{

char strInFile[80];

char strOutFile[80];

int intTransType;

GetDlgItemText(hX,IDC_FTPEdit3,strOutFile,80);

GetDlgItemText(hX,IDC_FTPEdit2,strInFile,80);

if ((strlen(strOutFile)==0) | (strlen(strInFile)==0))

{

MessageBox(hX,"Target File or Destination File Missing","Get File",MB_OK);

return 0;

}

else

{

intTransType = MessageBox(hX,

"Do you want to download in ASCII (Default:Binary)?","Get File",MB_YESNO);

if (intTransType==IDYES)

{

if(!FtpGetFile(hSecondary,strInFile,strOutFile,FALSE,

 FILE_ATTRIBUTE_NORMAL,FTP_TRANSFER_TYPE_ASCII |

 INTERNET_FLAG_NO_CACHE_WRITE,0))

{

ErrorOut(hX,GetLastError(),"Get File");

DisplayDir(hX,INTERNET_FLAG_RELOAD);

return 0;

}

else

{

MessageBox(hX,"ASCII Transfer Complete","Get File",MB_OK);

return 1;

}

}

else

{

if(!FtpGetFile(hSecondary,strInFile,strOutFile,FALSE,

 FILE_ATTRIBUTE_NORMAL, FTP_TRANSFER_TYPE_BINARY |

 INTERNET_FLAG_RELOAD,0))

{

ErrorOut(hX,GetLastError(),"Get File");

return 0;

}

else

{

MessageBox(hX,"Binary Transfer Complete","Get File",MB_OK);

return 1;

}

}

}

}

Placing Files on an FTP Server

An application can use two methods to place a file on an FTP server using the Win32 Internet functions:

· Use the FtpOpenFile function with the InternetWriteFile function.

· Use FtpPutFile.

An application that must send data to an FTP server, but does not have a local file containing all the data, should use FtpOpenFile to create and open a file on the FTP server. The application then can use InternetWriteFile to upload the information to the file.

If the file already exists locally, the application can use FtpPutFile to upload the file to the FTP server. FtpPutFile performs all the overhead that goes with uploading a local file to a remote FTP server.

The following example places the file indicated by the IDC_FTPEdit2 edit box on the FTP server, using the file name specified by the IDC_FTPEdit3 edit box. The HINTERNET handle, hSecondary, was created by InternetConnect after establishing an FTP session.

int WINAPI PutFile(HWND hX)

{

char strInFile[80];

char strOutFile[80];

int intTransType;

GetDlgItemText(hX,IDC_FTPEdit3,strOutFile,80);

GetDlgItemText(hX,IDC_FTPEdit2,strInFile,80);

if ((strlen(strOutFile)==0) | (strlen(strInFile)==0))

{

MessageBox(hX,"Target File or Destination File Missing","Put File",MB_OK);

return 0;

}

else

{

intTransType = MessageBox(hX,

 "Do you want to upload in ASCII (Default:Binary)?",

 "Put File",MB_YESNO);

if (intTransType==IDYES)

{

if(!FtpPutFile(hSecondary,strInFile,strOutFile,

FTP_TRANSFER_TYPE_ASCII,0))

{

ErrorOut(hX,GetLastError(),"Get File");

return 0;

}

else

{

MessageBox(hX,"ASCII Transfer Complete","Put File",MB_OK);

return 1;

}

}

else

{

if(!FtpPutFile(hSecondary,strInFile,strOutFile,

FTP_TRANSFER_TYPE_BINARY,0))

{

ErrorOut(hX,GetLastError(),"Get File");

return 0;

}

else

{

MessageBox(hX,"Binary Transfer Complete","Get File",MB_OK);

DisplayDir(hX,INTERNET_FLAG_RELOAD);

return 1;

}

}

}

}

Deleting Files from an FTP Server

To delete a file from an FTP server, an application can use the FtpDeleteFile function. The calling application must have the necessary privileges specified to delete a file from the FTP server when InternetConnect creates the FTP session handle.

The following example deletes the file indicated by the IDC_FTPEdit2 edit box. The HINTERNET handle, hSecondary, was created by InternetConnect after establishing an FTP session. DisplayDir is another function that is designed to enumerate the directory.

int WINAPI DeleteFile(HWND hX)

{

char strInFile[80];

GetDlgItemText(hX,IDC_FTPEdit2,strInFile,80);

if (strlen(strInFile)==0)

{

MessageBox(hX,"File Name Must Be Specified!","Remove Dir",MB_OK);

return 0;

}

else

{

if(!FtpDeleteFile(hSecondary,strInFile))

{

ErrorOut(hX,GetLastError(),"Remove Dir");

return 0;

}

else

{

MessageBox(hX,"File Deleted","Remove Dir",MB_OK);

return DisplayDir(hX,INTERNET_FLAG_RELOAD);

}

}

}

Renaming Files and Directories on an FTP Server

Renaming files and directories on an FTP server can be performed by using the FtpRenameFile function. FtpRenameFile accepts two NULL-terminated strings that contain either partially or fully qualified names relative to the current directory and then renames the file designated by the first string to the name in the second string.

The following example renames the file or directory indicated by the IDC_FTPEdit2 edit box. The HINTERNET handle, hSecondary, was created by InternetConnect after establishing an FTP session. DisplayDir is another function that is designed to enumerate the directory.

int WINAPI RenameFile(HWND hX)

{

char strInFile[80];

char strOutFile[80];

GetDlgItemText(hX,IDC_FTPEdit3,strOutFile,80);

GetDlgItemText(hX,IDC_FTPEdit2,strInFile,80);

if ((strlen(strOutFile)==0) | (strlen(strInFile)==0))

{

MessageBox(hX,"Target File or Destination File Missing","Put File",MB_OK);

return 0;

}

else

{

if(!FtpRenameFile(hSecondary,strInFile,strOutFile))

{

ErrorOut(hX,GetLastError(),"Get File");

DisplayDir(hX,INTERNET_FLAG_RELOAD);

return 0;

}

else

{

return DisplayDir(hX,INTERNET_FLAG_RELOAD);

}

}

}

Gopher Sessions

The Win32® Internet Gopher functions create and use Internet Gopher utilities to access information on Gopher servers worldwide.

Gopher functions, like the FTP functions, cannot be used through a CERN type proxy because CERN proxies recognize only HTTP. Applications that need to access a Gopher server through a CERN proxy should use InternetOpenUrl to access the resource directly. For more information on direct resource access, see Accessing URLs Directly.

The following diagram shows the relationship of Win32 Internet functions used for the Gopher protocol. The shaded boxes represent functions that return HINTERNET handles, while the plain boxes represent functions that use the HINTERNET handle created by the function on which they depend.

For more information on HINTERNET handles and the handle hierarchy, see Appendix A: HINTERNET Handles.

Using the Win32 Internet Functions for Gopher Sessions

The following Win32 Internet functions are used during Gopher sessions. These functions are not recognized by CERN proxies. Applications that must function through CERN type proxies should use InternetOpenUrl and access the resources directly. For more information on direct resource access, see Accessing URLs Directly.

	PRIVATE
GopherCreateLocator
	Forms a Gopher locator for use in other Gopher function calls.

	GopherFindFirstFile
	Starts enumerating a Gopher directory listing. This function requires a handle created by InternetConnect.

	GopherGetAttribute
	Retrieves attribute information on the Gopher object. This function requires a handle created by InternetConnect.

	GopherGetLocatorType
	Parses a Gopher locator and determines its attributes.

	GopherOpenFile
	Starts retrieving a Gopher object. This function requires a handle created by InternetConnect.

Creating Locators

The Win32 Internet function GopherCreateLocator allows applications to create Gopher locators.

This function accepts the host address, server port used by the host, display string, selector string, Gopher type, address of the buffer that stores the locator, and the buffer length. If the buffer address is set to NULL, the buffer length needed to store the locator is stored in the buffer length variable. If the buffer size is insufficient, the function fails. The GetLastError function returns ERROR_INSUFFICIENT_BUFFER and stores the necessary length in the buffer length variable.

The display string contains the Gopher document or directory to be displayed. If this parameter is NULL, the function returns the default directory for the Gopher server.

The selector string contains the information that the application is searching for in the Gopher server. This parameter can be set to NULL.

Gopher types define the resource type the selector string is looking for; they can also define whether this is a Gopher or Gopher+ request. The following values are valid Gopher types.

	PRIVATE
GOPHER_TYPE_ASK
	Ask+ item.

	GOPHER_TYPE_BINARY
	Binary file.

	GOPHER_TYPE_BITMAP
	Bitmap file.

	GOPHER_TYPE_CALENDAR
	Calendar file.

	GOPHER_TYPE_CSO
	CSO telephone book server.

	GOPHER_TYPE_DIRECTORY
	Directory of additional Gopher items.

	GOPHER_TYPE_DOS_ARCHIVE
	MS-DOS® archive file.

	GOPHER_TYPE_ERROR
	Error condition indicator.

	GOPHER_TYPE_GIF
	GIF graphics file.

	GOPHER_TYPE_GOPHER_PLUS
	Gopher+ item.

	GOPHER_TYPE_HTML
	HTML document.

	GOPHER_TYPE_IMAGE
	Image file.

	GOPHER_TYPE_INDEX_SERVER
	Index server.

	GOPHER_TYPE_INLINE
	Inline file.

	GOPHER_TYPE_MAC_BINHEX
	Macintosh file in BINHEX format.

	GOPHER_TYPE_MOVIE
	Movie file.

	GOPHER_TYPE_PDF
	PDF file.

	GOPHER_TYPE_REDUNDANT
	Duplicated server indicator. The information contained within is a duplicate of the primary server. The primary server is defined as the last directory entry that did not have a GOPHER_TYPE_REDUNDANT type.

	GOPHER_TYPE_SOUND
	Sound file.

	GOPHER_TYPE_TELNET
	Telnet server.

	GOPHER_TYPE_TEXT_FILE
	ASCII text file.

	GOPHER_TYPE_TN3270
	TN3270 server.

	GOPHER_TYPE_UNIX_UUENCODED
	UUENCODED file.

	GOPHER_TYPE_UNKNOWN
	Unknown item type.

Enumerating Directories

Enumeration of a directory on a Gopher server requires the creation of an HINTERNET handle by GopherFindFirstFile. This handle is a branch of the Gopher session handle created by InternetConnect. GopherFindFirstFile locates the first file or directory on the server and returns it in a GOPHER_FIND_DATA structure. Use InternetFindNextFile until it fails, returning ERROR_NO_MORE_FILES. This method finds all subsequent files and directories on the server. For more information on InternetFindNextFile, see Finding the Next File.

To determine the resource type retrieved by GopherFindFirstFile or InternetFindNextFile, check the GopherType member of the GOPHER_FIND_DATA structure. The following values are valid Gopher types

	PRIVATE
GOPHER_TYPE_ASK
	Ask+ item.

	GOPHER_TYPE_BINARY
	Binary file.

	GOPHER_TYPE_BITMAP
	Bitmap file.

	GOPHER_TYPE_CALENDAR
	Calendar file.

	GOPHER_TYPE_CSO
	CSO telephone book server.

	GOPHER_TYPE_DIRECTORY
	Directory of additional Gopher items.

	GOPHER_TYPE_DOS_ARCHIVE
	MS-DOS® archive file.

	GOPHER_TYPE_ERROR
	Error condition indicator.

	GOPHER_TYPE_GIF
	GIF graphics file.

	GOPHER_TYPE_GOPHER_PLUS
	Gopher+ item.

	GOPHER_TYPE_HTML
	HTML document.

	GOPHER_TYPE_IMAGE
	Image file.

	GOPHER_TYPE_INDEX_SERVER
	Index server.

	GOPHER_TYPE_INLINE
	Inline file.

	GOPHER_TYPE_MAC_BINHEX
	Macintosh file in BINHEX format.

	GOPHER_TYPE_MOVIE
	Movie file.

	GOPHER_TYPE_PDF
	PDF file.

	GOPHER_TYPE_REDUNDANT
	Duplicated server indicator. The information contained within is a duplicate of the primary server. The primary server is defined as the last directory entry that did not have a GOPHER_TYPE_REDUNDANT type.

	GOPHER_TYPE_SOUND
	Sound file.

	GOPHER_TYPE_TELNET
	Telnet server.

	GOPHER_TYPE_TEXT_FILE
	ASCII text file.

	GOPHER_TYPE_TN3270
	TN3270 server.

	GOPHER_TYPE_UNIX_UUENCODED
	UUENCODED file.

	GOPHER_TYPE_UNKNOWN
	Unknown item type.

Downloading Gopher Resources

The Win32 Internet functions GopherOpenFile and InternetReadFile allow applications to download a Gopher resource.

To begin downloading a resource, GopherOpenFile must create an HINTERNET handle off the Gopher session handle returned by InternetConnect. After the handle is created, InternetReadFile can be used to download the resource. For more information on using InternetReadFile, see Reading Files. </DIV>
HTTP Sessions

The Win32® Internet functions allow you to access resources on the World Wide Web (WWW). These resources can be accessed directly by using InternetOpenUrl (for more information, see Accessing URLs Directly) or the HTTP functions.

Resources on the WWW are accessed by using HTTP. The Win32 Internet functions include a set of stable HTTP functions that handle the underlying protocols, while allowing your application to access information on the WWW. As the HTTP protocol evolves, the underlying protocols will be updated to maintain HTTP function behavior.

The following diagram shows the relationships of the Win32 Internet functions that are used for the HTTP protocol. The shaded boxes represent functions that return HINTERNET handles, while the plain boxes represent functions that use the HINTERNET handle created by the function on which they depend.

PRIVATE "TYPE=PICT;ALT=Win32 Internet functions used for HTTP"[image: image4.png]InternetOpen

InternetConnect

HitpOpenRequest

Hittp AddRequestHeaters

HitpQueryInfo

HttpSendRequest

HitpSendRequestEx

InternetErrorDlg

For more information on HINTERNET handles and the handle hierarchy, see Appendix A: HINTERNET Handles.

Using the Win32 Internet Functions to Access the WWW

The following functions are used during HTTP sessions to access the WWW.

	PRIVATE
HttpAddRequestHeaders
	Adds HTTP request headers to the HTTP request handle. This function requires a handle created by HttpOpenRequest.

	HttpOpenRequest
	Opens an HTTP request handle. This function requires a handle created by InternetConnect.

	HttpQueryInfo
	Queries information about an HTTP request. This function requires a handle created by the HttpOpenRequest or InternetOpenUrl function.

	HttpSendRequest
	Sends the specified HTTP request to the HTTP server. This function requires a handle created by HttpOpenRequest.

	InternetErrorDlg
	Displays predefined dialog boxes for common Internet error conditions. This function requires the handle used in the call to HttpSendRequest.

Initiating a Connection to the WWW

To start a connection to the WWW, the application must call the InternetConnect function on the root HINTERNET returned by InternetOpen. InternetConnect must establish an HTTP session by declaring the INTERNET_SERVICE_HTTP service type. For more information on using InternetConnect, see Using InternetConnect.

Opening a Request

The HttpOpenRequest function opens an HTTP request and returns an HINTERNET handle that can be used by the other HTTP functions. Unlike the other open functions (such as FtpOpenFile and InternetOpenUrl), HttpOpenRequest does not send the request to the Internet when called. The HttpSendRequest function sends the request and establishes a connection over the network.

HttpOpenRequest takes an HTTP session handle created by InternetConnect and a verb, object name, version string, referrer, accept types, flags, and context value.

The verb is a string to be used in the request. Common verbs used in requests include "GET", "PUT", and "POST". If this value is set to NULL, HttpOpenRequest uses the default value "GET".

The object name is a string that contains the name of the specified verb's target object. This is generally a file name, an executable module, or a search specifier. If the object name supplied is an empty string, HttpOpenRequest looks for the default page.

The version string should contain the HTTP version. If this parameter is set to NULL, the function uses "HTTP/1.0".

The referrer specifies the address of the document from which the object name was obtained. If this parameter is NULL, no referrer is specified.

The NULL-terminated string containing the accept types indicates the content types accepted by the application. Setting this parameter to NULL indicates that no content types are accepted by the application. If an empty string is supplied, the application is indicating it accepts only documents of type "text/*". The value "text/*" indicates text-only documents—not pictures or other binary files.

The flag values control caching, cookies, and security issues. For Microsoft Network (MSN), NTLM, and other types of authentication, set the INTERNET_FLAG_KEEP_CONNECTION flag.

If the INTERNET_FLAG_ASYNC flag was set in the call to InternetOpen, a nonzero context value should be set for proper asynchronous operation.

The following example is a sample call to HttpOpenRequest.

hHttpRequest = HttpOpenRequest(hHttpSession, "GET", "", NULL, "", NULL, 0,0);

Adding Request Headers

The Win32 Internet function HttpAddRequestHeaders allows applications to add one or more request headers to the initial request. This function allows an application to append additional free-format headers to the HTTP request handle; it is intended for use by sophisticated applications that need precise control over the request sent to the HTTP server.

HttpAddRequestHeaders needs an HTTP request handle created by HttpOpenRequest, a string containing the headers, the length of the headers, and modifiers.

The following modifiers can be used with HttpAddRequestHeaders.

	PRIVATE
HTTP_ADDREQ_FLAG_ADD
	Adds the header if it does not exist. Used with HTTP_ADDREQ_FLAG_REPLACE.

	HTTP_ADDREQ_FLAG_ADD_IF_NEW
	Adds the header only if it does not already exist; otherwise, an error is returned.

	HTTP_ADDREQ_FLAG_COALESCE
	Coalesces headers of the same name.

	HTTP_ADDREQ_FLAG_COALESCE_WITH_COMMA
	Coalesces headers of the same name. For example, adding "Accept: text/*" followed by "Accept: audio/*" with this flag forms the single header "Accept: text/*, audio/*", causing the first header found to be coalesced. It is up to the calling application to ensure a cohesive scheme with respect to coalesced/separate headers.

	HTTP_ADDREQ_FLAG_COALESCE_WITH_SEMICOLON
	Coalesces headers of the same name, using a semicolon.

	HTTP_ADDREQ_FLAG_REPLACE
	Replaces or removes a header. If the header value is empty and the header is found, it is removed. If the header value is not empty, the header value is replaced.

Sending a Request

HttpSendRequest establishes a connection to the Internet and sends the request to the specified site. This function requires an HINTERNET handle created by HttpOpenRequest. HttpSendRequest can also send additional headers or optional information. The optional information is generally used for operations that write information to the server, such as PUT and POST.

After HttpSendRequest sends the request, the application can use the InternetReadFile, InternetQueryDataAvailable, and InternetSetFilePointer functions on the HINTERNET handle created by HttpOpenRequest to download the server's resources.

Posting Data to the Server

To post data to a server, the verb in the call to HttpOpenRequest must be either POST or PUT. The address of the buffer containing the POST data should then be passed to the lpOptional parameter in HttpSendRequest. The dwOptionalLength parameter should be set to the size of the data.

Using the Microsoft Internet Explorer 4.0 version of Win32 Internet API, you can also use the InternetWriteFile function to post data on an HINTERNET handle sent using HttpSendRequestEx.

Getting Information About a Request

HttpQueryInfo allows an application to retrieve information about an HTTP request. The function requires an HINTERNET handle created by HttpOpenRequest or InternetOpenUrl, an information level value, and a buffer length. HttpQueryInfo also accepts a buffer that stores the information and a zero-based header index that enumerates multiple headers with the same name.

The following information level values can be used with a modifier to control the format in which the information is stored in lpvBuffer.

	PRIVATE
HTTP_QUERY_ALLOW
	Receives the methods supported by the server.

	HTTP_QUERY_CONTENT_DESCRIPTION
	Receives the content description.

	HTTP_QUERY_CONTENT_ID
	Receives the content identification.

	HTTP_QUERY_CONTENT_LENGTH
	Receives the size of the resource, in bytes.

	HTTP_QUERY_CONTENT_TRANSFER_ENCODING
	Receives the additional content coding that has been applied to the resource.

	HTTP_QUERY_CONTENT_TYPE
	Receives the content type of the resource (such as text/html).

	HTTP_QUERY_DATE
	Receives the date and time at which the message was originated.

	HTTP_QUERY_EXPIRES
	Receives the date and time after which the resource should be considered outdated.

	HTTP_QUERY_LAST_MODIFIED
	Receives the date and time at which the server believes the resource was last modified.

	HTTP_QUERY_MIME_VERSION
	Receives the version of the MIME protocol that was used to construct the message.

	HTTP_QUERY_PRAGMA
	Receives the implementation-specific directives that might apply to any recipient along the request/response chain.

	HTTP_QUERY_PUBLIC
	Receives the methods available from this server.

	HTTP_QUERY_RAW_HEADERS
	Receives all the headers returned by the server. Each header is terminated by "\0". An additional "\0" terminates the list of headers.

	HTTP_QUERY_RAW_HEADERS_CRLF
	Receives all the headers returned by the server. Each header is separated by a carriage return/line feed (CR/LF) sequence.

	HTTP_QUERY_REQUEST_METHOD
	Receives the verb that is being used in the request, typically GET or POST.

	HTTP_QUERY_STATUS_CODE
	Receives the status code returned by the server.

	HTTP_QUERY_STATUS_TEXT
	Receives any additional text returned by the server on the response line.

	HTTP_QUERY_URL
	Receives some or all of the URLs by which the Request-URL resource can be identified.

	HTTP_QUERY_VERSION
	Receives the last response code returned by the server.

The following modifiers can be used with the information values.

	PRIVATE
HTTP_QUERY_CUSTOM
	Causes HttpQueryInfo to search for the ASCIIZ header name specified in lpvBuffer and store the header information in lpvBuffer.

	HTTP_QUERY_FLAG_COALESCE
	Combines the values from headers with the same name into the output buffer.

	HTTP_QUERY_FLAG_NUMBER
	Returns the data as a 32-bit number for headers whose value is a number, such as the status code.

	HTTP_QUERY_FLAG_REQUEST_HEADERS
	Queries request headers only.

	HTTP_QUERY_FLAG_SYSTEMTIME
	Returns the header value as a standard Win32 SYSTEMTIME structure, which does not require the application to parse the data. Use for headers whose value is a date/time string, such as "Last-Modified-Time".

	HTTP_QUERY_INFO_NUMBER
	Sets the data type returned by HttpQueryInfo to a DWORD.

Downloading Resources from the WWW

After opening a request with HttpOpenRequest and sending it to the server with HttpSendRequest, the application can use the InternetReadFile, InternetQueryDataAvailable, and InternetSetFilePointer functions to download the resource from the HTTP server.

The following example downloads a resource. The function accepts the handle to the current window, the identification number of an edit box, and an HINTERNET handle created by HttpOpenRequest and sent by HttpSendRequest. It uses InternetQueryDataAvailable to determine the size of the resource and then downloads it using InternetReadFile. The contents are then displayed in the edit box. <!-- ************************ BRADYA: BEGIN UPDATE ************************ -->
int WINAPI Dumper(HWND hX, int intCtrlID, HINTERNET hResource)

{

LPSTR lpszData; // buffer for the data

DWORD dwSize; // size of the data available

DWORD dwDownloaded; // size of the downloaded data

DWORD dwSizeSum=0; // size of the data in the textbox

LPSTR lpszHolding; // buffer to merge the textbox data and buffer

// Set the cursor to an hourglass.

SetCursor(LoadCursor(NULL,IDC_WAIT));

// This loop handles reading the data.

do

{

// The call to InternetQueryDataAvailable determines the amount

// of data available to download.

if (!InternetQueryDataAvailable(hResource,&dwSize,0,0))

{

ErrorOut(hX,GetLastError(),"InternetReadFile");

SetCursor(LoadCursor(NULL,IDC_ARROW));

return FALSE;

}

else

{

// Allocate a buffer of the size returned by

// InternetQueryDataAvailable.

lpszData = new char[dwSize+1];

// Read the data from the HINTERNET handle.

if(!InternetReadFile(hResource,(LPVOID)lpszData,dwSize,&dwDownloaded))

{

ErrorOut(hX,GetLastError(),"InternetReadFile");

delete[] lpszData;

break;

}

else

{

// Add a null terminator to the end of the data buffer.

lpszData[dwDownloaded]='\0';

// Allocate the holding buffer.

lpszHolding = new char[dwSizeSum + dwDownloaded + 1];

// Check if there has been any data written to the textbox.

if (dwSizeSum != 0)

{

// Retrieve the data stored in the textbox if any.

GetDlgItemText(hX,intCtrlID,(LPSTR)lpszHolding,dwSizeSum);

// Add a null terminator at the end of the textbox data.

lpszHolding[dwSizeSum]='\0';

}

else

{

// Make the holding buffer an empty string.

lpszHolding[0]='\0';

}

// Add the new data to the holding buffer

strcat(lpszHolding,lpszData);

// Write the holding buffer to the textbox.

SetDlgItemText(hX,intCtrlID,(LPSTR)lpszHolding);

// Delete the two buffers.

delete[] lpszHolding;

delete[] lpszData;

// Add the size of the downloaded data to the textbox data size.

dwSizeSum = dwSizeSum + dwDownloaded + 1;

// Check the size of the remaining data. If it is zero, break.

if (dwDownloaded == 0)

break;

}

}

}

while(TRUE);

// Close the HINTERNET handle.

InternetCloseHandle(hResource);

// Set the cursor back to an arrow.

SetCursor(LoadCursor(NULL,IDC_ARROW));

// Return

return TRUE;

}

Managing Cookies

Under HTTP protocol, a server or a script uses cookies to maintain state information on the client workstation. The Win32® Internet functions have implemented a persistent cookie database for this purpose. The Win32 Internet cookie functions are used to set cookies into and access cookies from the cookie database. For more information on HTTP cookies, see HTTP Cookies.

The Win32 Internet functions InternetSetCookie and InternetGetCookie can be used to manage cookies. Note that the implementation of these functions is evolving; be cautious when using them.

Using Cookie Functions

The following functions allow an application to create or retrieve cookies in the cookie database.

	PRIVATE
InternetGetCookie
	Retrieves cookies for the specified URL and all its parent URLs.

	InternetSetCookie
	Sets a cookie on the specified URL.

Unlike most of the Win32 Internet functions, the cookie functions do not require a call to InternetOpen. Cookies that have an expiration date are stored in the windows\cookies directory. Cookies that don't have an expiration date are stored in memory and are available only to the process in which they were created.

Getting a Cookie

InternetGetCookie returns the cookies for the specified URL and all its parent URLs.

The following example demonstrates a call to InternetGetCookie.

char szURL[256]; // buffer to hold the URL

LPSTR lpszData = NULL; // buffer to hold the cookie data

DWORD dwSize=0; // variable to get the buffer size needed

// Insert code to retrieve the URL.

retry:

// The first call to InternetGetCookie will get the required

// buffer size needed to download the cookie data.

if (!InternetGetCookie(szURL, NULL, lpszData, &dwSize))

{

// Check for an insufficient buffer error.

if (GetLastError()== ERROR_INSUFFICIENT_BUFFER)

{

// Allocate the necessary buffer.

lpszData = new char[dwSize];

// Try the call again.

goto retry;

}

else

{

// Insert error handling code.

}

}

else

{

// Insert code to display the cookie data.

// Release the memory allocated for the buffer.

delete[]lpszData;

}

Setting a Cookie

InternetSetCookie is used to set a cookie on the specified URL. InternetSetCookie can create both persistent and session cookies.

Persistent cookies are cookies that have an expiration date. These cookies are stored in the windows\system directory.

Session cookies are stored in memory and can be accessed only by the process that created them.

The data for the cookie should be in the format:

NAME=VALUE

For the expiration date, the format must be:

DAY, DD-MMM-YYYY HH:MM:SS GMT

DAY is the three-letter abbreviation for the day of the week, DD is the day of the month, MMM is the three-letter abbreviation for the month, YYYY is the year, and HH:MM:SS is the time of the day in military time.

The following example demonstrates two calls to InternetSetCookie. The first call creates a session cookie and the second creates a persistent cookie.

BOOL bReturn;

// Create a session cookie.

bReturn = InternetSetCookie("http://www.adventure_works.com", NULL,

 "TestData = Test");

// Create a persistent cookie.

bReturn = InternetSetCookie("http://www.adventure_works.com", NULL,

 "TestData = Test; expires = Sat, 01-Jan-2000 00:00:00 GMT");

HTTP Cookies

HTTP cookies provide the server with a mechanism to store and retrieve state information on the client application's system. This mechanism allows Web-based applications the ability to store information about selected items, user preferences, registration information, and other information that can be retrieved later.

Cookie-Related Headers

There are two HTTP headers, Set-Cookie and Cookie, that are related to cookies. The Set-Cookie header is sent by the server in response to an HTTP request, which is used to create a cookie on the user's system. The Cookie header is included by the client application with an HTTP request sent to a server, if there is a cookie that has a matching domain and path.

Set-Cookie Header

The Set-Cookie response header uses the following format:

Set-Cookie: <name=<value[; <name=<value]...

[; expires=<date][; domain=<domain_name]

[; path=<some_path][; secure]

One or more string sequences (separated by semicolons) that follow the pattern <name=<value must be included in the Set-Cookie response header. The server can use these string sequences to store data on the client's system.

The expiration date is set by using the format expires=<date, where <date is the expiration date in Greenwich Mean Time (GMT). If the expiration date is not set, the cookie expires after the Internet session ends. Otherwise, the cookie is persisted in the cache until the expiration date. The date must follow the format DAY, DD-MMM-YYYY HH:MM:SS GMT, where DAY is the day of the week (Sun, Mon, Tue, Wed, Thu, Fri, Sat), DD is the day in the month (such as 01 for the first day of the month), MMM is the three-letter abbreviation for the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec), YYYY is the year, HH is the hour value in military time (22 would be 10:00 P.M., for example), MM is the minute value, and SS is the second value.

Specifying the domain name, using the pattern domain=<domain_name, is optional for persistent cookies and is used to indicate the end of the domain for which the cookie is valid. Session cookies that specify a domain are rejected. If the specified domain name ending matches the request, the cookie tries to match the path to determine if the cookie should be sent. For example, if the domain name ending is .microsoft.com, requests to home.microsoft.com and support.microsoft.com would be checked to see if the specified pattern matches the request. The domain name must have at least two or three periods in it to prevent cookies from being set for widely used domain name endings, such as .com, .edu, and co.jp. Allowable domain names would be similar to .microsoft.com, .someschool.edu, and .someserver.co.jp. Only hosts within the specified domain can set a cookie for a domain.

Setting the path, using the pattern path=<some_path, is optional and can be used to specify a subset of the Uniform Resource Locators (URLs) for which the cookie is valid. If a path is specified, the cookie is considered valid for any requests that match that path. For example, if the specified path is /example, requests with the paths /examplecode and /example/code.htm would match. If no path is specified, the path is assumed to be the path of the resource associated with the Set-Cookie header.

The cookie can also be marked as secure, which specifies that the cookie can be sent only to HTTPS servers.

Cookie Header

The Cookie header is included with any HTTP requests that have a cookie whose domain and path match the request. The Cookie header has the following format:

Cookie: <name=<value [;<name=<value]...

One or more string sequences, using the format <name=<value, contain the information that was set in the cookie.

Generating Cookies

There are three methods for generating cookies for Microsoft® Internet Explorer: using JScript (compatible with ECMA 262 language specification), using the Win32® Internet functions, and using a CGI script. All of the methods need to set the information that is included in the Set-Cookie header.

Generating a Cookie Using the DHTML Object Model

Using the DHTML object model, cookies can be set by calling the cookie property of the document object, as shown in the following example.

<SCRIPT language="JavaScript">

<!--

document.cookie = "SomeValueName = Some_Value";

-->

</SCRIPT

Generating a Cookie Using the Win32 Internet Functions

Cookies can be created by applications using the InternetSetCookie function. For more information about setting cookies using the Win32 Internet functions, see Setting a Cookie.

Generating a Cookie Using a CGI Script

Cookies are generated by including a Set-Cookie header as part of a CGI script included in the HTTP response to a request.

The following example is a CGI script that includes a Set-Cookie header using Perl.

print "Set-Cookie:Test=test_value; expires=Sat, 01-Jan-2000 00:00:00 GMT;

path=/;"

Caching

The Win32® Internet functions have simple, yet flexible, built-in caching support. Any data retrieved from the network is cached on the hard disk and retrieved for subsequent requests. The application using the Win32 Internet functions can control the caching on each request. For HTTP requests from the server, most headers received are also cached. When an HTTP request is satisfied from the cache, the cached headers are also returned to the caller. This makes data download from Win32 Internet functions seamless, whether it is coming from the cache or from the network.

Unlike previous versions of the Win32 Internet functions, the current and future versions do not have an upper limit on the cache entry size. Applications must properly allocate a buffer in order to get the desired results when using the persistent URL caching functions. For more information, see Appendix B: Using Buffers.

Using Flags to Control Caching

The Win32 Internet function flags allow an application to control when and how it uses the cache. These flags can be used alone or in combination with the dwFlags parameter in functions that access information or resources on the Internet. The Win32 Internet functions store all data downloaded from the Internet by default.

The following flags can be used with the Win32 Internet functions to control caching.

	PRIVATE
INTERNET_FLAG_DONT_CACHE
	Does not cache the data, either locally or in any gateways. Identical to the preferred value, INTERNET_FLAG_NO_CACHE_WRITE.

	INTERNET_FLAG_HYPERLINK
	Forces the application to reload a resource if no expire time and no last-modified time was returned when the resource was stored in the cache.

	INTERNET_FLAG_MAKE_PERSISTENT
	No longer supported.

	INTERNET_FLAG_MUST_CACHE_REQUEST
	Causes a temporary file to be created if the file cannot be cached. Identical to the preferred value, INTERNET_FLAG_NEED_FILE.

	INTERNET_FLAG_NEED_FILE
	Causes a temporary file to be created if the file cannot be cached.

	INTERNET_FLAG_NO_CACHE_WRITE
	Rejects any attempt by the function to store data downloaded from the Internet in the cache. This flag is necessary if the application does not want any downloaded resources to be stored locally.

	INTERNET_FLAG_OFFLINE
	Prevents the application from making requests to the network. All requests are resolved using the resources stored in the cache. If the resource is not in the cache, a suitable error, such as ERROR_FILE_NOT_FOUND, is returned.

	INTERNET_FLAG_RELOAD
	Forces the function to retrieve the requested resource directly from the Internet. The information that is downloaded is stored in the cache.

	INTERNET_FLAG_RESYNCHRONIZE
	Causes an application to perform a conditional download of the resource from the Internet. If the version stored in the cache is current, the information is downloaded from the cache. Otherwise, the information is reloaded from the server.

Persistent Caching Functions

Clients that need persistent caching services use the persistent caching functions to allow their applications to save data in the local file system for subsequent use, such as in situations where a low-bandwidth link limits access to the data, or the access is not available at all. The calling program that inserts data into the persistent cache assigns a source name that is used to perform operations, including retrieving, setting and getting some properties, and deleting the data.

The Win32 Internet function protocols use the cache functions to provide persistent caching and offline browsing. Unless the INTERNET_FLAG_NO_CACHE_WRITE flag explicitly specifies no caching, Win32 Internet functions cache all data downloaded from the network. The responses to POST data are not cached.

Using the Persistent URL Cache Functions

The following persistent URL cache functions allow an application to access and manipulate information stored in the cache.

	PRIVATE
CommitUrlCacheEntry
	Caches data in the specified file in the cache storage and associates it with the given URL.

	CreateUrlCacheEntry
	Allocates the requested cache storage and creates a local file name for saving the cache entry corresponding to the source name.

	CreateUrlCacheGroup
	Generates a cache group identification.

	DeleteUrlCacheEntry
	Removes the file associated with the source name from the cache, if the file exists.

	DeleteUrlCacheGroup
	Releases a GROUPID and any associated state in the cache index file.

	FindCloseUrlCache
	Closes the specified enumeration handle.

	FindFirstUrlCacheEntry
	Begins the enumeration of the cache.

	FindFirstUrlCacheEntryEx
	Begins a filtered enumeration of the cache.

	FindNextUrlCacheEntry
	Retrieves the next entry in the cache.

	FindNextUrlCacheEntryEx
	Retrieves the next entry in a filtered cache enumeration.

	GetUrlCacheEntryInfo
	Retrieves information about a cache entry.

	GetUrlCacheEntryInfoEx
	Searches for the URL after translating any cached redirections that would be applied in offline mode by HttpSendRequest.

	ReadUrlCacheEntryStream
	Reads the cached data from a stream that has been opened using RetrieveUrlCacheEntryStream.

	RetrieveUrlCacheEntryFile
	Retrieves a cache entry from the cache in the form of a file.

	RetrieveUrlCacheEntryStream
	Provides the most efficient and implementation-independent way of accessing the cache data.

	SetUrlCacheEntryGroup
	Adds or removes entries from a cache group.

	SetUrlCacheEntryInfo
	Sets the specified members of the INTERNET_CACHE_ENTRY_INFO structure.

	UnlockUrlCacheEntryFile
	Unlocks the cache entry that was locked while the file was retrieved for use from the cache.

	UnlockUrlCacheEntryStream
	Closes the stream that has been retrieved using RetrieveUrlCacheEntryStream.

Enumerating the Cache

The FindFirstUrlCacheEntry and FindNextUrlCacheEntry functions enumerate the information stored in the cache. FindFirstUrlCacheEntry starts the enumeration by taking a search pattern, a buffer, and a buffer size to create a handle and return the first cache entry. FindNextUrlCacheEntry takes the handle created by FindFirstUrlCacheEntry, a buffer, and a buffer size to return the next cache entry.

Both functions store an INTERNET_CACHE_ENTRY_INFO structure in the buffer. The size of this structure varies for each entry. If the buffer size passed to either function is insufficient, the function fails and GetLastError returns ERROR_INSUFFICIENT_BUFFER. The buffer size variable contains the buffer size that was needed to retrieve that cache entry. A buffer of the size indicated by the buffer size variable should be allocated, and the function should be called again with the new buffer.

The INTERNET_CACHE_ENTRY_INFO structure contains the structure size; URL of the cached information; local file name; cache entry type; use count; hit rate; size; last modified, expire, last access, and last synchronized times; header information and header information size; and file extension.

The FindFirstUrlCacheEntry function takes a search pattern, a buffer that stores the INTERNET_CACHE_ENTRY_INFO structure, and the buffer size. Currently, only the default search pattern, which returns all cache entries, is implemented.

After the cache is enumerated, the application should call FindCloseUrlCache to close the cache enumeration handle.

The following example displays the URL of each entry in the cache into a list box, IDC_CacheList. It uses MAX_CACHE_ENTRY_INFO_SIZE to initially allocate a buffer, since the Microsoft® Internet Explorer 3.0 version of Win32 Internet API did not enumerate the cache properly otherwise. Internet Explorer 4.0 does enumerate the cache properly and there is no cache size limit. All applications that run on computers with the Internet Explorer 4.0 version of Win32 Internet API must allocate a buffer of the size required. For more information, see Appendix B: Using Buffers.

int WINAPI EnumerateCacheOld(HWND hX)

{

DWORD dwEntrySize;

LPINTERNET_CACHE_ENTRY_INFO lpCacheEntry;

DWORD MAX_CACHE_ENTRY_INFO_SIZE=4096;

HANDLE hCacheDir;

int nCount=0;

SendDlgItemMessage(hX,IDC_CacheList,LB_RESETCONTENT,0,0);

SetCursor(LoadCursor(NULL,IDC_WAIT));

dwEntrySize = MAX_CACHE_ENTRY_INFO_SIZE;

lpCacheEntry = (LPINTERNET_CACHE_ENTRY_INFO) new char[dwEntrySize];

lpCacheEntry->dwStructSize = dwEntrySize;

again:

if (!(hCacheDir = FindFirstUrlCacheEntry(NULL,lpCacheEntry,&dwEntrySize)))

{

delete[]lpCacheEntry;

switch(GetLastError())

{

case ERROR_NO_MORE_ITEMS:

char tempout[80];

sprintf(tempout,"The number of cache entries = %d \n",nCount);

MessageBox(hX,tempout,"Cache Enumeration",MB_OK);

FindCloseUrlCache(hCacheDir);

SetCursor(LoadCursor(NULL,IDC_ARROW));

return TRUE;

break;

case ERROR_INSUFFICIENT_BUFFER:

lpCacheEntry = (LPINTERNET_CACHE_ENTRY_INFO)

new char[dwEntrySize];

lpCacheEntry->dwStructSize = dwEntrySize;

goto again;

break;

default:

 ErrorOut(hX,GetLastError(),"FindNextUrlCacheEntry Init");

FindCloseUrlCache(hCacheDir);

SetCursor(LoadCursor(NULL,IDC_ARROW));

return FALSE;

}

}

SendDlgItemMessage(hX,IDC_CacheList,LB_ADDSTRING,

 0,(LPARAM)(lpCacheEntry->lpszSourceUrlName));

nCount++;

delete (lpCacheEntry);

do

{

dwEntrySize = MAX_CACHE_ENTRY_INFO_SIZE;

lpCacheEntry = (LPINTERNET_CACHE_ENTRY_INFO) new char[dwEntrySize];

lpCacheEntry->dwStructSize = dwEntrySize;

retry:

if (!FindNextUrlCacheEntry(hCacheDir,lpCacheEntry, &dwEntrySize))

{

delete[]lpCacheEntry;

switch(GetLastError())

{

case ERROR_NO_MORE_ITEMS:

char tempout[80];

sprintf(tempout,"The number of cache entries = %d \n",nCount);

MessageBox(hX,tempout,"Cache Enumeration",MB_OK);

FindCloseUrlCache(hCacheDir);

return TRUE;

break;

case ERROR_INSUFFICIENT_BUFFER:

lpCacheEntry = (LPINTERNET_CACHE_ENTRY_INFO)

new char[dwEntrySize];

lpCacheEntry->dwStructSize = dwEntrySize;

goto retry;

break;

default:

ErrorOut(hX,GetLastError(),"FindNextUrlCacheEntry Init");

FindCloseUrlCache(hCacheDir);

return FALSE;

}

}

SendDlgItemMessage(hX,IDC_CacheList,LB_ADDSTRING,

0,(LPARAM)(lpCacheEntry->lpszSourceUrlName));

nCount++;

delete[] lpCacheEntry;

}

while (TRUE);

SetCursor(LoadCursor(NULL,IDC_ARROW));

return TRUE;

}

Retrieving Cache Entry Information

The GetUrlCacheEntryInfo function lets you retrieve the INTERNET_CACHE_ENTRY_INFO structure for the specified URL. This structure contains the structure size; URL of the cached information; local file name; cache entry type; use count; hit rate; size; last modified, expire, last access, and last synchronized times; header information and header information size; and file extension.

GetUrlCacheEntryInfo accepts a URL, a buffer for an INTERNET_CACHE_ENTRY_INFO structure, and the buffer size. If the URL is found, the information is copied into the buffer. Otherwise, the function fails and GetLastError returns ERROR_FILE_NOT_FOUND. If the buffer size is insufficient to store the cache entry information, the function fails and GetLastError returns ERROR_INSUFFICIENT_BUFFER. The size required to retrieve the information is stored in the buffer size variable.

GetUrlCacheEntryInfo does not do any URL parsing, so a URL containing an anchor (#) will not be found in the cache, even if the resource is cached. For example, if the URL http://example.com/example.htm#sample was passed, the function would return ERROR_FILE_NOT_FOUND even if http://example.com/example.htm is in the cache.

The following example retrieves the cache entry information for the specified URL. The function then displays the header information in the IDC_CacheDump edit box.

int WINAPI GetCacheEntryInfo(HWND hX,LPSTR lpszUrl)

{

DWORD dwEntrySize=0;

LPINTERNET_CACHE_ENTRY_INFO lpCacheEntry;

char strTemp[80];

DWORD dwTemp;

SetCursor(LoadCursor(NULL,IDC_WAIT));

if (!GetUrlCacheEntryInfo(lpszUrl,NULL,&dwEntrySize))

{

if (GetLastError()!=ERROR_INSUFFICIENT_BUFFER)

{

ErrorOut(hX,GetLastError(),"GetUrlCacheEntryInfo");

SetCursor(LoadCursor(NULL,IDC_ARROW));

return FALSE;

}

else

lpCacheEntry = (LPINTERNET_CACHE_ENTRY_INFO)

new char[dwEntrySize];

}

 else

return FALSE; // should not be successful w/ NULL buffer and 0 size

if (!GetUrlCacheEntryInfo(lpszUrl,lpCacheEntry,&dwEntrySize))

{

ErrorOut(hX,GetLastError(),"GetUrlCacheEntryInfo");

SetCursor(LoadCursor(NULL,IDC_ARROW));

return FALSE;

}

else

{

if ((lpCacheEntry->dwHeaderInfoSize)!=0)

{

LPSTR(lpCacheEntry->lpHeaderInfo)[lpCacheEntry->dwHeaderInfoSize]='\0';

SetDlgItemText(hX,IDC_Headers,LPSTR(lpCacheEntry->lpHeaderInfo));

}

else

{

SetDlgItemText(hX,IDC_Headers,"None");

}

SetCursor(LoadCursor(NULL,IDC_ARROW));

return TRUE;

}

}

Creating a Cache Entry

An application uses the CreateUrlCacheEntry and CommitUrlCacheEntry functions to create a cache entry.

CreateUrlCacheEntry accepts the URL, expected file size, and file extension. The function then creates a local file name for saving the cache entry corresponding to the URL and file extension.

Using the local file name, write the data into the local file using standard C/C++ functions or Win32 functions. After the data has been written to the local file, the application should call CommitUrlCacheEntry.

CommitUrlCacheEntry accepts the URL; local file name; expire and last modified times; cache entry type; header information and header information size; and file extension. The function then caches data in the file specified in the cache storage and associates it with the given URL.

The following example uses the local file name, created by a previous call to CreateUrlCacheEntry, stored in the text box, IDC_LocalFile, to store the text from the text box, IDC_CacheDump, in the cache entry. After the data has been written to the file using fopen, fprintf, and fclose, the entry is committed using CommitUrlCacheEntry.

int WINAPI CommitEntry(HWND hX)

{

LPSTR lpszUrl, lpszExt, lpszFileName;

LPSTR lpszData,lpszSize;

DWORD dwSize;

DWORD dwEntryType=0;

FILE *lpfCacheEntry;

LPFILETIME lpdtmExpire, lpdtmLastModified;

LPSYSTEMTIME lpdtmSysTime;

if(SendDlgItemMessage(hX,IDC_RBNormal,BM_GETCHECK,0,0))

dwEntryType = dwEntryType + NORMAL_CACHE_ENTRY;

else if(SendDlgItemMessage(hX,IDC_RBStable, BM_GETCHECK,0,0))

dwEntryType = dwEntryType + STABLE_CACHE_ENTRY;

else if(SendDlgItemMessage(hX,IDC_RBSticky,
BM_GETCHECK,0,0))

dwEntryType = dwEntryType + STICKY_CACHE_ENTRY;

else if(SendDlgItemMessage(hX,IDC_RBSparse, BM_GETCHECK,0,0))

dwEntryType = dwEntryType + SPARSE_CACHE_ENTRY;

if(SendDlgItemMessage(hX,IDC_RBOCX, BM_GETCHECK,0,0))

dwEntryType = dwEntryType + OCX_CACHE_ENTRY;

else if(SendDlgItemMessage(hX,IDC_RBCookie, BM_GETCHECK,0,0))

dwEntryType = dwEntryType + COOKIE_CACHE_ENTRY;

else if(SendDlgItemMessage(hX,IDC_RBUrl, BM_GETCHECK,0,0))

dwEntryType = dwEntryType + URLHISTORY_CACHE_ENTRY;

if(SendDlgItemMessage(hX,IDC_RBNone, BM_GETCHECK,0,0))

{

dwEntryType=0;

}

lpdtmSysTime = new SYSTEMTIME;

lpdtmExpire = new FILETIME;

lpdtmLastModified = new FILETIME;

GetLocalTime(lpdtmSysTime);

SystemTimeToFileTime(lpdtmSysTime,lpdtmExpire);

SystemTimeToFileTime(lpdtmSysTime,lpdtmLastModified);

delete(lpdtmSysTime);

lpszUrl = new char[MAX_PATH];

lpszFileName = new char[MAX_PATH];

lpszExt = new char[5];

lpszSize = new char[10];

GetDlgItemText(hX,IDC_SourceURL,lpszUrl,MAX_PATH);

GetDlgItemText(hX,IDC_LocalFile,lpszFileName,MAX_PATH);

GetDlgItemText(hX,IDC_FileExt,lpszExt,5);

GetDlgItemText(hX,IDC_SizeLow,lpszSize,5);

dwSize = (DWORD)atol(lpszSize);

delete(lpszSize);

if (dwSize==0)

{

if((MessageBox(hX,"Incorrect File Size.\nUsing 8000 characters, Okay?\n",

 "Commit Entry",MB_YESNO))==IDYES)

{

dwSize = 8000;

}

else

{

return FALSE;

}

}

lpszData = new char[dwSize];

GetDlgItemText(hX,IDC_CacheDump,lpszData,dwSize);

lpfCacheEntry = fopen(lpszFileName,"w");

fprintf(lpfCacheEntry,"%s",lpszData);

fclose(lpfCacheEntry);

delete(lpszData);

if (!CommitUrlCacheEntry(lpszUrl, lpszFileName, *lpdtmExpire,

 *lpdtmLastModified, dwEntryType,NULL,0,lpszExt,0))

{

ErrorOut(hX,GetLastError(),"Commit Cache Entry");

delete(lpszUrl);

delete(lpszFileName);

delete(lpszExt);

delete(lpdtmExpire);

delete(lpdtmLastModified);

return FALSE;

}

else

{

delete(lpszUrl);

delete(lpszFileName);

delete(lpszExt);

delete(lpdtmExpire);

delete(lpdtmLastModified);

return TRUE;

}

}

Deleting a Cache Entry

The DeleteUrlCacheEntry function takes a URL and removes the cache file associated with it. If the cache file does not exist, the function fails and GetLastError returns ERROR_FILE_NOT_FOUND. If the cache file is currently locked or in use, the function fails and GetLastError returns ERROR_ACCESS_DENIED, and the file will be deleted when unlocked.

Retrieving a Cache Entry Stream

RetrieveUrlCacheEntryStream, ReadUrlCacheEntryStream, and UnlockUrlCacheEntryStream retrieve the resources stored in the cache.

RetrieveUrlCacheEntryStream accepts a URL, a buffer that stores the INTERNET_CACHE_ENTRY_INFO structure, the buffer size, and a Boolean value to determine if random reads are allowed. If the cache file is found, the function then creates a handle to the file.

RetrieveUrlCacheEntryStream does not do any URL parsing, so a URL containing an anchor (#) will not be found in the cache, even if the resource is cached. For example, if the URL http://example.com/example.htm#sample was passed, the function would return ERROR_FILE_NOT_FOUND even if http://example.com/example.htm is in the cache.

ReadUrlCacheEntryStream uses the handle created by RetrieveUrlCacheEntryStream, a file offset, a buffer, and a buffer size variable. If the buffer size is insufficient to hold the amount of data available, the function fails and GetLastError returns ERROR_INSUFFICIENT_BUFFER. The buffer size variable is set to the size necessary to download the resource.

After the cache file is retrieved, the application must call UnlockUrlCacheEntryStream to close the handle that was created by RetrieveUrlCacheEntryStream.

The following example retrieves the information stored in the cache entry for the specified URL. The function displays text resources in the IDC_CacheDump edit box. Other resources are not displayed.

int WINAPI RetrieveStream(HWND hX, LPSTR lpszUrl)

{

LPINTERNET_CACHE_ENTRY_INFO lpCacheEntry;

DWORD dwEntrySize=0,dwStreamSize=0;

HANDLE hStream;

LPSTR lpszOut;

RetrieveUrlCacheEntryStream(lpszUrl,NULL, &dwEntrySize, TRUE, 0);

lpCacheEntry = LPINTERNET_CACHE_ENTRY_INFO(new char[dwEntrySize]);

if (!(hStream = RetrieveUrlCacheEntryStream(lpszUrl,lpCacheEntry,

&dwEntrySize, TRUE, 0)))

{

ErrorOut(hX,GetLastError(),"RetrieveUrlCacheEntryStream");

return FALSE;

}

else

{

dwStreamSize = lpCacheEntry->dwSizeLow;

lpszOut = new char[dwStreamSize];

if (!ReadUrlCacheEntryStream(hStream,0,LPVOID(lpszOut),&dwStreamSize, 0))

{

ErrorOut(hX,GetLastError(),"ReadUrlCacheEntryStream");

return FALSE;

}

else

{

lpszOut[dwStreamSize]='\0';

SetDlgItemText(hX,IDC_CacheDump,lpszOut);

return TRUE;

}

}

delete (lpCacheEntry);

delete (lpszOut);

if (!UnlockUrlCacheEntryStream(hStream,0))

{

ErrorOut(hX,GetLastError(),"UnlockUrlCacheEntryStream");

return FALSE;

}

else

return TRUE;

}

Retrieving Cache Entry Files

For applications that require the file name of a resource in order to launch, the Win32 Internet API provides the RetrieveUrlCacheEntryFile and UnlockUrlCacheEntryFile functions. Applications that do not require the file name should use the RetrieveUrlCacheEntryStream, ReadUrlCacheEntryStream, and UnlockUrlCacheEntryStream functions to retrieve the information in the cache.

RetrieveUrlCacheEntryStream does not do any URL parsing, so a URL containing an anchor (#) will not be found in the cache, even if the resource is cached. For example, if the URL http://example.com/example.htm#sample was passed, the function would return ERROR_FILE_NOT_FOUND even if http://example.com/example.htm is in the cache.

RetrieveUrlCacheEntryFile accepts a URL, a buffer that stores the INTERNET_CACHE_ENTRY_INFO structure, and the buffer size. The function is retrieved and locked for the caller.

After the information in the file has been used, the application should call UnlockUrlCacheEntryFile to unlock the file.

Cache Groups

Support for cache groups has been added to the Win32 Internet functions. To create a cache group, the CreateUrlCacheGroup function must be called to generate a GROUPID for the cache group. Entries can be added to the cache group by supplying the cache entry's URL and the INTERNET_CACHE_GROUP_ADD flag to the SetUrlCacheEntryGroup function. To remove a cache entry from a group, pass the cache entry's URL and the INTERNET_CACHE_GROUP_REMOVE flag to SetUrlCacheEntryGroup.

The FindFirstUrlCacheEntryEx and FindNextUrlCacheEntryEx functions can be used to enumerate the entries in a specified cache group. After the enumeration is complete, the function should call FindCloseUrlCache. <!-- ************************ BRADYA: BEGIN UPDATE ************************ -->
Handling Structures with Variable Size Information

The cache can contain variable size information for each URL stored. This is reflected in the INTERNET_CACHE_ENTRY_INFO structure. When the cache functions return this structure, they create a buffer that is always the size of INTERNET_CACHE_ENTRY_INFO plus any variable size information. If a pointer member is not NULL, it points to the memory area immediately after the structure. While copying the returned buffer from a function into another buffer, the pointer members should be fixed to point to the appropriate place in the new buffer, as the following example shows.

lpDstCEInfo->lpszSourceUrlName =

(LPINTERNET_CACHE_ENTRY_INFO) ((LPBYTE) lpSrcCEInfo +

((DWORD) (lpOldCEInfo->lpszSourceUrlName) - (DWORD) lpOldCEInfo))

Some cache functions fail with the ERROR_INSUFFICIENT_BUFFER error message if you specify a buffer that is too small to contain the cache-entry information retrieved by the function. In this case, the function also returns the required size of the buffer. You can then allocate a buffer of the appropriate size and call the function again. <!-- CONTENTS_END --></DIV>
Appendix A: HINTERNET Handles

This section contains information about the handles that are used by the Win32® Internet functions and the hierarchy that they work in.

About HINTERNET Handles

The handles that are created and used by the Win32 Internet functions are called HINTERNETs. The Win32 Internet functions return HINTERNET handles that are not interchangeable with the base Win32 handles, so they cannot be used with Win32 functions such as ReadFile or CloseHandle. Similarly, base Win32 handles cannot be used with the Win32 Internet functions. For example, a handle returned by CreateFile cannot be passed to InternetReadFile.

The InternetCloseHandle function closes handles of type HINTERNET. Note that handle values are recycled quickly; therefore, if a handle is closed and a new handle is generated immediately, there is a good chance that the new handle will have the same value as the handle just closed.

Handle Hierarchy

The HINTERNET handles are maintained in a tree hierarchy. The handle returned by the InternetOpen function is the root node. Handles returned by the InternetConnect function occupy the next level. Handles returned by the FtpOpenFile, FtpFindFirstFile, HttpOpenRequest, GopherOpenFile, and GopherFindFirstFile functions are the leaf nodes.

[image: image5.png]InternetOpen

Y

InternetOpenurl

InternetConnect

FpOpenFile

FepFindFirstrile

HttpOpenRequest

GopherOpenFile

GopherFindFirstFile

The following diagram illustrates the hierarchy of the HINTERNET handles. Each box in the diagram represents a Win32 Internet function that returns an HINTERNET handle.

PRIVATE "TYPE=PICT;ALT=Functions that create handles"
At the top level is the InternetOpen function, which creates the root HINTERNET handle. The next level contains the InternetOpenUrl and InternetConnect functions. The functions that use the HINTERNET handle returned by InternetConnect make up the last level.

[image: image6.png]InternetOpen

InternetConnect

Gopheropenrile

GopherFindrirstrile

GopharGatatiribute

InternstQuaryDatanuailable

IntermetfindnextFile

IntermetReadrile

The following diagram shows the functions that are dependent on the HINTERNET handle created by InternetOpenUrl. The shaded boxes represent functions that return HINTERNET handles, while the plain boxes represent functions that use the HINTERNET handle created by the associated function.

InternetQueryDataAvailable, InternetReadFile, and InternetSetFilePointer use the HINTERNET handle created by InternetOpenUrl.
FTP Hierarchy

The following diagram shows the FTP functions that are dependent on the FTP session HINTERNET handle returned by InternetConnect. The shaded boxes represent functions that return HINTERNET handles, while the plain boxes represent functions that use the HINTERNET handle created by the function on which they depend.
FtpCreateDirectory, FtpDeleteFile, FtpGetCurrentDirectory, FtpGetFile, FtpPutFile, FtpRemoveDirectory, FtpRenameFile, and FtpSetCurrentDirectory all use the HINTERNET handle created by InternetConnect.

[image: image7.png]InternetOpen

InternetConnect

HitpOpenRequest

HitpSendrequest

InternetQueryDatavailable

InternetReadrile

InternetSetFilePainter

The following diagram shows the two FTP functions that return HINTERNET handles and the functions that are dependent on the HINTERNET handles created by them. The shaded boxes represent functions that return HINTERNET handles, while the plain boxes represent functions that use the HINTERNET handle created by the function on which they depend.

InternetFindNextFile is dependent on the HINTERNET handle created by FtpFindFirstFile, while <!-- judyn: Include InternetQueryDataAvailable here? -->InternetReadFile and InternetWriteFile use the HINTERNET handle created by FtpOpenFile.

Gopher Hierarchy

[image: image8.png]InternetOpen

InternetConnect

HitpOpenRequest

HitpSendRequestex

HitpEndRequest

InternetReadFileEx

InternetuiriteFie

InternetReadFile

InternetSetFilePainter

InternetQueryDatavailable

The following diagram shows the Win32 Internet functions used for the Gopher protocol. The shaded boxes represent functions that return HINTERNET handles, while the plain boxes represent functions that use the HINTERNET handle created by the function on which they depend.

PRIVATE "TYPE=PICT;ALT=Gopher related functions"
GopherGetAttribute is dependent on the HINTERNET handle created by InternetConnect. InternetFindNextFile uses the HINTERNET handle created by GopherFindFirstFile. The handle created by GopherOpenFile is used by InternetQueryDataAvailable and InternetReadFile.

HTTP Hierarchy

[image: image9.png]p—
B
ety
f—
[htte 77w microsolt com
s
. Ay ol
ootz
L p—
[t 7home: micrasoft com
fs

The following diagram shows the relationships of the Win32 Internet functions that are used for the HTTP protocol. The shaded boxes represent functions that return HINTERNET handles, while the plain boxes represent functions that use the HINTERNET handle created by the function on which they depend.

HttpAddRequestHeaders, HttpQueryInfo, HttpSendRequest, HttpSendRequestEx, and InternetErrorDlg are dependent on the HINTERNET handle created by HttpOpenRequest.

The following diagram shows the Win32 Internet functions that use the HINTERNET handle created by HttpOpenRequest after it is sent by HttpSendRequest. The shaded boxes represent functions that return HINTERNET handles, while the plain boxes represent functions that use the HINTERNET handle created by the function on which they depend.

After HttpSendRequest has been used on the handle returned by HttpOpenRequest, InternetQueryDataAvailable, InternetReadFile, and InternetSetFilePointer can be used on that handle.

After HttpSendRequestEx has been used on the handle returned by HttpOpenRequest, HttpEndRequest, InternetReadFileEx, and InternetWriteFile can be used on that handle. After HttpEndRequest has been used, InternetReadFile, InternetSetFilePointer, and InternetQueryDataAvailable can be used on that handle.

Appendix B: Using Buffers

Functions that return strings contain an input lpszBuffer parameter and an lpdwBufferLength parameter. Although lpszBuffer can be NULL, lpdwBufferLength must be a valid pointer to a DWORD variable. If the input buffer pointed to by lpszBuffer is either too small to hold the output string or NULL, the function returns a failure indication and GetLastError returns ERROR_INSUFFICIENT_BUFFER. The variable pointed to by lpdwBufferLength contains a number that represents the number of bytes the function requires to return the requested string, including the NULL terminator. The application should allocate a buffer of this size, set the variable pointed to by lpdwBufferLength to this value, and resubmit the request. If the buffer size is sufficient to receive the requested string, the string is copied to the output buffer with a NULL terminator and the function returns a success indication. The variable pointed to by lpdwBufferLength now contains the number of characters stored in the buffer, excluding the NULL terminator.

Appendix C: Handling Errors

The Win32® function GetLastError is used to get the error code for all of the Win32 Internet functions. If ERROR_INTERNET_EXTENDED_ERROR is returned, there is a string or buffer containing a verbose error message. Call the InternetGetLastResponseInfo function to retrieve the extended error text.

To get the error text for a normal Win32 Internet error, use the Win32 function FormatMessage, and pass it an HMODULE handle to the Wininet.dll using the Win32 function GetModuleHandle.

The following is an example of a function to handle Win32 Internet function errors.

BOOL WINAPI ErrorOut (HWND hErr, DWORD dError, TCHAR * szCallFunc)

{

TCHAR szTemp[356] = "", *szBuffer=NULL, *szBufferFinal = NULL;

DWORD dwIntError , dwLength = 0;

char strName[256]="";

FormatMessage(FORMAT_MESSAGE_FROM_HMODULE,

GetModuleHandle("wininet.dll"),dError,0,(LPSTR)strName,256,NULL);

wsprintf(szTemp,"%s error code: %d\nMessage: %s\n",szCallFunc,dError,

strName);

int response;

if (dError == ERROR_INTERNET_EXTENDED_ERROR)

{

InternetGetLastResponseInfo (&dwIntError, NULL, &dwLength);

if (dwLength)

{

if (!(szBuffer = (TCHAR *) LocalAlloc (LPTR, dwLength)))

{

lstrcat (szTemp, TEXT ("Unable to allocate memory to display

Internet error code. Error code: "));

lstrcat (szTemp, TEXT (_itoa (GetLastError(), szBuffer, 10)));

lstrcat (szTemp, TEXT ("\n"));

response = MessageBox(hErr, (LPSTR)szTemp,"Error",MB_OK);

return FALSE;

}

if (!InternetGetLastResponseInfo (&dwIntError, (LPTSTR) szBuffer,

 &dwLength))

{

lstrcat(szTemp,TEXT("Unable to get Internet error. Error code: "));

lstrcat (szTemp, TEXT (_itoa (GetLastError(), szBuffer, 10)));

lstrcat (szTemp, TEXT ("\n"));

response = MessageBox(hErr, (LPSTR)szTemp,"Error",MB_OK);

return FALSE;

}

if (!(szBufferFinal = (TCHAR *) LocalAlloc (LPTR,

(strlen (szBuffer) +strlen (szTemp) + 1))))

{

lstrcat (szTemp, TEXT ("Unable to allocate memory. Error code: "));

lstrcat (szTemp, TEXT (_itoa (GetLastError(), szBuffer, 10)));

lstrcat (szTemp, TEXT ("\n"));

response = MessageBox(hErr, (LPSTR)szTemp,"Error",MB_OK);

return FALSE;

}

lstrcpy (szBufferFinal, szTemp);

lstrcat (szBufferFinal, szBuffer);

LocalFree (szBuffer);

response = MessageBox(hErr, (LPSTR)szBufferFinal,"Error",MB_OK);

LocalFree (szBufferFinal);

}

}

else

{

response = MessageBox(hErr, (LPSTR)szTemp,"Error",MB_OK);

}

return response;

}

Microsoft Win32 Internet Functions Reference

This reference describes the functions, function prototypes, structures, flags, and error codes associated with the Microsoft® Win32® Internet (WinInet) functions.

Unicode support for many of the functions and structures has been added in Microsoft Internet Explorer 5. The syntax used in the reference for these functions and structures has been modified to accommodate the differences between the ANSI and Unicode implementations. For more information on the syntax used in the reference, see Win32 Internet Functions Syntax.

· Functions

· General Win32 Internet Functions

· Automatic Dialing Functions

· Uniform Resource Locator (URL) Functions

· FTP Functions

· Gopher Functions

· HTTP Functions

· Cookie Functions

· Persistent URL Cache Functions

· Function Prototypes

· Structures

· Enumerated Types

· Constants

· Error Messages

Win32 Internet Functions Syntax

Many of the Microsoft® Win32® Internet functions and structures have wrappers to provide Unicode support. To accommodate both ANSI and Unicode syntax in the header file and syntax sections of the reference, special notations are used to note where the syntax varies between implementations.

The areas where the syntax differs between the ANSI and Unicode implementations are:

· Function or structure names

· String parameter types

· Buffer parameter types

The functions or structures that have both ANSI and Unicode support have a note in the information section of their reference pages. When your application is compiled, the function (or structure) will be substituted with the appropriate version ("A" version for ANSI or "W" version for Unicode).

The string parameter types for functions that have both ANSI and Unicode support are designated as LPCTSTR or LPTSTR. When your application is compiled, the LPCTSTR will be changed to LPCSTR (for ANSI) or LPCWSTR (for Unicode). LPTSTR will be changed to LPSTR (for ANSI) and LPWSTR (for Unicode).

Some buffer parameter types are defined as LPHACK, which is changed to LPCWSTR (for Unicode) or LPBYTE (for ANSI).

For example, here is the syntax for the InternetOpen function that is found in the reference:

HINTERNET InternetOpen(

IN LPCTSTR lpszAgent,

IN DWORD dwAccessType,

IN LPCTSTR lpszProxy,

IN LPCTSTR lpszProxyBypass,

IN DWORD dwFlags);

Here is the syntax for the ANSI version of the InternetOpen function:

HINTERNET InternetOpenA(

IN LPCSTR lpszAgent,

IN DWORD dwAccessType,

IN LPCSTR lpszProxy,

IN LPCSTR lpszProxyBypass,

IN DWORD dwFlags);

Here is the syntax for the Unicode version of the InternetOpen function:

HINTERNET InternetOpenW(

IN LPCWSTR pszAgentW,

IN DWORD dwAccessType,

IN LPCWSTR pszProxyW,

IN LPCWSTR pszProxyBypassW,

IN DWORD dwFlags);

Win32 Internet API Functions

The Win32 Internet API functions have been organized in the following categories.

· General Win32 Internet Functions

· Automatic Dialing Functions

· Uniform Resource Locator (URL) Functions

· FTP Functions

· Gopher Functions

· HTTP Functions

· Cookie Functions

· Persistent URL Cache Functions

Alphabetical list of the functions

The following table contains an alphabetical list of the functions provided by the Microsoft® Win32® Internet API.

	PRIVATE
CommitUrlCacheEntry
	Stores data in the specified file in the Internet cache and associates it with the given URL.

	CreateUrlCacheEntry
	Creates a local file name for saving the cache entry based on the specified URL and the file extension.

	CreateUrlCacheGroup
	Generates cache group identifications.

	DeleteUrlCacheEntry
	Removes the file associated with the source name from the cache, if the file exists.

	DeleteUrlCacheGroup
	Releases the specified GROUPID and any associated state in the cache index file.

	FindCloseUrlCache
	Closes the specified cache enumeration handle.

	FindFirstUrlCacheEntry
	Begins the enumeration of the Internet cache.

	FindFirstUrlCacheEntryEx
	Starts a filtered enumeration of the Internet cache.

	FindFirstUrlCacheGroup
	Initiates the enumeration of the cache groups in the Internet cache.

	FindNextUrlCacheEntry
	Retrieves the next entry in the Internet cache.

	FindNextUrlCacheEntryEx
	Finds the next cache entry in a cache enumeration started by the FindFirstUrlCacheEntryEx function.

	FindNextUrlCacheGroup
	Retrieves the next cache group in a cache group enumeration started by FindFirstUrlCacheGroup.

	FtpCommand
	Allows an application to send commands directly to an FTP server.

	FtpCreateDirectory
	Creates a new directory on the FTP server.

	FtpDeleteFile
	Deletes a file stored on the FTP server.

	FtpFindFirstFile
	Searches the specified directory of the given FTP session. File and directory entries are returned to the application in the WIN32_FIND_DATA structure.

	FtpGetCurrentDirectory
	Retrieves the current directory for the specified FTP session.

	FtpGetFile
	Retrieves a file from the FTP server and stores it under the specified file name, creating a new local file in the process.

	FtpGetFileSize
	Retrieves the file size of the requested FTP resource.

	FtpOpenFile
	Initiates access to a remote file on an FTP server for reading or writing.

	FtpPutFile
	Stores a file on the FTP server.

	FtpRemoveDirectory
	Removes the specified directory on the FTP server.

	FtpRenameFile
	Renames a file stored on the FTP server.

	FtpSetCurrentDirectory
	Changes to a different working directory on the FTP server.

	GetUrlCacheEntryInfo
	Retrieves information about a cache entry.

	GetUrlCacheEntryInfoEx
	Searches for the URL after translating any cached redirections that would be applied in offline mode by HttpSendRequest.

	GetUrlCacheGroupAttribute
	Retrieves the attribute information of the specified cache group.

	GopherCreateLocator
	Creates a Gopher or Gopher+ locator string from its component parts.

	GopherFindFirstFile
	Uses a Gopher locator and some search criteria to create a session with the server and locate the requested documents, binary files, index servers, or directory trees.

	GopherGetAttribute
	Retrieves the specific attribute information from the server.

	GopherGetLocatorType
	Parses a Gopher locator and determines its attributes.

	GopherOpenFile
	Begins reading a Gopher data file from a Gopher server.

	HttpAddRequestHeaders
	Adds one or more HTTP request headers to the HTTP request handle.

	HttpEndRequest
	Ends an HTTP request that was initiated by HttpSendRequestEx.

	HttpOpenRequest
	Creates an HTTP request handle.

	HttpQueryInfo
	Retrieves header information associated with an HTTP request.

	HttpSendRequest
	Sends the specified request to the HTTP server.

	HttpSendRequestEx
	Sends the specified request to the HTTP server and allows chunked transfers.

	InternetAttemptConnect
	Attempts to make a connection to the Internet.

	InternetAutodial
	Causes the modem to automatically dial the default Internet connection.

	InternetAutodialHangup
	Disconnects an automatic dial-up connection.

	InternetCanonicalizeUrl
	Canonicalizes a URL, which includes converting unsafe characters and spaces into escape sequences.

	InternetCheckConnection
	Allows an application to check if a connection to the Internet can be established.

	InternetCloseHandle
	Closes a single Internet handle.

	InternetCombineUrl
	Combines a base and relative URL into a single URL. The resultant URL will be canonicalized (see InternetCanonicalizeUrl).

	InternetConfirmZoneCrossing
	Checks for changes between secure and nonsecure URLs. When a change occurs in security between two URLs, an application should allow the user to acknowledge this change, typically by displaying a dialog box.

	InternetConnect
	Opens an FTP, Gopher, or HTTP session for a given site.

	InternetCrackUrl
	Cracks a URL into its component parts.

	InternetCreateUrl
	Creates a URL from its component parts.

	InternetDial
	Initiates a connection to the Internet using a modem.

	InternetErrorDlg
	Displays a dialog box for the error that is passed to InternetErrorDlg, if an appropriate dialog box exists. If the FLAGS_ERROR_UI_FILTER_FOR_ERRORS flag is used, the function also checks the headers for any hidden errors and displays a dialog box if needed.

	InternetFindNextFile
	Continues a file search started as a result of a previous call to FtpFindFirstFile or GopherFindFirstFile.

	InternetGetConnectedState
	Retrieves the connected state of the local system.

	InternetGetConnectedStateEx
	Retrieves the connected state of the specified Internet connection.

	InternetGetCookie
	Retrieves the cookie for the specified URL.

	InternetGetLastResponseInfo
	Retrieves the last Win32® Internet function error description or server response on the thread calling this function.

	InternetGoOnline
	Prompts the user for permission to initiate connection to a URL.

	InternetHangUp
	Instructs the modem to disconnect from the Internet.

	InternetInitializeAutoProxyDll
	Not currently supported.

	InternetLockRequestFile
	Allows the user to place a lock on the file that is being used.

	InternetOpen
	Initializes an application's use of the Win32® Internet functions.

	InternetOpenUrl
	Begins reading a complete FTP, Gopher, or HTTP URL. Use InternetCanonicalizeUrl first if the URL being used contains a relative URL and a base URL separated by blank spaces.

	InternetQueryDataAvailable
	Queries the server to determine the amount of data available.

	InternetQueryOption
	Queries an Internet option on the specified handle.

	InternetReadFile
	Reads data from a handle opened by the InternetOpenUrl, FtpOpenFile, GopherOpenFile, or HttpOpenRequest function.

	InternetReadFileEx
	Reads data from a handle opened by the InternetOpenUrl, FtpOpenFile, GopherOpenFile, or HttpOpenRequest function.

	InternetSetCookie
	Creates a cookie associated with the specified URL.

	InternetSetDialState
	Obsolete. Do not use.

	InternetSetFilePointer
	Sets a file position for InternetReadFile. This is a synchronous call; however, subsequent calls to InternetReadFile might block or return pending if the data is not available from the cache and the server does not support random access.

	InternetSetOption
	Sets an Internet option.

	InternetSetOptionEx
	Not currently implemented.

	InternetSetStatusCallback
	Sets up a callback function that Win32® Internet functions can call as progress is made during an operation.

	InternetTimeFromSystemTime
	Formats a date and time according to the HTTP version 1.0 specification.

	InternetTimeToSystemTime
	Takes an HTTP time/date string and converts it to a SYSTEMTIME structure.

	InternetUnlockRequestFile
	Unlocks a file that was locked using InternetLockRequestFile.

	InternetWriteFile
	Writes data to an open Internet file.

	ReadUrlCacheEntryStream
	Reads the cached data from a stream that has been opened using the RetrieveUrlCacheEntryStream function.

	RetrieveUrlCacheEntryFile
	Locks the cache entry file associated with the specified URL.

	RetrieveUrlCacheEntryStream
	Provides the most efficient and implementation-independent way of accessing the cache data.

	SetUrlCacheEntryGroup
	Adds entries to or removes entries from a cache group.

	SetUrlCacheEntryInfo
	Sets the specified members of the INTERNET_CACHE_ENTRY_INFO structure.

	SetUrlCacheGroupAttribute
	Sets the attribute information of the specified cache group.

	UnlockUrlCacheEntryFile
	Unlocks the cache entry that was locked while the file was retrieved for use from the cache.

	UnlockUrlCacheEntryStream
	Closes the stream that has been retrieved using the RetrieveUrlCacheEntryStream function.

General Win32 Internet Functions

The general Microsoft® Win32® Internet functions described in this section perform basic Internet file manipulations.

InternetAttemptConnect Function

Attempts to make a connection to the Internet.

Syntax
DWORD InternetAttemptConnect(IN DWORD dwReserved);

Parameters
DwReserved

Reserved. Must be set to zero.

Return Value

Returns ERROR_SUCCESS if successful, or a Win32® error value otherwise.

Remarks
This function allows an application to first attempt to connect before issuing any requests. A client program can use this to evoke the dial-up dialog box. If the attempt fails, the application should enter offline mode.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented only as an ANSI function.

Windows
Use Windows 95 and later. Implemented only as an ANSI function.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0

See Also

Microsoft Win32 Internet Functions Overview,
Enabling Internet Functionality,
Microsoft Win32 Internet Functions Reference,
General Win32 Internet Functions

InternetCheckConnection Function

Allows an application to check if a connection to the Internet can be established.

Syntax

BOOL InternetCheckConnection(

IN LPCTSTR lpszUrl,

IN DWORD dwFlags,

IN DWORD dwReserved

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

lpszUrl

Address of a string containing the Uniform Resource Locator (URL) to use to check the connection. This value can be set to NULL.

dwFlags

Unsigned long integer value containing the flag values. FLAG_ICC_FORCE_CONNECTION is the only flag that is currently available. If this flag is set, it forces a connection. A sockets connection is attempted in the following order:

· If lpszUrl is non-NULL, the host value is extracted from it and used to ping that specific host.

· If lpszUrl is NULL and there is an entry in WinInet's internal server database for the nearest sever, the host value is extracted from the entry and used to ping that server.

dwReserved

Reserved. Must be set to zero.

Return Value

Returns TRUE if a connection is made successfully, or FALSE otherwise. Use GetLastError to retrieve the error code. ERROR_NOT_CONNECTED is returned by GetLastError if a connection cannot be made or if the sockets database is unconditionally offline.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

See Also

Microsoft Win32 Internet Functions Overview,
Enabling Internet Functionality,
Microsoft Win32 Internet Functions Reference,
General Win32 Internet Functions

InternetCloseHandle Function

Closes a single Internet handle.

Syntax

BOOL InternetCloseHandle(

IN HINTERNET hInternet

);

Parameters

hInternet

Valid HINTERNET handle to be closed.

Return Value

Returns TRUE if the handle is successfully closed, or FALSE otherwise. To get extended error information, call GetLastError.

Remarks

The function terminates any pending operations on the handle and discards any outstanding data. If a thread is blocking a call to Wininet.dll, another thread in the application can call InternetCloseHandle on the Internet handle being used by the first thread to cancel the operation and unblock the first thread.

If there is a status callback registered for the handle being closed and the handle was created with a non-NULL context value, an INTERNET_STATUS_HANDLE_CLOSING callback will be made. This indication will be the last callback made from a handle and indicates that the handle is being destroyed.

If asynchronous requests are pending for the handle or any of its child handles, the handle cannot be closed immediately, but it will be invalidated. Any new requests attempted using the handle will return with an ERROR_INVALID_HANDLE notification. The asynchronous requests will complete with INTERNET_STATUS_REQUEST_COMPLETE. Applications must be prepared to receive any INTERNET_STATUS_REQUEST_COMPLETE indications on the handle before the final INTERNET_STATUS_HANDLE_CLOSING indication is made, which indicates that the handle is completely closed.

An application can call GetLastError to determine if requests are pending. If GetLastError returns ERROR_IO_PENDING, there were outstanding requests when the handle was closed.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented only as an ANSI function.

Windows
Use Windows 95 and later. Implemented only as an ANSI function.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Enabling Internet Functionality,
Microsoft Win32 Internet Functions Reference,
General Win32 Internet Functions,
FtpFindFirstFile,
FtpOpenFile,
GopherFindFirstFile,
HttpOpenRequest,
InternetConnect

InternetConfirmZoneCrossing Function

Checks for changes between secure and nonsecure URLs. When a change occurs in security between two URLs, an application should allow the user to acknowledge this change, typically by displaying a dialog box.

Syntax

DWORD InternetConfirmZoneCrossing(

IN HWND hWnd,

IN LPTSTR szUrlPrev,

IN LPTSTR szUrlNew,

IN BOOL bPost

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hWnd

Handle to the parent window for any needed dialog box.

szUrlPrev

Address of a string variable containing the URL that was viewed before the current request was made.

szUrlNew

Address of a string variable containing the new URL that the user has requested to view.

bPost

Boolean value that determines if a post is being made by this request. If bPost is set to TRUE, a post is being made in this request. This flag is ignored in this release.

Return Value

Returns one of the following values:

PRIVATE
ERROR_SUCCESS
The user confirmed that it was okay to continue, or there was no user input needed.
ERROR_CANCELLED
The user canceled the request.

ERROR_NOT_ENOUGH_MEMORY
There is not enough memory to carry out the request.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

See Also

Microsoft Win32 Internet Functions Overview,
Enabling Internet Functionality,
Microsoft Win32 Internet Functions Reference,
General Win32 Internet Functions

InternetConnect Function

Opens an FTP, Gopher, or HTTP session for a given site.

Syntax

HINTERNET InternetConnect(

IN HINTERNET hInternet,

IN LPCTSTR lpszServerName,

IN INTERNET_PORT nServerPort,

IN LPCTSTR lpszUserName,

IN LPCTSTR lpszPassword,

IN DWORD dwService,

IN DWORD dwFlags,

IN DWORD_PTR dwContext

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hInternet

Valid HINTERNET handle returned by a previous call to InternetOpen.

lpszServerName

Address of a null-terminated string that contains the host name of an Internet server. Alternately, the string can contain the IP number of the site, in ASCII dotted-decimal format (for example, 11.0.1.45).

nServerPort

Number of the TCP/IP port on the server to connect to. These flags set only the port that will be used. The service is set by the value of dwService. This can be any one of the following values:

INTERNET_DEFAULT_FTP_PORT
Uses the default port for FTP servers (port 21).

INTERNET_DEFAULT_GOPHER_PORT
Uses the default port for Gopher servers (port 70).

INTERNET_DEFAULT_HTTP_PORT
Uses the default port for HTTP servers (port 80).

INTERNET_DEFAULT_HTTPS_PORT
Uses the default port for HTTPS servers (port 443).

INTERNET_DEFAULT_SOCKS_PORT
Uses the default port for SOCKS firewall servers (port 1080).

INTERNET_INVALID_PORT_NUMBER
Uses the default port for the service specified by dwService.

lpszUsername

Address of a null-terminated string that contains the name of the user to log on. If this parameter is NULL, the function uses an appropriate default, except for HTTP; a NULL parameter in HTTP causes the server to return an error. For the FTP protocol, the default is "anonymous".

lpszPassword

Address of a null-terminated string that contains the password to use to log on. If both lpszPassword and lpszUsername are NULL, the function uses the default "anonymous" password. In the case of FTP, the default password is the user's e-mail name. If lpszPassword is NULL, but lpszUsername is not NULL, the function uses a blank password.

dwService

Unsigned long integer value that contains the type of service to access. This can be one of the following values:

INTERNET_SERVICE_FTP
FTP service.

INTERNET_SERVICE_GOPHER
Gopher service.

INTERNET_SERVICE_HTTP
HTTP service.

dwFlags

Unsigned long integer value that contains the flags specific to the service used. When the value of dwService is INTERNET_SERVICE_FTP, INTERNET_FLAG_PASSIVE causes the application to use passive FTP semantics.

dwContext

Address of an unsigned long integer value that contains an application-defined value that is used to identify the application context for the returned handle in callbacks.

Return Value

Returns a valid handle to the FTP, Gopher, or HTTP session if the connection is successful, or NULL otherwise. To get extended error information, call GetLastError. An application can also use InternetGetLastResponseInfo to determine why access to the service was denied.

Remarks

The following table describes the behavior for the four possible settings of lpszUsername and lpszPassword.

PRIVATE
lpszUsername
lpszPassword
User name sent to FTP server
Password sent to FTP server

NULL
NULL
"anonymous"
User's e-mail name

Non-NULL string
NULL
lpszUsername
""

NULL
Non-NULL string
ERROR
ERROR

Non-NULL string
Non-NULL string
lpszUsername
lpszPassword
For FTP sites, InternetConnect actually establishes a connection with the server; for others, such as Gopher, the actual connection is not established until the application requests a specific transaction.

For maximum efficiency, applications using the Gopher and HTTP protocols should try to minimize calls to InternetConnect and avoid calling this function for every transaction requested by the user. One way to accomplish this is to keep a small cache of handles returned from InternetConnect; when the user makes a request to a previously accessed server, that session handle is still available.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Enabling Internet Functionality,
Microsoft Win32 Internet Functions Reference,
General Win32 Internet Functions

InternetErrorDlg Function

Displays a dialog box for the error that is passed to InternetErrorDlg, if an appropriate dialog box exists. If the FLAGS_ERROR_UI_FILTER_FOR_ERRORS flag is used, the function also checks the headers for any hidden errors and displays a dialog box if needed.

Syntax

DWORD InternetErrorDlg(

IN HWND hWnd,

IN OUT HINTERNET hRequest,

IN DWORD dwError,

IN DWORD dwFlags,

IN OUT LPVOID *lppvData

);

Parameters

hWnd

Handle to the parent window for any needed dialog box. This parameter can be NULL if no dialog box is needed.

hRequest

HINTERNET handle to the Internet connection used in the call to HttpSendRequest.

dwError

Error value for which to display a dialog box. This can be one of the following values:

ERROR_INTERNET_HTTP_TO_HTTPS_ON_REDIR

Notifies the user of the zone crossing to and from a secure site.

ERROR_INTERNET_INCORRECT_PASSWORD

Displays a dialog box for obtaining the user's name and password. (On Microsoft® Windows® 95, the function first attempts to use any cached authentication information for the server being accessed, before displaying a dialog box.)

ERROR_INTERNET_INVALID_CA
Notifies the user that the Win32® Internet function does not recognize the certificate authority that generated the certificate for this Secure Sockets Layer (SSL) site.

ERROR_INTERNET_POST_IS_NON_SECURE

Displays a warning about posting data to the server through a nonsecure connection.

ERROR_INTERNET_SEC_CERT_CN_INVALID

Indicates that the SSL certificate Common Name (hostname field) is incorrect. Displays an Invalid SSL Common Name dialog box, and lets the user view the incorrect certificate. Also allows the user to select a certificate in response to a server request.

ERROR_INTERNET_SEC_CERT_DATE_INVALID

Tells the user that the SSL certificate has expired.

dwFlags

Unsigned long integer value that contains the action flags. This can be a combination of these values:

FLAGS_ERROR_UI_FILTER_FOR_ERRORS

Scans the returned headers for errors. Call after using HttpSendRequest. This option detects any hidden errors, such as an authentication error.

FLAGS_ERROR_UI_FLAGS_CHANGE_OPTIONS

If the function succeeds, stores the results of the dialog box in the Internet handle.

FLAGS_ERROR_UI_FLAGS_GENERATE_DATA

Queries the Internet handle for needed information. The function constructs the appropriate data structure for the error. (For example, for Cert CN failures, the function grabs the certificate.)

FLAGS_ERROR_UI_SERIALIZE_DIALOGS

Serializes authentication dialog boxes for concurrent requests on a password cache entry. The lppvData parameter should contain the address of a pointer to an INTERNET_AUTH_NOTIFY_DATA structure, and the client should implement a thread-safe, nonblocking callback function.

lppvData

Address of pointer to a data structure. The structure can be different for each error that needs to be handled.

Return Value

Returns one of the following values, or an error code otherwise.

PRIVATE
ERROR_SUCCESS
The function completed successfully.

ERROR_CANCELLED
The function was canceled by the user.

ERROR_INTERNET_FORCE_RETRY
The Win32 function needs to redo its request.

ERROR_INVALID_HANDLE
The handle to the parent window is invalid.

Remarks

Authentication errors are hidden, because the call to HttpSendRequest will complete successfully. However, the status code would indicate that the proxy or server requires authentication. The FLAGS_ERROR_UI_FILTER_FOR_ERRORS flag causes the function to search the headers for status codes that indicate user input is needed.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented only as an ANSI function.

Windows
Use Windows 95 and later. Implemented only as an ANSI function.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Enabling Internet Functionality,
Microsoft Win32 Internet Functions Reference,
General Win32 Internet Functions

InternetFindNextFile Function

Continues a file search started as a result of a previous call to FtpFindFirstFile or GopherFindFirstFile.

Syntax

BOOL InternetFindNextFile(

IN HINTERNET hFind,

OUT LPVOID lpvFindData

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hFind

Valid HINTERNET handle returned from either FtpFindFirstFile or GopherFindFirstFile, or from InternetOpenUrl (directories only).

lpvFindData

Address of the buffer that receives information about the found file or directory. The format of the information placed in the buffer depends on the protocol in use. The FTP protocol returns a WIN32_FIND_DATA structure, and the Gopher protocol returns a GOPHER_FIND_DATA structure.

Return Value

Returns TRUE if the function succeeds, or FALSE otherwise. To get extended error information, call GetLastError. If the function finds no matching files, GetLastError returns ERROR_NO_MORE_FILES.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Enabling Internet Functionality,
Microsoft Win32 Internet Functions Reference,
General Win32 Internet Functions

InternetGetLastResponseInfo Function

Retrieves the last Win32® Internet function error description or server response on the thread calling this function.

Syntax

BOOL InternetGetLastResponseInfo(

OUT LPDWORD lpdwError,

OUT LPTSTR lpszBuffer,

IN OUT LPDWORD lpdwBufferLength

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

lpdwError

Address of an unsigned long integer variable that receives an error message pertaining to the operation that failed.

lpszBuffer

Address of a buffer that receives the error text.

lpdwBufferLength

Address of an unsigned long integer variable that contains the size of the lpszBuffer buffer in TCHAR. When the function returns, this parameter contains the size of the string written to the buffer.

Return Value

Returns TRUE if error text was successfully written to the buffer, or FALSE otherwise. To get extended error information, call GetLastError. If the buffer is too small to hold all the error text, GetLastError returns ERROR_INSUFFICIENT_BUFFER, and the lpdwBufferLength parameter contains the minimum buffer size required to return all the error text.

Remarks

The FTP and Gopher protocols can return additional text information along with most errors. This extended error information can be retrieved by using the InternetGetLastResponseInfo function whenever GetLastError returns ERROR_INTERNET_EXTENDED_ERROR (occurring after an unsuccessful function call).

The buffer pointed to by lpszBuffer must be large enough to hold both the error string and a zero terminator at the end of the string. However, note that the value returned in lpdwBufferLength does not include the terminating zero.

InternetGetLastResponseInfo can be called multiple times until another Win32 Internet function is called on this thread. When another function is called, the internal buffer that is storing the last response information is cleared.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Common Functions,
Microsoft Win32 Internet Functions Reference,
General Win32 Internet Functions

InternetInitializeAutoProxyDll Function

Not currently supported.

InternetLockRequestFile Function

Allows the user to place a lock on the file that is being used.

Syntax

BOOL InternetLockRequestFile(

IN HINTERNET hInternet,

OUT HANDLE *lphLockReqHandle

);

Parameters

hInternet

HINTERNET handle returned by FtpOpenFile, GopherOpenFile, HttpOpenRequest, or InternetOpenUrl.

lphLockReqHandle

Address of a handle to store the lock request handle.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get a specific error message, call GetLastError.

Remarks

If the HINTERNET handle passed to hInternet was created using INTERNET_FLAG_NO_CACHE_WRITE or INTERNET_FLAG_DONT_CACHE, the function creates a temporary file with the extension .tmp, unless it is an HTTPS resource. If the handle was created using INTERNET_FLAG_NO_CACHE_WRITE or INTERNET_FLAG_DONT_CACHE and it is accessing an HTTPS resource, InternetLockRequestFile fails.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented only as an ANSI function.

Windows
Use Windows 95 and later. Implemented only as an ANSI function.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Enabling Internet Functionality,
Microsoft Win32 Internet Functions Reference,
General Win32 Internet Functions,
InternetUnlockRequestFile

InternetOpen Function

Initializes an application's use of the Win32® Internet functions.

Syntax

HINTERNET InternetOpen(

IN LPCTSTR lpszAgent,

IN DWORD dwAccessType,

IN LPCTSTR lpszProxyName,

IN LPCTSTR lpszProxyBypass,

IN DWORD dwFlags

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

lpszAgent

Address of a string variable that contains the name of the application or entity calling the Internet functions (for example, Microsoft® Internet Explorer). This name is used as the user agent in the HTTP protocol.

dwAccessType

Type of access required. This can be one of the following values:

INTERNET_OPEN_TYPE_DIRECT
Resolves all host names locally.

INTERNET_OPEN_TYPE_PRECONFIG
Retrieves the proxy or direct configuration from the registry.

INTERNET_OPEN_TYPE_PRECONFIG_WITH_NO_AUTOPROXY

Retrieves the proxy or direct configuration from the registry and prevents the use of a startup JScript® (compatible with ECMA 262 language specification) or Internet Setup (INS) file.

INTERNET_OPEN_TYPE_PROXY
Passes requests to the proxy unless a proxy bypass list is supplied and the name to be resolved bypasses the proxy. In this case, the function uses INTERNET_OPEN_TYPE_DIRECT.

lpszProxyName

Address of a string variable that contains the name of the proxy server(s) to use when proxy access is specified by setting dwAccessType to INTERNET_OPEN_TYPE_PROXY. Do not use an empty string, because InternetOpen will use it as the proxy name. The Win32 Internet functions recognize only CERN type proxies (HTTP only) and the TIS FTP gateway (FTP only). If Internet Explorer is installed, the Win32 Internet functions also support SOCKS proxies. FTP and Gopher requests can be made through a CERN type proxy either by changing them to an HTTP request or by using InternetOpenUrl. If dwAccessType is not set to INTERNET_OPEN_TYPE_PROXY, this parameter is ignored and should be set to NULL. For more information about listing proxy servers, see Listing Proxy Servers section of the Enabling Internet Functionality article.

lpszProxyBypass

Address of a string variable that contains an optional list of host names or IP addresses, or both, that should not be routed through the proxy when dwAccessType is set to INTERNET_OPEN_TYPE_PROXY. The list can contain wildcards. Do not use an empty string, because InternetOpen will use it as the proxy bypass list. If this parameter specifies the "<local>" macro as the only entry, the function bypasses any host name that does not contain a period. If dwAccessType is not set to INTERNET_OPEN_TYPE_PROXY, this parameter is ignored and should be set to NULL.

dwFlags

Unsigned long integer value that contains the flags that indicate various options affecting the behavior of the function. This can be a combination of these values:

INTERNET_FLAG_ASYNC

INTERNET_FLAG_FROM_CACHE

INTERNET_FLAG_OFFLINE

Return Value

Returns a valid handle that the application passes on to subsequent Win32 Internet functions. If InternetOpen fails, it returns NULL. To get a specific error message, call GetLastError.

Remarks

InternetOpen is the first Win32 Internet function called by an application. It tells the Internet DLL to initialize internal data structures and prepare for future calls from the application. When the application finishes using the Internet functions, it should call InternetCloseHandle to free the handle and any associated resources.

The application can make any number of calls to InternetOpen, although a single call is normally sufficient. The application might need to have separate behaviors defined for each InternetOpen instance, such as different proxy servers configured for each.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Enabling Internet Functionality,
Microsoft Win32 Internet Functions Reference,
General Win32 Internet Functions

InternetQueryDataAvailable Function

Queries the server to determine the amount of data available.

Syntax

BOOL InternetQueryDataAvailable(

IN HINTERNET hFile,

OUT LPDWORD lpdwNumberOfBytesAvailable,

IN DWORD dwFlags,

IN DWORD dwContext);

Parameters

hFile

Valid HINTERNET handle, as returned by InternetOpenUrl, FtpOpenFile, GopherOpenFile, or HttpOpenRequest.

lpdwNumberOfBytesAvailable

Optional. Address of an unsigned long integer variable that receives the number of available bytes.

dwFlags

Reserved. Must be set to zero.

dwContext

Reserved. Must be set to zero.

Return Value

Returns TRUE if the function succeeds, or FALSE otherwise. To get extended error information, call GetLastError. If the function finds no matching files, GetLastError returns ERROR_NO_MORE_FILES.

Remarks

This function returns the number of bytes of data that are available to be read immediately by a subsequent call to InternetReadFile. If there is currently no data available and the end of the file has not been reached, the request waits until data becomes available. The amount of data remaining will not be recalculated until all available data indicated by the call to InternetQueryDataAvailable is read.

For HINTERNET handles created by HttpOpenRequest and sent by HttpSendRequestEx, a call to HttpEndRequest must be made on the handle before InternetQueryDataAvailable can be used.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented only as an ANSI function.

Windows
Use Windows 95 and later. Implemented only as an ANSI function.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Common Functions,
Microsoft Win32 Internet Functions Reference,
General Win32 Internet Functions

InternetQueryOption Function

Queries an Internet option on the specified handle.

Syntax

BOOL InternetQueryOption(

IN HINTERNET hInternet,

IN DWORD dwOption,

OUT LPVOID lpBuffer,

IN OUT LPDWORD lpdwBufferLength);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hInternet

HINTERNET handle on which to query information.

dwOption

Unsigned long integer value that contains the Internet option to query. This can be one of the Option Flags values.

lpBuffer

Address of a buffer that receives the option setting. Strings returned by InternetQueryOption are globally allocated, so the calling application must globally free the string when it is finished using it.

lpdwBufferLength

Address of an unsigned long integer variable that contains the length of lpBuffer, in TCHARs. When the function returns, the variable receives the length of the data placed into lpBuffer. If GetLastError returns ERROR_INSUFFICIENT_BUFFER, this parameter receives the number of bytes required to hold the created URL.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get a specific error message, call GetLastError.

Remarks

GetLastError will return the ERROR_INVALID_PARAMETER if an option flag that is invalid for the specified handle type is passed to the dwOption parameter.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Common Functions,
Microsoft Win32 Internet Functions Reference,
General Win32 Internet Functions,
FtpGetFile,
FtpPutFile,
InternetConnect,
InternetOpen,
InternetSetOption

InternetReadFile Function

Reads data from a handle opened by the InternetOpenUrl, FtpOpenFile, GopherOpenFile, or HttpOpenRequest function.

Syntax

BOOL InternetReadFile(

 IN HINTERNET hFile,

 IN LPVOID lpBuffer,

 IN DWORD dwNumberOfBytesToRead,

 OUT LPDWORD lpdwNumberOfBytesRead

);

Parameters

hFile

Valid HINTERNET handle returned from a previous call to InternetOpenUrl, FtpOpenFile, GopherOpenFile, or HttpOpenRequest.

lpBuffer

Address of a buffer that receives the data read.

dwNumberOfBytesToRead

Unsigned long integer value that contains the number of bytes to read.

lpdwNumberOfBytesRead

Address of an unsigned long integer variable that receives the number of bytes read. InternetReadFile sets this value to zero before doing any work or error checking.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get extended error information, call GetLastError. An application can also use InternetGetLastResponseInfo when necessary.

Remarks

If the return value is TRUE and the number of bytes read is zero, the transfer has been completed and there are no more bytes to read on the handle. This is analogous to reaching end-of-file in a local file.

The buffer pointed to by lpBuffer is not always filled by calls to InternetReadFile (sufficient data might not have arrived from the server). When reading HTML data, for the first read posted, the buffer must be large enough to hold the HTML headers. When reading HTML-encoded directory entries, the buffer must be large enough to hold at least one complete entry.

When the item being read is also being cached by a Win32® Internet function, the application must ensure that a read is made for end-of-file so the cache file is committed correctly.

This function always fulfills the user's request. If more data is requested than is available, the function waits until enough data to complete the request is available. The only time that less data is returned than requested is when the end of the file has been reached.

This function can also be used to retrieve FTP and Gopher directory listings as an HTML document on a handle opened by InternetOpenUrl. The INTERNET_FLAG_RAW_DATA value must not have been specified in the call to InternetOpenUrl.

If the HINTERNET handle stored in hFile was created by HttpOpenRequest and sent by HttpSendRequestEx, a call to HttpEndRequest must be made on the handle before InternetReadFile is used.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented only as an ANSI function.

Windows
Use Windows 95 and later. Implemented only as an ANSI function.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Common Functions,
Microsoft Win32 Internet Functions Reference,
General Win32 Internet Functions

InternetReadFileEx Function

Reads data from a handle opened by the InternetOpenUrl, FtpOpenFile, GopherOpenFile, or HttpOpenRequest function.

Syntax

BOOL InternetReadFileEx(

IN HINTERNET hFile,

OUT LPINTERNET_BUFFERS lpBuffersOut,

IN DWORD dwFlags,

IN DWORD dwContext

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hFile

HINTERNET handle returned by the InternetOpenUrl, FtpOpenFile, GopherOpenFile, or HttpOpenRequest function.

lpBuffersOut

Address of an INTERNET_BUFFERS structure that contains the data downloaded.

dwFlags

Unsigned long integer variable that contains the flags controlling the download. This can be one of the following values:

IRF_ASYNC
Identical to WININET_API_FLAG_ASYNC.

IRF_SYNC
Identical to WININET_API_FLAG_SYNC.

IRF_USE_CONTEXT
Identical to WININET_API_FLAG_USE_CONTEXT.

IRF_NO_WAIT
Do not wait for data. If there is data available, the function returns either the amount of data requested or the amount of data available (whichever is smaller).

dwContext

Unsigned long integer variable that contains the context value used for asynchronous operations.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get extended error information, call GetLastError. An application can also use InternetGetLastResponseInfo when necessary.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 4.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Common Functions,
Microsoft Win32 Internet Functions Reference,
General Win32 Internet Functions

InternetSetFilePointer Function

Sets a file position for InternetReadFile. This is a synchronous call; however, subsequent calls to InternetReadFile might block or return pending if the data is not available from the cache and the server does not support random access.

Syntax

DWORD InternetSetFilePointer(

IN HINTERNET hFile,

IN LONG lDistanceToMove,

IN PVOID pReserved,

IN DWORD dwMoveMethod,

IN DWORD dwContext

);

Parameters

hFile

Valid HINTERNET handle returned from a previous call to InternetOpenUrl (on an HTTP or HTTPS URL) or HttpOpenRequest (using the GET or HEAD method and passed to HttpSendRequest or HttpSendRequestEx). This handle must not have been created with the INTERNET_FLAG_DONT_CACHE or INTERNET_FLAG_NO_CACHE_WRITE value set.

lDistanceToMove

Long integer value that contains the number of bytes to move the file pointer. A positive value moves the pointer forward in the file; a negative value moves it backward.

pReserved

Reserved. Must be set to NULL.

dwMoveMethod

Unsigned long integer value that indicates the starting point for the file pointer move. This can be one of the following values:

FILE_BEGIN
Starting point is zero or the beginning of the file. If FILE_BEGIN is specified, lDistanceToMove is interpreted as an unsigned location for the new file pointer.

FILE_CURRENT
Current value of the file pointer is the starting point.

FILE_END
Current end-of-file position is the starting point. This method fails if the content length is unknown.

dwContext

Reserved. Must be set to zero.

Return Value

Returns the current file position if the function succeeds, or -1 otherwise.

Remarks

This function cannot be used once the end of the file has been reached by InternetReadFile.

For HINTERNET handles created by HttpOpenRequest and sent by HttpSendRequestEx, a call to HttpEndRequest must be made on the handle before InternetSetFilePointer is used.

InternetSetFilePointer cannot be used reliably if the content length is unknown, and it cannot be used reliably with chunked transfers.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented only as an ANSI function.

Windows
Use Windows 95 and later. Implemented only as an ANSI function.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Common Functions,
Microsoft Win32 Internet Functions Reference,
General Win32 Internet Functions

InternetSetOption Function

Sets an Internet option.

Syntax

BOOL InternetSetOption(

IN HINTERNET hInternet,

IN DWORD dwOption,

IN LPVOID lpBuffer,

IN DWORD dwBufferLength

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hInternet

HINTERNET handle on which to set information.

dwOption

Unsigned long integer value that contains the Internet option to set. This can be one of the Option Flags values.

lpBuffer

Address of a buffer that contains the option setting.

dwBufferLength

Unsigned long integer value that contains the length of the lpBuffer buffer in TCHAR.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get a specific error message, call GetLastError.

Remarks

GetLastError will return the error ERROR_INVALID_PARAMETER if an option flag that cannot be set is specified.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Common Functions,
Microsoft Win32 Internet Functions Reference,
General Win32 Internet Functions,
FtpGetFile,
FtpPutFile,
InternetConnect,
InternetOpen,
InternetQueryOption

InternetSetOptionEx Function

Not currently implemented.

InternetSetStatusCallback Function

Sets up a callback function that Win32® Internet functions can call as progress is made during an operation.

Syntax

INTERNET_STATUS_CALLBACK InternetSetStatusCallback(

IN HINTERNET hInternet,

IN INTERNET_STATUS_CALLBACK lpfnInternetCallback

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hInternet

HINTERNET handle for which the callback is to be set.

lpfnInternetCallback

Address of the callback function to call when progress is made, or to return NULL to remove the existing callback function. For more information about the callback function, see INTERNET_STATUS_CALLBACK.

Return Value

Returns the previously defined status callback function if successful, NULL if there was no previously defined status callback function, or INTERNET_INVALID_STATUS_CALLBACK if the callback function is not valid.

Remarks

Both synchronous and asynchronous functions use the callback function to indicate the progress of the request, such as resolving a name, connecting to a server, and so on. The callback function is required for an asynchronous operation. The asynchronous request will call back to the application with INTERNET_STATUS_REQUEST_COMPLETE to indicate the request has been completed.

A callback function can be set on any handle, and is inherited by derived handles. A callback function can be changed using InternetSetStatusCallback, providing there are no pending requests that need to use the previous callback value. Note, however, that changing the callback function on a handle does not change the callbacks on derived handles, such as that returned by InternetConnect. You must change the callback function at each level.

Many of the Win32 Internet functions perform several operations on the network. Each operation can take time to complete, and each can fail.

It is sometimes desirable to display status information during a long-term operation. You can display status information by setting up an Internet status callback function that cannot be removed as long as any callbacks or any asynchronous functions are pending.

After initiating InternetSetStatusCallback, the callback function can be accessed from within any Win32 Internet function for monitoring time-intensive network operations.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Common Functions,
Microsoft Win32 Internet Functions Reference,
General Win32 Internet Functions

FtpSetCurrentDirectory Function

Changes to a different working directory on the FTP server.

Syntax

BOOL FtpSetCurrentDirectory(

IN HINTERNET hConnect,

IN LPCTSTR lpszDirectory

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hConnect

Valid HINTERNET handle to an FTP session.

lpszDirectory

Address of a null-terminated string that contains the name of the directory to change to on the remote system. This can be either a fully qualified path or a name relative to the current directory.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get a specific error message, call GetLastError. If the error message indicates that the FTP server denied the request to change a directory, use InternetGetLastResponseInfo to determine why.

Remarks

An application should use FtpGetCurrentDirectory to determine the remote site's current working directory, instead of assuming that the remote system uses a hierarchical naming scheme for directories.

The lpszDirectory parameter can be either partially or fully qualified file names relative to the current directory.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
FTP Sessions,
Microsoft Win32 Internet Functions Reference,
FTP Functions

InternetTimeToSystemTime Function

Takes an HTTP time/date string and converts it to a SYSTEMTIME structure.

Syntax

BOOL InternetTimeToSystemTime(

IN LPCTSTR lpszTime,

OUT SYSTEMTIME *pst,

IN DWORD dwReserved

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

lpszTime

Address of a null-terminated date/time string to convert.

pst

Address of SYSTEMTIME structure that receives the converted time.

dwReserved

Reserved. Must be set to zero.

Return Value

Returns TRUE if the string was converted, or FALSE otherwise. To get extended error information, call GetLastError.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Common Functions,
Microsoft Win32 Internet Functions Reference,
General Win32 Internet Functions

InternetUnlockRequestFile Function

Unlocks a file that was locked using InternetLockRequestFile.

Syntax

BOOL InternetUnlockRequestFile(

IN HANDLE hLockHandle

);

Parameters

hLockHandle

Lock request handle that was returned by InternetLockRequestFile.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get a specific error message, call GetLastError.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented only as an ANSI function.

Windows
Use Windows 95 and later. Implemented only as an ANSI function.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Common Functions,
Microsoft Win32 Internet Functions Reference,
General Win32 Internet Functions

InternetWriteFile Function

Writes data to an open Internet file.

Syntax

BOOL InternetWriteFile(

IN HINTERNET hFile,

IN LPCVOID lpBuffer,

IN DWORD dwNumberOfBytesToWrite,

OUT LPDWORD lpdwNumberOfBytesWritten

);

Parameters

hFile

Valid HINTERNET handle returned from a previous call to FtpOpenFile or an HINTERNET handle sent by HttpSendRequestEx.

lpBuffer

Address of a buffer that contains the data to be written to the file.

dwNumberOfBytesToWrite

Unsigned long integer value that contains the number of bytes to write to the file.

lpdwNumberOfBytesWritten

Address of an unsigned long integer variable that receives the number of bytes written to the buffer. InternetWriteFile sets this value to zero before doing any work or error checking.

Return Value

Returns TRUE if the function succeeds, or FALSE otherwise. To get extended error information, call GetLastError. An application can also use InternetGetLastResponseInfo when necessary.

Remarks

When the application is sending data, it must call InternetCloseHandle to end the data transfer.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented only as an ANSI function.

Windows
Use Windows 95 and later. Implemented only as an ANSI function.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Common Functions,
Microsoft Win32 Internet Functions Reference,
General Win32 Internet Functions

Automatic Dialing Functions

The functions described in this section handle dial-up access to the Internet.

InternetAutodial Function

Causes the modem to automatically dial the default Internet connection.

Syntax

BOOL InternetAutodial(

IN DWORD dwFlags,

IN HWND hwndParent);

Parameters

dwFlags

Unsigned long integer value that contains the flags controlling this operation. This can be one of the following values:

INTERNET_AUTODIAL_FAILIFSECURITYCHECK

Causes InternetAutodial to fail if file and printer sharing is disabled for Microsoft® Windows® 95/98.

INTERNET_AUTODIAL_FORCE_ONLINE

Forces an online Internet connection.

INTERNET_AUTODIAL_FORCE_UNATTENDED

Forces an unattended Internet dial-up.

hwndParent

Handle to the parent window.

Return Value

Returns TRUE if successful, or FALSE otherwise.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented only as an ANSI function.

Windows
Use Windows 95 and later. Implemented only as an ANSI function.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Establishing a Dial-Up Connection to the Internet,
Microsoft Win32 Internet Functions Reference,
Automatic Dialing Functions

InternetAutodialHangup Function

Disconnects an automatic dial-up connection.

Syntax

BOOL InternetAutodialHangup(

IN DWORD dwReserved

);

Parameters

dwReserved

Reserved. Must be set to zero.

Return Value

Returns TRUE if successful, or FALSE otherwise.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented only as an ANSI function.

Windows
Use Windows 95 and later. Implemented only as an ANSI function.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Establishing a Dial-Up Connection to the Internet,
Microsoft Win32 Internet Functions Reference,
Automatic Dialing Functions

InternetDial Function

Initiates a connection to the Internet using a modem.

Syntax

DWORD InternetDial(

IN HWND hwndParent,

IN LPTSTR lpszConnectoid,

IN DWORD dwFlags,

OUT LPDWORD lpdwConnection,

IN DWORD dwReserved

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hwndParent

Handle to the parent window.

lpszConnectoid

Address of a string variable containing the name of the dial-up connection to use.

dwFlags

Unsigned long integer value that contains the flags to use. This can be one of the following values:

INTERNET_AUTODIAL_FORCE_ONLINE
Forces an online connection.

INTERNET_AUTODIAL_FORCE_UNATTENDED

Forces an unattended Internet dial-up. If user intervention is required, the function will fail.

INTERNET_DIAL_FORCE_PROMPT
Ignores the "dial automatically" setting and forces the dialing user interface to be displayed.

INTERNET_DIAL_UNATTENDED
Connects to the Internet through a modem, without displaying a user interface, if possible. Otherwise, the function will wait for user input.

INTERNET_DIAL_SHOW_OFFLINE
Shows the Work Offline button instead of Cancel button in the dialing user interface.

lpdwConnection

Address of an unsigned long integer value containing the number associated to the connection.

dwReserved

Reserved. Must be set to zero.

Return Value

Returns ERROR_SUCCESS if successful, or an error code otherwise. The error code can be one of the following:

PRIVATE
ERROR_INVALID_PARAMETER
One or more of the parameters are incorrect.

ERROR_NO_CONNECTION
There is a problem with the dial-up connection.

ERROR_USER_DISCONNECTION
The user clicked either the Work Offline or Cancel button on the Internet connection dialog box.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 4.0 (ANSI only), 5 (ANSI and Unicode)

See Also

Microsoft Win32 Internet Functions Overview,
Establishing a Dial-Up Connection to the Internet,
Microsoft Win32 Internet Functions Reference,
Automatic Dialing Functions

InternetGetConnectedState Function

Retrieves the connected state of the local system.

Syntax

BOOL InternetGetConnectedState(

OUT LPDWORD lpdwFlags,

IN DWORD dwReserved

);

Parameters

lpdwFlags

Address of an unsigned long integer variable where the connection description should be returned. This can be a combination of the following values:

INTERNET_CONNECTION_CONFIGURED

Local system has a valid connection to the Internet, but it may or may not be currently connected.

INTERNET_CONNECTION_LAN
Local system uses a local area network to connect to the Internet.

INTERNET_CONNECTION_MODEM
Local system uses a modem to connect to the Internet.

INTERNET_CONNECTION_MODEM_BUSY

No longer used.

INTERNET_CONNECTION_OFFLINE
Local system is in offline mode.

INTERNET_CONNECTION_PROXY
Local system uses a proxy server to connect to the Internet.

INTERNET_RAS_INSTALLED
Local system has RAS installed.

dwReserved

Reserved. Must be set to zero.

Return Value

Returns TRUE if there is an Internet connection, or FALSE otherwise.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented only as an ANSI function.

Windows
Use Windows 95 and later. Implemented only as an ANSI function.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 4.0

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Establishing a Dial-Up Connection to the Internet,
Microsoft Win32 Internet Functions Reference,
Automatic Dialing Functions

InternetGetConnectedStateEx Function

Retrieves the connected state of the specified Internet connection.

Syntax

BOOL InternetGetConnectedStateEx(

OUT LPDWORD lpdwFlags,

OUT LPTSTR lpszConnectionName,

IN DWORD dwNameLen,

IN DWORD dwReserved

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

lpdwFlags

Address of an unsigned long integer variable where the connection description should be returned. This can be a combination of the following values:

INTERNET_CONNECTION_CONFIGURED
Local system has a valid connection to the Internet, but it may or may not be currently connected.

INTERNET_CONNECTION_LAN
Local system uses a local area network to connect to the Internet.

INTERNET_CONNECTION_MODEM
Local system uses a modem to connect to the Internet.

INTERNET_CONNECTION_MODEM_BUSY
No longer used.

INTERNET_CONNECTION_OFFLINE
Local system is in offline mode.

INTERNET_CONNECTION_PROXY
Local system uses a proxy server to connect to the Internet.

INTERNET_RAS_INSTALLED
Local system has RAS installed.

lpszConnectionName

Address of a string value that receives the connection name.

dwNameLen

Unsigned long integer value that contains the length of the lpszConnectionName string in TCHAR.

dwReserved

Reserved. Must be set to zero.

Return Value

Returns TRUE if there is an Internet connection, or FALSE otherwise.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 5 (ANSI and Unicode)

See Also

Microsoft Win32 Internet Functions Overview,
Establishing a Dial-Up Connection to the Internet,
Microsoft Win32 Internet Functions Reference,
Automatic Dialing Functions

InternetGoOnline Function

Prompts the user for permission to initiate connection to a URL.

Syntax

BOOL InternetGoOnline(

IN LPTSTR lpszURL,

IN HWND hwndParent,

IN DWORD dwReserved

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

lpszURL

Address of a string variable containing the URL of the Web site to connect to.

hwndParent

Handle to the parent window.

dwReserved

Reserved. Must be set to zero.

Return Value

Returns TRUE if successful, or FALSE otherwise.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 4.0 (ANSI only), 5 (ANSI and Unicode)

See Also

Microsoft Win32 Internet Functions Overview,
Establishing a Dial-Up Connection to the Internet,
Microsoft Win32 Internet Functions Reference,
Automatic Dialing Functions

InternetHangUp Function

Instructs the modem to disconnect from the Internet.

Syntax

DWORD InternetHangUp(

IN DWORD dwConnection,

IN DWORD dwReserved

);

Parameters

dwConnection

Unsigned long integer value that contains the number assigned to the connection to be disconnected.

dwReserved

Reserved. Must be set to zero.

Return Value

Returns ERROR_SUCCESS if successful, or an error code otherwise.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented only as an ANSI function.

Windows
Use Windows 95 and later. Implemented only as an ANSI function.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Establishing a Dial-Up Connection to the Internet,
Microsoft Win32 Internet Functions Reference,
Automatic Dialing Functions

InternetSetDialState Function

Obsolete. Do not use.

Uniform Resource Locator (URL) Functions

The URL functions deal with URL manipulation and access. These functions operate in a task-oriented manner. The content and format of the URL that is being used by the function is not verified. Usage of these functions should be tracked by the calling application to ensure that the data is in the format intended.

InternetCanonicalizeUrl Function

Canonicalizes a URL, which includes converting unsafe characters and spaces into escape sequences.

Syntax

BOOL InternetCanonicalizeUrl(

IN LPCTSTR lpszUrl,

OUT LPTSTR lpszBuffer,

IN OUT LPDWORD lpdwBufferLength,

IN DWORD dwFlags

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

lpszUrl

Address of the string that contains the URL to canonicalize.

lpszBuffer

Address of the buffer that receives the resulting canonicalized URL.

lpdwBufferLength

Address of an unsigned long integer value that contains the length, in TCHARs, of the lpszBuffer buffer. If the function succeeds, this parameter receives the length of the lpszBuffer buffer—the length does not include the terminating null character. If the function fails, this parameter receives the required length, in bytes, of the lpszBuffer buffer—the required length includes the terminating null character.

dwFlags

Unsigned long integer value that contains the flags that control canonicalization. This can be one of the following values:

ICU_BROWSER_MODE
Does not encode or decode characters after "#" or "?", and does not remove trailing white space after "?". If this value is not specified, the entire URL is encoded and trailing white space is removed.

ICU_DECODE
Converts all %XX sequences to characters, including escape sequences, before the URL is parsed.

ICU_ENCODE_PERCENT
Encodes any percent signs encountered. By default, percent signs are not encoded. This value is available in Microsoft® Internet Explorer 5 and later versions of the Win32® Internet functions.

ICU_ENCODE_SPACES_ONLY
Encodes spaces only.

ICU_NO_ENCODE
Does not convert unsafe characters to escape sequences.

ICU_NO_META
Does not remove meta sequences (such as "." and "..") from the URL.

If no flags are specified (dwFlags = 0), the function converts all unsafe characters and meta sequences (such as \.,\ .., and \...) to escape sequences.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get extended error information, call GetLastError. Possible errors include:

PRIVATE
ERROR_BAD_PATHNAME
The URL could not be canonicalized. This flag is valid for Internet Explorer 5 and later versions of the Win32 Internet API.

ERROR_INSUFFICIENT_BUFFER
The canonicalized URL is too large to fit in the buffer provided. The lpdwBufferLength parameter is set to the size, in bytes, of the buffer required to hold the canonicalized URL.

ERROR_INTERNET_INVALID_URL
The format of the URL is invalid.

ERROR_INVALID_PARAMETER
There is a bad string, buffer, buffer size, or flags parameter.

Remarks

In Internet Explorer 4.0 and later, InternetCanonicalizeUrl always functions as if the ICU_BROWSER_MODE flag is set. Client applications that need to canonicalize the entire URL should use either CoInternetParseUrl (with the action PARSE_CANONICALIZE and the flag URL_ESCAPE_UNSAFE) or UrlCanonicalize.

InternetCanonicalizeUrl always encodes by default, even if the ICU_DECODE flag has been specified. To decode without re-encoding, use ICU_DECODE | ICU_NO_ENCODE. If the ICU_DECODE flag is used without ICU_NO_ENCODE, the URL is decoded before being parsed; unsafe characters then are re-encoded after parsing. This function will handle arbitrary protocol schemes, but to do so it must make inferences from the unsafe character set.

Applications calling InternetCanonicalizeUrl when using the Internet Explorer 3.0 version of the Win32 Internet API (or when setting the ICU_ENCODE_PERCENT flag for Internet Explorer 5 and later) should track the usage of this function on a particular URL. If unsafe characters in a URL have been converted to escape sequences, using InternetCanonicalizeUrl again on the URL (with no flags) will cause the escape sequences to be converted to another escape sequence. For example, a blank space in a URL would be converted to the escape sequence %20. Calling InternetCanonicalizeUrl again on the URL would cause the escape sequence %20 to be converted to the escape sequence %2520, because the % sign is an unsafe character that is reserved for escape sequences and is replaced by the function with the escape sequence %25.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Handling Uniform Resource Locators,
Microsoft Win32 Internet Functions Reference,
Uniform Resource Locator (URL) Functions

InternetCombineUrl Function

Combines a base and relative URL into a single URL. The resultant URL will be canonicalized (see InternetCanonicalizeUrl).

Syntax

BOOL InternetCombineUrl(

IN LPCTSTR lpszBaseUrl,

IN LPCTSTR lpszRelativeUrl,

OUT LPTSTR lpszBuffer,

IN OUT LPDWORD lpdwBufferLength,

IN DWORD dwFlags

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

lpszBaseUrl

Address of a string variable that contains the base URL.

lpszRelativeUrl

Address of a string variable that contains the relative URL.

lpszBuffer

Address of a buffer that receives the combined URL.

lpdwBufferLength

Address of an unsigned long integer value that contains the size, in TCHARs, of the lpszBuffer buffer. If the function succeeds, this parameter receives the length, in TCHARs, of the combined URL—this length does not include the null terminator. If the function fails, this parameter receives the length, in bytes, of the required buffer—this length includes the null terminator.

dwFlags
Unsigned long integer value that contains the flags controlling the operation of the function. This can be one of the following values:

ICU_BROWSER_MODE
Does not encode or decode characters after "#" or "?", and does not remove trailing white space after "?". If this value is not specified, the entire URL is encoded and trailing white space is removed.

ICU_DECODE
Converts all %XX sequences to characters, including escape sequences, before the URL is parsed.

ICU_ENCODE_PERCENT
Encodes any percent signs encountered. By default, percent signs are not encoded. This value is available in Microsoft® Internet Explorer 5 and later versions of the Win32® Internet functions.

ICU_ENCODE_SPACES_ONLY
Encodes spaces only.

ICU_NO_ENCODE
Does not convert unsafe characters to escape sequences.

ICU_NO_META
Does not remove meta sequences (such as "." and "..") from the URL.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get extended error information, call GetLastError. Possible errors include:

PRIVATE
ERROR_BAD_PATHNAME
The URLs could not be combined.

ERROR_INSUFFICIENT_BUFFER
The buffer supplied to the function was insufficient or NULL. The value indicated by the lpdwBufferLength parameter will contain the number of bytes required to hold the combined URL.

ERROR_INTERNET_INVALID_URL
The format of the URL is invalid.

ERROR_INVALID_PARAMETER
There is a bad string, buffer, buffer size, or flags parameter.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Handling Uniform Resource Locators,
Microsoft Win32 Internet Functions Reference,
Uniform Resource Locator (URL) Functions

InternetCrackUrl Function

Cracks a URL into its component parts.

Syntax

BOOL InternetCrackUrl(

IN LPCTSTR lpszUrl,

IN DWORD dwUrlLength,

IN DWORD dwFlags,

IN OUT LPURL_COMPONENTS lpUrlComponents

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

lpszUrl

Address of a string that contains the canonical URL to crack.

dwUrlLength

Unsigned long integer value that contains the length of the lpszUrl string in TCHAR, or zero if lpszUrl is an ASCIIZ string.

dwFlags

Unsigned long integer value that contains the flags controlling the operation. This can be one of the following values:

ICU_DECODE
Converts encoded characters back to their normal form. This can be used only if the user provides buffers in the URL_COMPONENTS structure to copy the components into.

ICU_ESCAPE
Converts all escape sequences (%xx) to their corresponding characters. This can be used only if the user provides buffers in the URL_COMPONENTS structure to copy the components into.

lpUrlComponents

Address of a URL_COMPONENTS structure that receives the URL components.

Return Value

Returns TRUE if the function succeeds, or FALSE otherwise. To get extended error information, call GetLastError.

Remarks

The required components are indicated by members of the URL_COMPONENTS structure. Each component has a pointer to the value and has a member that stores the length of the stored value. If both the value and the length for a component are equal to zero, that component is not returned. If the pointer to the value of the component is NULL and the value of its corresponding length member is nonzero, the address of the first character of the corresponding component in the lpszUrl string is stored in the pointer, and the length of the component is stored in the length member.

If the pointer contains the address of the user-supplied buffer, the length member must contain the size of the buffer. InternetCrackUrl copies the component into the buffer, and the length member is set to the length of the copied component, minus 1 for the trailing string terminator.

For InternetCrackUrl to work properly, the size of the URL_COMPONENTS structure must be stored in the dwStructSize member.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Handling Uniform Resource Locators,
Microsoft Win32 Internet Functions Reference,
Uniform Resource Locator (URL) Functions,
FtpOpenFile,
InternetCloseHandle,
InternetFindNextFile,
InternetSetStatusCallback

InternetCreateUrl Function

Creates a URL from its component parts.

Syntax

BOOL InternetCreateUrl(

IN LPURL_COMPONENTS lpUrlComponents,

IN DWORD dwFlags,

OUT LPTSTR lpszUrl,

IN OUT LPDWORD lpdwUrlLength

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

lpUrlComponents

Address of a URL_COMPONENTS structure that contains the components from which to create the URL.

dwFlags

Unsigned long integer value that contains the flags that control the operation of this function. This can be a combination of these values:

ICU_ESCAPE
Converts all escape sequences (%xx) to their corresponding characters.

ICU_USERNAME
When adding the user name, uses the name that was specified at logon time.

lpszUrl

Address of a buffer that receives the URL.

lpdwUrlLength

Address of an unsigned long integer value that contains the length, in TCHARs, of the lpszUrl buffer. When the function returns, this parameter receives the length, in TCHARs, of the URL string, minus 1 for the terminating character. If GetLastError returns ERROR_INSUFFICIENT_BUFFER, this parameter receives the number of bytes required to hold the created URL.

Return Value

Returns TRUE if the function succeeds, or FALSE otherwise. To get extended error information, call GetLastError.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Handling Uniform Resource Locators,
Microsoft Win32 Internet Functions Reference,
Uniform Resource Locator (URL) Functions

InternetOpenUrl Function

Begins reading a complete FTP, Gopher, or HTTP URL. Use InternetCanonicalizeUrl first if the URL being used contains a relative URL and a base URL separated by blank spaces.

Syntax

HINTERNET InternetOpenUrl(

IN HINTERNET hInternet,

IN LPCTSTR lpszUrl,

IN LPCTSTR lpszHeaders,

IN DWORD dwHeadersLength,

IN DWORD dwFlags,

IN DWORD_PTR dwContext

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hInternet

HINTERNET handle to the current Internet session. The handle must have been returned by a previous call to InternetOpen.

lpszUrl

Address of a string variable that contains the URL to begin reading. Only URLs beginning with ftp:, gopher:, http:, or https: are supported.

lpszHeaders

Address of a string variable that contains the headers to be sent to the HTTP server. (For more information, see the description of the lpszHeaders parameter in the HttpSendRequest function.)

dwHeadersLength

Unsigned long integer value that contains the length, in TCHAR, of the additional headers. If this parameter is -1L and lpszHeaders is not NULL, lpszHeaders is assumed to be zero-terminated (ASCIIZ) and the length is calculated.

dwFlags

Unsigned long integer value that contains the API flags. This can be one of the following values:

INTERNET_FLAG_EXISTING_CONNECT

INTERNET_FLAG_HYPERLINK

INTERNET_FLAG_IGNORE_CERT_CN_INVALID

INTERNET_FLAG_IGNORE_CERT_DATE_INVALID

INTERNET_FLAG_IGNORE_REDIRECT_TO_HTTP

INTERNET_FLAG_IGNORE_REDIRECT_TO_HTTPS

INTERNET_FLAG_KEEP_CONNECTION

INTERNET_FLAG_NEED_FILE

INTERNET_FLAG_NO_AUTH

INTERNET_FLAG_NO_AUTO_REDIRECT

INTERNET_FLAG_NO_CACHE_WRITE

INTERNET_FLAG_NO_COOKIES

INTERNET_FLAG_NO_UI

INTERNET_FLAG_PASSIVE

INTERNET_FLAG_PRAGMA_NOCACHE

INTERNET_FLAG_RAW_DATA

INTERNET_FLAG_RELOAD

INTERNET_FLAG_RESYNCHRONIZE

INTERNET_FLAG_SECURE

dwContext

Address of an unsigned long integer value that contains the application-defined value that is passed, along with the returned handle, to any callback functions.

Return Value

Returns a valid handle to the FTP, Gopher, or HTTP URL if the connection is successfully established, or NULL if the connection fails. To get a specific error message, call GetLastError. To determine why access to the service was denied, call InternetGetLastResponseInfo.

Remarks

This is a general function that an application can use to retrieve data over any of the protocols that the Win32® Internet functions support. This function is especially useful when the application does not need to access the particulars of a protocol, but only requires the data corresponding to a URL. The InternetOpenUrl function parses the URL string, establishes a connection to the server, and prepares to download the data identified by the URL. The application can then use InternetReadFile (for files) or InternetFindNextFile (for directories) to retrieve the URL data. It is not necessary to call InternetConnect before InternetOpenUrl.

InternetOpenUrl disables Gopher on ports less than 1024, except for port 70 (the standard Gopher port) and port 105 (typically used for Central Services Organization [CSO] name searches).

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Handling Uniform Resource Locators,
Microsoft Win32 Internet Functions Reference,
Uniform Resource Locator (URL) Functions

FTP Functions

The FTP functions deal with FTP file and directory manipulation and navigation. Applications that use a CERN proxy exclusively must use the InternetOpenUrl function because CERN proxies do not support FTP. For more information on how to use InternetOpenUrl, see Accessing URLs Directly.

FtpCommand Function

Allows an application to send commands directly to an FTP server.

Syntax

BOOL FtpCommand(

IN HINTERNET hConnect,

IN BOOL fExpectResponse,

IN DWORD dwFlags,

IN LPCTSTR lpszCommand,

IN DWORD_PTR dwContext,

OUT HINTERNET *phFtpCommand

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hConnect

HINTERNET handle returned from a call to InternetConnect.

fExpectResponse

Boolean value that indicates whether or not the application expects a response from the FTP server. This must be set to TRUE if a response is expected, or FALSE otherwise.

dwFlags

Unsigned long integer value that contains the flags that control this function. This can be set to one of the following values:

FTP_TRANSFER_TYPE_ASCII
Transfers the file using FTP's ASCII (Type A) transfer method. Control and formatting information is converted to local equivalents.

FTP_TRANSFER_TYPE_BINARY
Transfers the file using FTP's Image (Type I) transfer method. The file is transferred exactly as it exists with no changes. This is the default transfer method.

lpszCommand

Address of a string value that contains the command to send to the FTP server.

dwContext

Address of an unsigned long integer value that contains an application-defined value that is used to identify the application context in callbacks.

phFtpCommand

Address of an HINTERNET handle that will be created if a valid data socket is opened. The fExpectResponse parameter must be set to TRUE for phFtpCommand to be filled.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get a specific error message, call GetLastError.

Remarks

GetLastError can return ERROR_INTERNET_NO_DIRECT_ACCESS if the client application is offline. If one or more of the parameters are invalid, GetLastError will return ERROR_INVALID_PARAMETER.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import Library
Wininet.lib

Minimum availability
Internet Explorer 5

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
FTP Sessions,
Microsoft Win32 Internet Functions Reference,
FTP Functions

FtpCreateDirectory Function

Creates a new directory on the FTP server.

Syntax

BOOL FtpCreateDirectory(

IN HINTERNET hConnect,

IN LPCTSTR lpszDirectory

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hConnect

Valid HINTERNET handle returned by a previous call to InternetConnect using INTERNET_SERVICE_FTP.

lpszDirectory

Address of a null-terminated string that contains the name of the directory to create on the remote system. This can be either a fully qualified path or a name relative to the current directory.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get a specific error message, call GetLastError. If the error message indicates that the FTP server denied the request to create a directory, use InternetGetLastResponseInfo to determine why.

Remarks

An application should use FtpGetCurrentDirectory to determine the remote site's current working directory instead of assuming that the remote system uses a hierarchical naming scheme for directories.

The lpszDirectory parameter can be either partially or fully qualified file names relative to the current directory.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
FTP Sessions,
Microsoft Win32 Internet Functions Reference,
FTP Functions

FtpDeleteFile Function

Deletes a file stored on the FTP server.

Syntax

BOOL FtpDeleteFile(

IN HINTERNET hConnect,

IN LPCTSTR lpszFileName

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hConnect

Valid HINTERNET handle returned by a previous call to InternetConnect using INTERNET_SERVICE_FTP.

lpszFileName

Address of a null-terminated string that contains the name of the file to delete on the remote system.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get a specific error message, call GetLastError.

Remarks

The lpszFileName parameter can be either partially or fully qualified file names relative to the current directory.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
FTP Sessions,
Microsoft Win32 Internet Functions Reference,
FTP Functions

FtpFindFirstFile Function

Searches the specified directory of the given FTP session. File and directory entries are returned to the application in the WIN32_FIND_DATA structure.

Syntax

HINTERNET FtpFindFirstFile(

IN HINTERNET hConnect,

IN LPCTSTR lpszSearchFile,

OUT LPWIN32_FIND_DATA lpFindFileData,

IN DWORD dwFlags,

IN DWORD_PTR dwContext

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hConnect

Valid handle to an FTP session returned from InternetConnect.

lpszSearchFile

Address of a null-terminated string that specifies a valid directory path or file name for the FTP server's file system. The string can contain wildcards, but no blank spaces are allowed. If the value of lpszSearchFile is NULL or if it is an empty string, it will find the first file in the current directory on the server.

lpFindFileData

Address of a WIN32_FIND_DATA structure that receives information about the found file or directory.

dwFlags

Unsigned long integer value that contains the flags that control the behavior of this function. This can be a combination of the following values:

INTERNET_FLAG_HYPERLINK

INTERNET_FLAG_NEED_FILE

INTERNET_FLAG_NO_CACHE_WRITE

INTERNET_FLAG_RELOAD

INTERNET_FLAG_RESYNCHRONIZE

dwContext

Address of an unsigned long integer value that contains the application-defined value that associates this search with any application data. This parameter is used only if the application has already called InternetSetStatusCallback to set up a status callback function.

Return Value

Returns a valid handle for the request if the directory enumeration was started successfully, or returns NULL otherwise. To get a specific error message, call GetLastError. If the function finds no matching files, GetLastError returns ERROR_NO_MORE_FILES.

Remarks

For FtpFindFirstFile, file times returned in the WIN32_FIND_DATA structure are in the local time zone, not in a time zone independent (UTC) format.

FtpFindFirstFile is similar to the Win32® FindFirstFile function. Note, however, that only one FtpFindFirstFile can occur at a time within a given FTP session. The enumerations, therefore, are correlated with the FTP session handle. This is because the FTP protocol allows only a single directory enumeration per session.

After calling FtpFindFirstFile and until calling InternetCloseHandle, the application cannot call FtpFindFirstFile again on the given FTP session handle. If a call is made to FtpFindFirstFile on that handle, the function will fail with ERROR_FTP_TRANSFER_IN_PROGRESS.

After beginning a directory enumeration with FtpFindFirstFile, the InternetFindNextFile function can be used to continue the enumeration.

Because the FTP protocol provides no standard means of enumerating, some of the common information about files, such as file creation date and time, is not always available or correct. When this happens, FtpFindFirstFile and InternetFindNextFile fill in unavailable information with a best guess based on available information. For example, creation and last access dates will often be the same as the file's modification date.

The application cannot call FtpFindFirstFile between calls to FtpOpenFile and InternetCloseHandle.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
FTP Sessions,
Microsoft Win32 Internet Functions Reference,
FTP Functions

FtpGetCurrentDirectory Function

Retrieves the current directory for the specified FTP session.

Syntax

BOOL FtpGetCurrentDirectory(

IN HINTERNET hConnect,

OUT LPTSTR lpszCurrentDirectory,

IN OUT LPDWORD lpdwCurrentDirectory

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hConnect

Valid handle to an FTP session.

lpszCurrentDirectory

Address of a buffer that receives the current directory string, which specifies the absolute path to the current directory. The string is null-terminated.

lpdwCurrentDirectory

Address of a variable that specifies the length, in characters, of the buffer for the current directory string. The buffer length must include room for a terminating null character. Using a length of MAX_PATH is sufficient for all paths. When the function returns, the variable receives the number of characters copied into the buffer.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get a specific error message, call GetLastError.

Remarks

If the lpszCurrentDirectory buffer is not large enough, lpdwCurrentDirectory receives the number of bytes required to retrieve the full, current directory name.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
FTP Sessions,
Microsoft Win32 Internet Functions Reference,
FTP Functions,
FtpSetCurrentDirectory

FtpGetFile Function

Retrieves a file from the FTP server and stores it under the specified file name, creating a new local file in the process.

Syntax

BOOL FtpGetFile(

IN HINTERNET hConnect,

IN LPCTSTR lpszRemoteFile,

IN LPCTSTR lpszNewFile,

IN BOOL fFailIfExists,

IN DWORD dwFlagsAndAttributes,

IN DWORD dwFlags,

IN DWORD_PTR dwContext

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hConnect

Valid handle to an FTP session.

lpszRemoteFile

Address of a null-terminated string that contains the name of the file to retrieve from the remote system.

lpszNewFile

Address of a null-terminated string that contains the name of the file to create on the local system.

fFailIfExists

Boolean flag that indicates whether the function should proceed if a local file of the specified name already exists. If fFailIfExists is TRUE and the local file exists, FtpGetFile fails.

dwFlagsAndAttributes

Unsigned long integer value that contains the file attributes for the new file. This can be any combination of the FILE_ATTRIBUTE_* flags used by the CreateFile function. For more information on FILE_ATTRIBUTE_* attributes, see CreateFile in the Platform SDK.

dwFlags

Unsigned long integer value that contains the flags that control how the function will handle the file download. The first set of flag values indicates the conditions under which the transfer occurs. These transfer type flags can be used in combination with the second set of flags that control caching. The application can select one of these transfer type values:

FTP_TRANSFER_TYPE_ASCII
Transfers the file using FTP's ASCII (Type A) transfer method. Control and formatting information is converted to local equivalents.

FTP_TRANSFER_TYPE_BINARY
Transfers the file using FTP's Image (Type I) transfer method. The file is transferred exactly as it exists with no changes. This is the default transfer method.

FTP_TRANSFER_TYPE_UNKNOWN
Defaults to FTP_TRANSFER_TYPE_BINARY.

INTERNET_FLAG_TRANSFER_ASCII
Transfers the file as ASCII.

INTERNET_FLAG_TRANSFER_BINARY
Transfers the file as binary.

The following flags determine how the caching of this file will be done. Any combination of the following flags can be used with the transfer type flag. The possible values are:

INTERNET_FLAG_HYPERLINK

INTERNET_FLAG_NEED_FILE

INTERNET_FLAG_RELOAD

INTERNET_FLAG_RESYNCHRONIZE

dwContext

Address of an unsigned long integer value that contains the application-defined value that associates this search with any application data. This is used only if the application has already called InternetSetStatusCallback to set up a status callback function.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get a specific error message, call GetLastError.

Remarks

FtpGetFile is a high-level routine that handles all the bookkeeping and overhead associated with reading a file from an FTP server and storing it locally. An application that needs to retrieve file data only or that requires close control over the file transfer should use the FtpOpenFile and InternetReadFile functions.

If the dwFlags parameter specifies FILE_TRANSFER_TYPE_ASCII, translation of the file data converts control and formatting characters to local equivalents. The default transfer is binary mode, where the file is downloaded in the same format as it is stored on the server.

Both lpszRemoteFile and lpszNewFile can be either partially or fully qualified file names relative to the current directory.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
FTP Sessions,
Microsoft Win32 Internet Functions Reference,
FTP Functions

FtpGetFileSize Function

Retrieves the file size of the requested FTP resource.

Syntax

DWORD FtpGetFileSize(

IN HINTERNET hFile,

OUT LPDWORD lpdwFileSizeHigh

);

Parameters

hFile

HINTERNET handle returned from a call to FtpOpenFile.

lpdwFileSizeHigh

Address of an unsigned long integer that contains the high-order unsigned long integer of the file size in TCHAR.

Return Value

Returns the low-order unsigned long integer of the file size, in TCHAR, of the requested FTP resource.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import Library
Wininet.lib

Minimum availability
Internet Explorer 5

See Also

Microsoft Win32 Internet Functions Overview,
FTP Sessions,
Microsoft Win32 Internet Functions Reference,
FTP Functions

FtpOpenFile Function

Initiates access to a remote file on an FTP server for reading or writing.

Syntax

HINTERNET FtpOpenFile(

IN HINTERNET hConnect,

IN LPCTSTR lpszFileName,

IN DWORD dwAccess,

IN DWORD dwFlags,

IN DWORD_PTR dwContext

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hConnect

Valid HINTERNET handle to an FTP session.

lpszFileName

Address of a null-terminated string that contains the name of the file to access on the remote system.

dwAccess

Unsigned long integer value that determines how the file will be accessed. This can be GENERIC_READ or GENERIC_WRITE, but not both.

dwFlags

Unsigned long integer value that contains the conditions under which the transfers occur. The application should select one transfer type and any of the flags that indicate how the caching of the file will be controlled. The transfer type can be any one of the following values:

FTP_TRANSFER_TYPE_ASCII
Transfers the file using FTP's ASCII (Type A) transfer method. Control and formatting information is converted to local equivalents.

FTP_TRANSFER_TYPE_BINARY
Transfers the file using FTP's Image (Type I) transfer method. The file is transferred exactly as it exists with no changes. This is the default transfer method.

FTP_TRANSFER_TYPE_UNKNOWN
Defaults to FTP_TRANSFER_TYPE_BINARY.

INTERNET_FLAG_TRANSFER_ASCII
Transfers the file as ASCII.

INTERNET_FLAG_TRANSFER_BINARY
Transfers the file as binary.

The following values are used to control the caching of the file. The application can use one or more of these.

INTERNET_FLAG_HYPERLINK

INTERNET_FLAG_NEED_FILE

INTERNET_FLAG_RELOAD

INTERNET_FLAG_RESYNCHRONIZE

dwContext

Address of an unsigned long integer value that contains the application-defined value that associates this search with any application data. This is only used if the application has already called InternetSetStatusCallback to set up a status callback function.

Return Value

Returns a handle if successful, or NULL otherwise. To get a specific error message, call GetLastError.

Remarks

After calling FtpOpenFile and until calling InternetCloseHandle, all other calls to FTP functions on the same FTP session handle will fail and set the error message to ERROR_FTP_TRANSFER_IN_PROGRESS.

Only one file can be open in a single FTP session. Therefore, no file handle is returned and the application simply uses the FTP session handle when necessary.

The lpszFileName parameter can be either partially or fully qualified file names relative to the current directory.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
FTP Sessions,
Microsoft Win32 Internet Functions Reference,
FTP Functions

FtpPutFile Function

Stores a file on the FTP server.

Syntax

BOOL FtpPutFile(

IN HINTERNET hConnect,

IN LPCTSTR lpszLocalFile,

IN LPCTSTR lpszNewRemoteFile,

IN DWORD dwFlags,

IN DWORD_PTR dwContext

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hConnect

Valid HINTERNET handle to an FTP session.

lpszLocalFile

Address of a null-terminated string that contains the name of the file to send from the local system.

lpszNewRemoteFile

Address of a null-terminated string that contains the name of the file to create on the remote system.

dwFlags

Unsigned long integer value that contains the conditions under which the transfers occur. The application should select one transfer type and any of the flags that control how the caching of the file will be controlled. The transfer type can be any one of the following values:

FTP_TRANSFER_TYPE_ASCII
Transfers the file using FTP's ASCII (Type A) transfer method. Control and formatting information is converted to local equivalents.

FTP_TRANSFER_TYPE_BINARY
Transfers the file using FTP's Image (Type I) transfer method. The file is transferred exactly as it exists, with no changes. This is the default transfer method.

FTP_TRANSFER_TYPE_UNKNOWN
Defaults to FTP_TRANSFER_TYPE_BINARY.

INTERNET_FLAG_TRANSFER_ASCII
Transfers the file as ASCII.

INTERNET_FLAG_TRANSFER_BINARY
Transfers the file as binary.

The following values are used to control the caching of the file. The application can use one or more of the following values:

INTERNET_FLAG_HYPERLINK

INTERNET_FLAG_NEED_FILE

INTERNET_FLAG_RELOAD

INTERNET_FLAG_RESYNCHRONIZE

dwContext

Address of an unsigned long integer value that contains the application-defined value that associates this search with any application data. This parameter is used only if the application has already called InternetSetStatusCallback to set up a status callback.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get a specific error message, call GetLastError.

Remarks

FtpPutFile is a high-level routine that handles all the bookkeeping and overhead associated with reading a file locally and storing it on an FTP server. An application that needs to send file data only, or that requires close control over the file transfer, should use the FtpOpenFile and InternetWriteFile functions.

If the dwFlags parameter specifies FILE_TRANSFER_TYPE_ASCII, translation of the file data converts control and formatting characters to local equivalents.

Both lpszNewRemoteFile and lpszLocalFile can be either partially or fully qualified file names relative to the current directory.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
FTP Sessions,
Microsoft Win32 Internet Functions Reference,
FTP Functions

FtpRemoveDirectory Function

Removes the specified directory on the FTP server.

Syntax

BOOL FtpRemoveDirectory(

IN HINTERNET hConnect,

IN LPCTSTR lpszDirectory

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hConnect

Valid HINTERNET handle to an FTP session.

lpszDirectory

Address of a null-terminated string that contains the name of the directory to remove on the remote system. This can be either a fully qualified path or a name relative to the current directory.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get a specific error message, call GetLastError. If the error message indicates that the FTP server denied the request to remove a directory, use InternetGetLastResponseInfo to determine why.

Remarks

An application should use FtpGetCurrentDirectory to determine the remote site's current working directory, instead of assuming that the remote system uses a hierarchical naming scheme for directories.

The lpszDirectory parameter can be either partially or fully qualified file names relative to the current directory.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
FTP Sessions,
Microsoft Win32 Internet Functions Reference,
FTP Functions

FtpRenameFile Function

Renames a file stored on the FTP server.

Syntax

BOOL FtpRenameFile(

IN HINTERNET hConnect,

IN LPCTSTR lpszExisting,

IN LPCTSTR lpszNew

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hConnect

Valid HINTERNET handle to an FTP session.

lpszExisting

Address of a null-terminated string that contains the name of the file that will have its name changed on the remote FTP server.

lpszNew

Address of a null-terminated string that contains the new name for the remote file.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get a specific error message, call GetLastError.

Remarks

The lpszExisting and lpszNew parameters can be either partially or fully qualified file names relative to the current directory.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
FTP Sessions,
Microsoft Win32 Internet Functions Reference,
FTP Functions

FtpSetCurrentDirectory Function

Changes to a different working directory on the FTP server.

Syntax

BOOL FtpSetCurrentDirectory(

IN HINTERNET hConnect,

IN LPCTSTR lpszDirectory

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hConnect

Valid HINTERNET handle to an FTP session.

lpszDirectory

Address of a null-terminated string that contains the name of the directory to change to on the remote system. This can be either a fully qualified path or a name relative to the current directory.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get a specific error message, call GetLastError. If the error message indicates that the FTP server denied the request to change a directory, use InternetGetLastResponseInfo to determine why.

Remarks

An application should use FtpGetCurrentDirectory to determine the remote site's current working directory, instead of assuming that the remote system uses a hierarchical naming scheme for directories.

The lpszDirectory parameter can be either partially or fully qualified file names relative to the current directory.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
FTP Sessions,
Microsoft Win32 Internet Functions Reference,
FTP Functions

Gopher Functions

The Gopher functions described in this section control the creation and use of the Internet Gopher utilities.

GopherCreateLocator Function

Creates a Gopher or Gopher+ locator string from its component parts.

Syntax

BOOL GopherCreateLocator(

IN LPCSTR lpszHost,

IN INTERNET_PORT nServerPort,

IN LPCTSTR lpszDisplayString,

IN LPCTSTR lpszSelectorString,

IN DWORD dwGopherType,

OUT LPTSTR lpszLocator,

IN OUT LPDWORD lpdwBufferLength

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

lpszHost

Address of a string that contains the name of the host, or a dotted-decimal IP address (such as 198.105.232.1).

nServerPort

Port number on which the Gopher server at lpszHost lives, in host byte order. If nServerPort is INTERNET_INVALID_PORT_NUMBER, the default Gopher port is used.

lpszDisplayString

Address of a string that contains the Gopher document or directory to be displayed. If this parameter is NULL, the function returns the default directory for the Gopher server.

lpszSelectorString

Address of the selector string to send to the Gopher server in order to retrieve information. This parameter can be NULL.

dwGopherType

Unsigned long integer value that specifies whether lpszSelectorString refers to a directory or document, and whether the request is Gopher+ or Gopher. The default value, GOPHER_TYPE_DIRECTORY, is used if the value of dwGopherType is zero. This can be one of the Gopher Type Values.

lpszLocator

Address of a buffer that receives the locator string. If lpszLocator is NULL, lpdwBufferLength receives the necessary buffer length, but the function performs no other processing.

lpdwBufferLength

Address of an unsigned long integer value that contains the length of the lpszLocator buffer, in TCHARs. When the function returns, this parameter receives the number of TCHARs written to the lpszLocator buffer. If GetLastError returns ERROR_INSUFFICIENT_BUFFER, this parameter receives the number of bytes required to form the locator successfully.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get extended error information, call GetLastError or InternetGetLastResponseInfo.

Remarks

To retrieve information from a Gopher server, an application must first get a Gopher "locator" from the Gopher server.

The locator, which the application should treat as an opaque token, is normally used for calls to the GopherFindFirstFile function to retrieve a specific piece of information.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

See Also

Microsoft Win32 Internet Functions Overview,
Gopher Sessions,
Microsoft Win32 Internet Functions Reference,
Gopher Functions

GopherFindFirstFile Function

Uses a Gopher locator and some search criteria to create a session with the server and locate the requested documents, binary files, index servers, or directory trees.

Syntax

HINTERNET GopherFindFirstFile(

IN HINTERNET hConnect,

IN LPCTSTR lpszLocator,

IN LPCTSTR lpszSearchString,

OUT LPGOPHER_FIND_DATA lpFindData,

IN DWORD dwFlags,

IN DWORD_PTR dwContext

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hConnect

Handle to a Gopher session returned by InternetConnect.

lpszLocator

Address of a string containing the name of the item to locate. This can be one of the following items:

· Gopher locator returned by a previous call to this function or the InternetFindNextFile function.

· NULL pointer or zero-length string indicating that the topmost information from a Gopher server is being returned.

· Locator created by the GopherCreateLocator function.

lpszSearchString

Address of a buffer that contains the strings to search, if this request is to an index server. Otherwise, this parameter should be NULL.

lpFindData

Address of a GOPHER_FIND_DATA structure that receives the information retrieved by this function.

dwFlags

Unsigned long integer value containing the flags controlling the function behavior. This can be a combination of the following values:

INTERNET_FLAG_HYPERLINK

INTERNET_FLAG_NEED_FILE

INTERNET_FLAG_NO_CACHE_WRITE

INTERNET_FLAG_RELOAD

INTERNET_FLAG_RESYNCHRONIZE

dwContext

Address of an unsigned long integer value containing the application-defined value that associates this search with any application data.

Return Value

Returns a valid search handle if successful, or NULL otherwise. To get extended error information, call GetLastError or InternetGetLastResponseInfo.

Remarks

GopherFindFirstFile closely resembles the Win32® FindFirstFile function. It creates a connection with a Gopher server, and then returns a single structure containing information about the first Gopher object referenced by the locator string.

After calling GopherFindFirstFile to retrieve the first Gopher object in an enumeration, an application can use the InternetFindNextFile function to retrieve subsequent Gopher objects.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

See Also

Microsoft Win32 Internet Functions Overview,
Gopher Sessions,
Microsoft Win32 Internet Functions Reference,
Gopher Functions

GopherGetAttribute Function

Retrieves the specific attribute information from the server.

Syntax

BOOL GopherGetAttribute(

IN HINTERNET hConnect,

IN LPCTSTR lpszLocator,

IN LPCTSTR lpszAttributeName,

OUT LPBYTE lpBuffer,

IN DWORD dwBufferLength,

OUT LPDWORD lpdwCharactersReturned,

IN GOPHER_ATTRIBUTE_ENUMERATOR lpfnEnumerator,

IN DWORD dwContext

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hConnect

Handle to a Gopher session returned by InternetConnect.

lpszLocator

Address of a string that identifies the item at the Gopher server on which to return attribute information.

lpszAttributeName

Address of a space-delimited string specifying the names of attributes to return. If lpszAttributeName is NULL, GopherGetAttribute returns information about all attributes.

lpBuffer

Address of an application-defined buffer from which attribute information is retrieved.

dwBufferLength

Unsigned long integer value containing the size, in TCHAR, of the lpBuffer buffer.

lpdwCharactersReturned

Address of an unsigned long integer value that contains the number of characters read into the lpBuffer buffer.

lpfnEnumerator

Address of a callback function that enumerates each attribute of the locator. This parameter is optional. If it is NULL, all the Gopher attribute information is placed into lpBuffer. If lpfnEnumerator is specified, the callback function is called once for each attribute of the object.

The callback function receives the address of a single GOPHER_ATTRIBUTE_TYPE structure with each call. The enumeration callback function allows the application to avoid having to parse the Gopher attribute information.

dwContext

Unsigned long integer value that contains the application-defined value that associates this operation with any application data.

Return Value

Returns TRUE if the request is satisfied, or FALSE otherwise. To get extended error information, call GetLastError or InternetGetLastResponseInfo.

Remarks

Generally, applications call this function after calling GopherFindFirstFile or InternetFindNextFile.

The size of the lpBuffer parameter must be equal to or greater than the value of MIN_GOPHER_ATTRIBUTE_LENGTH (currently defined in Wininet.h as 256 bytes).

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

See Also

Microsoft Win32 Internet Functions Overview,
Gopher Sessions,
Microsoft Win32 Internet Functions Reference,
Gopher Functions

GopherGetLocatorType Function

Parses a Gopher locator and determines its attributes.

Syntax

BOOL GopherGetLocatorType(

IN LPCTSTR lpszLocator,

OUT LPDWORD lpdwGopherType

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

lpszLocator

Address of the Gopher locator string to parse.

lpdwGopherType

Address of an unsigned long integer variable that receives the type of the locator. The type is a bitmask that consists of a combination of the Gopher Type Values.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get extended error information, call GetLastError.

Remarks

GopherGetLocatorType returns information about the item referenced by a Gopher locator. Note that it is possible for multiple attributes to be set on a file. For example, both GOPHER_TYPE_TEXT_FILE and GOPHER_TYPE_GOPHER_PLUS are set for a text file stored on a Gopher+ server.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

See Also

Microsoft Win32 Internet Functions Overview,
Gopher Sessions,
Microsoft Win32 Internet Functions Reference,
Gopher Functions
GopherOpenFile Function

Begins reading a Gopher data file from a Gopher server.

Syntax

HINTERNET GopherOpenFile(

IN HINTERNET hConnect,

IN LPCTSTR lpszLocator,

IN LPCTSTR lpszView,

IN DWORD dwFlags,

IN DWORD_PTR dwContext

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hConnect

Handle to a Gopher session returned by InternetConnect.

lpszLocator

Address of a string that identifies the file to open. Generally, this locator is returned from a call to GopherFindFirstFile or InternetFindNextFile. Because the Gopher protocol has no concept of a current directory, the locator is always fully qualified.

lpszView

Address of a string that describes the view to open if several views of the file exist at the server. If lpszView is NULL, the function uses the default file view.

dwFlags

Unsigned long integer value that contains the conditions under which subsequent transfers occur. This can be any combination of the following values:

INTERNET_FLAG_HYPERLINK

INTERNET_FLAG_NEED_FILE

INTERNET_FLAG_NO_CACHE_WRITE

INTERNET_FLAG_RELOAD

INTERNET_FLAG_RESYNCHRONIZE

dwContext

Address of an unsigned long integer value that contains an application-defined value that associates this operation with any application data.

Return Value

Returns a handle if successful, or NULL if the file cannot be opened. To get extended error information, call GetLastError or InternetGetLastResponseInfo.

Remarks

GopherOpenFile opens a file at a Gopher server. Because a file cannot actually be opened or locked at a server, this function simply associates location information with a handle that an application can use for file-based operations such as InternetReadFile or GopherGetAttribute.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

See Also

Microsoft Win32 Internet Functions Overview,
Gopher Sessions,
Microsoft Win32 Internet Functions Reference,
Gopher Functions
<!-- LIST_END --></DIV>HTTP Functions

The HTTP functions described in this section control the transmission and content of HTTP requests.

HttpAddRequestHeaders Function

Adds one or more HTTP request headers to the HTTP request handle.

Syntax

BOOL HttpAddRequestHeaders(

IN HINTERNET hConnect,

IN LPCTSTR lpszHeaders,

IN DWORD dwHeadersLength,

IN DWORD dwModifiers

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hConnect

HINTERNET handle returned by a call to the HttpOpenRequest function.

lpszHeaders

Address of a string variable containing the headers to append to the request. Each header must be terminated by a CR/LF (carriage return/line feed) pair.

dwHeadersLength

Unsigned long integer value that contains the length, in TCHAR, of lpszHeaders. If this parameter is -1L, the function assumes that lpszHeaders is zero-terminated (ASCIIZ), and the length is computed.

dwModifiers

Unsigned long integer value that contains the flags used to modify the semantics of this function. Can be a combination of the following values:

HTTP_ADDREQ_FLAG_ADD
Adds the header if it does not exist. Used with HTTP_ADDREQ_FLAG_REPLACE.

HTTP_ADDREQ_FLAG_ADD_IF_NEW
Adds the header only if it does not already exist; otherwise, an error is returned.

HTTP_ADDREQ_FLAG_COALESCE
Coalesces headers of the same name.

HTTP_ADDREQ_FLAG_COALESCE_WITH_COMMA

Coalesces headers of the same name. For example, adding "Accept: text/*" followed by "Accept: audio/*" with this flag results in the formation of the single header "Accept: text/*, audio/*". This causes the first header found to be coalesced. It is up to the calling application to ensure a cohesive scheme with respect to coalesced/separate headers.

HTTP_ADDREQ_FLAG_COALESCE_WITH_SEMICOLON

Coalesces headers of the same name using a semicolon.

HTTP_ADDREQ_FLAG_REPLACE
Replaces or removes a header. If the header value is empty and the header is found, it is removed. If not empty, the header value is replaced.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get extended error information, call GetLastError.

Remarks

HttpAddRequestHeaders appends additional, free-format headers to the HTTP request handle and is intended for use by sophisticated clients that need detailed control over the exact request sent to the HTTP server.

Note that for basic HttpAddRequestHeaders, the application can pass in multiple headers in a single buffer. If the application is trying to remove or replace a header, only one header can be supplied in lpszHeaders.
Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
HTTP Sessions,
Microsoft Win32 Internet Functions Reference,
HTTP Functions

HttpEndRequest Function

Ends an HTTP request that was initiated by HttpSendRequestEx.

Syntax

BOOL HttpEndRequest(

IN HINTERNET hRequest,

OUT LPINTERNET_BUFFERS lpBuffersOut,

IN DWORD dwFlags,

IN DWORD dwContext

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hRequest

HINTERNET handle returned by HttpOpenRequest and sent by HttpSendRequestEx.

lpBuffersOut

Reserved. Must be set to NULL.

Address of an INTERNET_BUFFERS structure.

dwFlags

Unsigned long integer value that contains the flags that control this function. Can be one of the following values:

HSR_ASYNC
Identical to WININET_API_FLAG_ASYNC.

HSR_SYNC
Identical to WININET_API_FLAG_SYNC.

HSR_USE_CONTEXT
Identical to WININET_API_FLAG_USE_CONTEXT.

HSR_INITIATE
Iterative operation (completed by HttpEndRequest).

HSR_DOWNLOAD
Download resource to file.

HSR_CHUNKED
Send chunked data.

dwContext

Unsigned long integer variable that contains the application-defined context value for applications that register a status callback function.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get extended error information, call GetLastError.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 4.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
HTTP Sessions,
Microsoft Win32 Internet Functions Reference,
HTTP Functions
HttpOpenRequest Function

Creates an HTTP request handle.

Syntax

HINTERNET HttpOpenRequest(

IN HINTERNET hConnect,

IN LPCTSTR lpszVerb,

IN LPCTSTR lpszObjectName,

IN LPCTSTR lpszVersion,

IN LPCTSTR lpszReferer,

IN LPCTSTR FAR * lpszAcceptTypes,

IN DWORD dwFlags,

IN DWORD_PTR dwContext

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hConnect

HINTERNET handle to an HTTP session returned by InternetConnect.

lpszVerb

Address of a string that contains the verb to use in the request. If this parameter is NULL, the function uses GET as the verb.

lpszObjectName

Address of a string that contains the name of the target object of the specified verb. This is generally a file name, an executable module, or a search specifier.

lpszVersion

Address of a string that contains the HTTP version. If this parameter is NULL, the function uses HTTP/1.0 as the version.

lpszReferer

Address of a string that specifies the address (URL) of the document from which the URL in the request (lpszObjectName) was obtained. If this parameter is NULL, no "referrer" is specified.

lpszAcceptTypes

Address of a null-terminated array of string pointers indicating media types accepted by the client. If this parameter is NULL, no types are accepted by the client. Servers interpret a lack of accept types to indicate that the client accepts only documents of type "text/*" (that is, only text documents, and not pictures or other binary files). For a listing of valid media types, see Media Types at ftp.isi.edu/in-notes/iana/assignments/media-types/media-types.

dwFlags

Unsigned long integer value that contains the Internet flag values. This can be any of the following values:

INTERNET_FLAG_CACHE_IF_NET_FAIL

INTERNET_FLAG_HYPERLINK

INTERNET_FLAG_IGNORE_CERT_CN_INVALID

INTERNET_FLAG_IGNORE_CERT_DATE_INVALID

INTERNET_FLAG_IGNORE_REDIRECT_TO_HTTP

INTERNET_FLAG_IGNORE_REDIRECT_TO_HTTPS

INTERNET_FLAG_KEEP_CONNECTION

INTERNET_FLAG_NEED_FILE

INTERNET_FLAG_NO_AUTH

INTERNET_FLAG_NO_AUTO_REDIRECT

INTERNET_FLAG_NO_CACHE_WRITE

INTERNET_FLAG_NO_COOKIES

INTERNET_FLAG_NO_UI

INTERNET_FLAG_PRAGMA_NOCACHE

INTERNET_FLAG_RELOAD

INTERNET_FLAG_RESYNCHRONIZE

INTERNET_FLAG_SECURE

dwContext

Address of an unsigned long integer value that contains the application-defined value that associates this operation with any application data.

Return Value

Returns a valid (non-NULL) HTTP request handle if successful, or NULL otherwise. To get extended error information, call GetLastError.

Remarks

HttpOpenRequest creates a new HTTP request handle and stores the specified parameters in that handle. An HTTP request handle holds a request to be sent to an HTTP server and contains all RFC822/MIME/HTTP headers to be sent as part of the request.

Beginning with Microsoft® Internet Explorer 5, if lpszVerb is set to "HEAD", the Content-Length header is ignored on responses from HTTP/1.1 servers.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
HTTP Sessions,
Microsoft Win32 Internet Functions Reference,
HTTP Functions

HttpQueryInfo Function

Retrieves header information associated with an HTTP request.

Syntax

BOOL HttpQueryInfo(

IN HINTERNET hRequest,

IN DWORD dwInfoLevel,

IN LPVOID lpvBuffer,

IN LPDWORD lpdwBufferLength,

IN OUT LPDWORD lpdwIndex,

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hRequest

HINTERNET request handle returned by HttpOpenRequest or InternetOpenUrl.

dwInfoLevel

Unsigned long integer value that contains a combination of an attribute to retrieve and the flags that modify the request. The attribute can be any one of the Attributes, and the flag can be any one of the Modifiers on the Query Info Flags page.

lpvBuffer

Address of the buffer that receives the information.

lpdwBufferLength

Address of a value that contains the length of the data buffer, in TCHARs. When the function returns, this parameter contains the address of a value specifying the length of the information written to the buffer. When the function returns strings, the following rules apply:

· If the function succeeds, lpdwBufferLength specifies the length of the string, in TCHARs, minus 1 for the terminating null.

· If the function fails and ERROR_INSUFFICIENT_BUFFER is returned, lpdwBufferLength specifies the number of bytes that the application must allocate to receive the string.

lpdwIndex

Address of a zero-based header index used to enumerate multiple headers with the same name. When calling the function, this parameter is the index of the specified header to return. When the function returns, this parameter is the index of the next header. If the next index cannot be found, ERROR_HTTP_HEADER_NOT_FOUND is returned.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get extended error information, call GetLastError.

Remarks

You can retrieve different types of data from HttpQueryInfo:

· Strings (default)

· SYSTEMTIME (for Data: Expires:, headers)

· DWORD (for STATUS_CODE, CONTENT_LENGTH, and so on, if HTTP_QUERY_FLAG_NUMBER has been used)

If your application needs the data returned as a data type other than a string, you must include the appropriate modifier with the attribute passed to dwInfoLevel.

Example

This example demonstrates a call to HttpQueryInfo. <DIV ID=divCode>
bRet = HttpQueryInfo(hResource, HTTP_QUERY_RAW_HEADERS_CRLF,

 lpvSomeBuffer, &dwSize, NULL));

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
HTTP Sessions,
Microsoft Win32 Internet Functions Reference,
Microsoft Win32 Internet Functions Tutorials,
Retrieving HTTP Headers,
HTTP Functions

<!-- CONTENTS_END --></DIV>
HttpSendRequest Function

Sends the specified request to the HTTP server.

Syntax

BOOL HttpSendRequest(

IN HINTERNET hRequest,

IN LPCTSTR lpszHeaders,

IN DWORD dwHeadersLength,

IN LPVOID lpOptional,

DWORD dwOptionalLength

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hRequest

HINTERNET handle returned by HttpOpenRequest.

lpszHeaders

Address of a string variable that contains the additional headers to be appended to the request. This parameter can be NULL if there are no additional headers to append.

dwHeadersLength

Unsigned long integer value that contains the length, in TCHAR, of the additional headers. If this parameter is -1L and lpszHeaders is not NULL, the function assumes that lpszHeaders is zero-terminated (ASCIIZ), and the length is calculated.

lpOptional

Address of a buffer containing any optional data to send immediately after the request headers. This parameter is generally used for POST and PUT operations. The optional data can be the resource or information being posted to the server. This parameter can be NULL if there is no optional data to send.

dwOptionalLength

Unsigned long integer value that contains the length, in bytes, of the optional data. This parameter can be zero if there is no optional data to send.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get extended error information, call GetLastError.

Remarks

HttpSendRequest sends the specified request to the HTTP server and allows the client to specify additional headers to send along with the request.

The function also lets the client specify optional data to send to the HTTP server immediately following the request headers. This feature is generally used for "write" operations such as PUT and POST.

After the request is sent, the status code and response headers from the HTTP server are read. These headers are maintained internally and are available to client applications through the HttpQueryInfo function.

An application can use the same HTTP request handle in multiple calls to HttpSendRequest, but the application must read all data returned from the previous call before calling the function again.

In offline mode, HttpSendRequest will return ERROR_FILE_NOT_FOUND if the resource is not found in the Internet cache.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
HTTP Sessions,
Microsoft Win32 Internet Functions Reference,
HTTP Functions

HttpSendRequestEx Function

Sends the specified request to the HTTP server and allows chunked transfers.

Syntax

BOOL HttpSendRequestEx(

IN HINTERNET hRequest,

IN LPINTERNET_BUFFERS lpBuffersIn,

OUT LPINTERNET_BUFFERS lpBuffersOut,

IN DWORD dwFlags,

IN DWORD dwContext

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hRequest

HINTERNET handle returned by HttpOpenRequest.

lpBuffersIn

Optional. Address of an INTERNET_BUFFERS structure.

lpBuffersOut

Optional. Address of an INTERNET_BUFFERS structure.

dwFlags

One of the following values:

HSR_ASYNC
Identical to WININET_API_FLAG_ASYNC.

HSR_SYNC
Identical to WININET_API_FLAG_SYNC.

HSR_USE_CONTEXT
Identical to WININET_API_FLAG_USE_CONTEXT.

HSR_INITIATE
Iterative operation (completed by HttpEndRequest).

HSR_DOWNLOAD
Download resource to file.

HSR_CHUNKED
Send chunked data.

dwContext

Unsigned long integer variable that contains the application-defined context value, if a status callback function has been registered.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get extended error information, call GetLastError.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 4.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
HTTP Sessions,
Microsoft Win32 Internet Functions Reference,
HTTP Functions
Cookie Functions

Cookies are the means by which, under HTTP protocol, a server or a script can maintain state information on the client workstation. The Microsoft® Win32® Internet functions maintain a persistent cookie database for this purpose. Cookie functions are provided for users of Win32 Internet functions to set cookies into, and access them from, the cookie database. For more information about cookies, see Cookie Functions in the Win32 Internet Functions Overview.

InternetGetCookie Function

Retrieves the cookie for the specified URL.

Syntax

BOOL InternetGetCookie(

IN LPCTSTR lpszUrlName,

IN LPCTSTR lpszCookieName,

OUT LPTSTR lpszCookieData,

IN OUT LPDWORD lpdwSize

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

lpszUrlName

Address of a string that contains the URL to get cookies for.

lpszCookieName

Address of a string that contains the name of the cookie to get for the specified URL. This has not been implemented in this release.

lpszCookieData

Address of the buffer that receives the cookie data. This value can be NULL.

lpdwSize

Address of an unsigned long integer variable that specifies the size of the lpszCookieData buffer. If the function succeeds, the buffer receives the amount of data copied to the lpszCookieData buffer. If lpszCookieData is NULL, this parameter receives a value that specifies the size of the buffer necessary to copy all the cookie data.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get a specific error value, call GetLastError. The following error values apply to InternetGetCookie:

PRIVATE
ERROR_NO_MORE_ITEMS
There is no cookie for the specified URL and all its parents.

ERROR_INSUFFICIENT_BUFFER
The value passed in lpdwSize is insufficient to copy all the cookie data. The value returned in lpdwSize is the size of the buffer necessary to get all the data.

Remarks

InternetGetCookie does not require a call to InternetOpen. InternetGetCookie checks in the windows\cookies directory for persistent cookies that have an expiration date set sometime in the future. InternetGetCookie also searches memory for any session cookies (cookies that do not have an expiration date) that were created in the same process by InternetSetCookie, since these cookies are not written to any files. Rules for creating cookie files are internal to Win32® Internet functions and might change in the future.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Managing Cookies,
Microsoft Win32 Internet Functions Reference,
Cookie Functions

InternetSetCookie Function

Creates a cookie associated with the specified URL.

Syntax

BOOL InternetSetCookie(

IN LPCTSTR lpszUrl,

IN LPCTSTR lpszCookieName,

IN LPCTSTR lpszCookieData

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

lpszUrl

Address of a null-terminated string that specifies the URL for which the cookie should be set.

lpszCookieName

Address of a string that contains the name to associate with the cookie data. If this parameter is NULL, no name is associated with the cookie.

lpszCookieData

Address of the actual data to associate with the URL.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get a specific error message, call GetLastError.

Remarks

Cookies created by InternetSetCookie without an expiration date are stored in memory and are available only in the same process that created them. Cookies that include an expiration date are stored in the windows\cookies directory.

Creating a new cookie might cause a dialog box to appear on the screen if the appropriate registry value, AllowCookies, is set. There is no way to change the registry value from a Win32® Internet function.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Managing Cookies,
Microsoft Win32 Internet Functions Reference,
Cookie Functions
Persistent URL Cache Functions

This section describes the functions used by applications that need persistent caching services. These functions allow an application to save data in the local file system for subsequent use, such as in situations where access to the data is over a low bandwidth link, or the access is not available at all. The calling program that inserts data into the persistent cache assigns a source name that is used to do operations such as retrieve the data, set and get some properties on the data, and delete data.

The protocols implemented in Microsoft® Win32® Internet functions use the cache functions to provide persistent caching and offline browsing. Unless explicitly specified not to cache through the INTERNET_FLAG_NO_CACHE_WRITE flag, Win32 Internet functions cache all data downloaded from the network. The responses to POST data are not cached.

CommitUrlCacheEntry Function

Stores data in the specified file in the Internet cache and associates it with the given URL.

Syntax

BOOL CommitUrlCacheEntry(

IN LPCTSTR lpszUrlName,

IN LPCTSTR lpszLocalFileName,

IN FILETIME ExpireTime,

IN FILETIME LastModifiedTime,

IN DWORD CacheEntryType,

IN LPHACK lpHeaderInfo,

IN DWORD dwHeaderSize,

IN LPCTSTR lpszFileExtension,

IN LPCTSTR lpszOriginalUrl

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

lpszUrlName

Address of a string variable that contains the source name of the cache entry. The name string must be unique and should not contain any escape characters.

lpszLocalFileName

Address of a string variable that contains the name of the local file that is being cached. This should be the same name as that returned by CreateUrlCacheEntry.

ExpireTime

FILETIME structure that contains the expire date and time (in Greenwich mean time) of the file that is being cached. If the expire date and time is unknown, set this parameter to zero.

LastModifiedTime

FILETIME structure that contains the last modified date and time (in Greenwich mean time) of the URL that is being cached. If the last modified date and time is unknown, set this parameter to zero.

CacheEntryType

Unsigned long integer value that contains the cache type bitmask. This can be a combination of the following values:

COOKIE_CACHE_ENTRY

EDITED_CACHE_ENTRY

NORMAL_CACHE_ENTRY

SPARCE_CACHE_ENTRY

STICKY_CACHE_ENTRY

TRACK_CACHE_ENTRY

TRACK_OFFLINE_CACHE_ENTRY

TRACK_ONLINE_CACHE_ENTRY

URLHISTORY_CACHE_ENTRY

The STICKY_CACHE_ENTRY type is used to make cache entries exempt from scavenging. The default exempt time for entries set using CommitUrlCacheEntry is one day. The exempt time can be changed using the SetUrlCacheEntryInfo function.

lpHeaderInfo

Address of the buffer containing the header information. If this parameter is not NULL, the header information is treated as extended attributes of the URL that are returned in the INTERNET_CACHE_ENTRY_INFO structure.

dwHeaderSize

Unsigned long integer value that contains the size of the header information in TCHAR. If lpHeaderInfo is not NULL, this value is assumed to indicate the size of the buffer that will store the header information. An application can maintain headers as part of the data and provide dwHeaderSize together with a NULL value for lpHeaderInfo.

lpszFileExtension

Reserved. Must be set to NULL.

lpszOriginalUrl

Address of a string variable that contains the original URL if redirection has occurred.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get extended error information, call GetLastError Possible error values include:

PRIVATE
ERROR_DISK_FULL
The cache storage is full.

ERROR_FILE_NOT_FOUND
The specified local file is not found.

Remarks

If the cache storage is full, CommitUrlCacheEntry invokes cache cleanup to make space for this new file. If the cache entry already exists, the function overwrites the entry if it is not in use. An entry is in use when it has been retrieved with either RetrieveUrlCacheEntryStream or RetrieveUrlCacheEntryFile.

Clients that add entries to the cache should set the headers to at least "HTTP/1.0 200 OK\r\n\r\n"; otherwise, Microsoft Internet Explorer and other client applications that are utilizing the Win32 Internet functions will disregard the entry.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Caching,
Microsoft Win32 Internet Functions Reference,
Persistent URL Cache Functions,
CreateUrlCacheEntry

CreateUrlCacheEntry Function

Creates a local file name for saving the cache entry based on the specified URL and the file extension.

Syntax

BOOL CreateUrlCacheEntry(

IN LPCTSTR lpszUrlName,

IN DWORD dwExpectedFileSize,

IN LPCTSTR lpszFileExtension,

OUT LPTSTR lpszFileName,

IN DWORD dwReserved

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

lpszUrlName

Address of a string value that contains the name of the URL. The string should not contain any escape characters.

dwExpectedFileSize

Unsigned long integer value that contains the expected size of the file needed to store the data corresponding to the source entity in TCHAR. If the expected size is unknown, set this value to zero.

lpszFileExtension

Address of a string value that contains an extension name of the file in the local storage.

lpszFileName

Address of a buffer that receives the file name. The buffer should be large enough (MAX_PATH) to store the path of the created file.

dwReserved

Reserved. Must be set to zero.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get extended error information, call GetLastError.

Remarks

After CreateUrlCacheEntry is called, the application can write directly into the file in local storage. When the file is completely received, the caller should call CommitUrlCacheEntry to commit the entry in the cache.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Caching,
Microsoft Win32 Internet Functions Reference,
Persistent URL Cache Functions,
CommitUrlCacheEntry

CreateUrlCacheGroup Function

Generates cache group identifications.

Syntax

GROUPID CreateUrlCacheGroup(

IN DWORD dwFlags,

IN LPVOID lpReserved

);

Parameters

dwFlags

Unsigned long integer value that contains the flags to control the creation of the cache group. This can be set to CACHEGROUP_FLAG_GIDONLY, which causes CreateUrlCacheGroup to generate a unique GROUPID, but does not create a physical group.

lpReserved

Reserved. Must be set to NULL.

Return Value

Returns a valid GROUPID if successful, or FALSE otherwise. To get specific error information, call GetLastError.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented only as an ANSI function.

Windows
Use Windows 95 and later. Implemented only as an ANSI function.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 4.0

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Caching, Microsoft Win32 Internet Functions Reference,
Persistent URL Cache Functions
DeleteUrlCacheEntry Function

Removes the file associated with the source name from the cache, if the file exists.

Syntax

BOOL DeleteUrlCacheEntry(

IN LPCTSTR lpszUrlName

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

lpszUrlName

Address of a string that contains the name of the source corresponding to the cache entry.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get extended error information, call GetLastError. Possible error values include:

PRIVATE
ERROR_ACCESS_DENIED
The file is locked or in use. The entry will be marked and will be deleted when the file is unlocked.

ERROR_FILE_NOT_FOUND
The file is not in the cache.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Caching,
Microsoft Win32 Internet Functions Reference,
Persistent URL Cache Functions

DeleteUrlCacheGroup Function

Releases the specified GROUPID and any associated state in the cache index file.

Syntax

BOOL DeleteUrlCacheGroup(

IN GROUPID GroupId,

IN DWORD dwFlags,

IN LPVOID lpReserved

);

Parameters

GroupId

GROUPID value that is associated with the cache group to be released.

dwFlags

Unsigned long integer value containing the flags to control the cache group deletion. This can be set to CACHEGROUP_FLAG_FLUSHURL_ONDELETE, which causes DeleteUrlCacheGroup to delete all of the cache entries associated with this group, unless the entry belongs to another group.

lpReserved

Reserved. Must be set to NULL.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get specific error information, call GetLastError.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented only as an ANSI function.

Windows
Use Windows 95 and later. Implemented only as an ANSI function.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 4.0

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Caching,
Microsoft Win32 Internet Functions Reference,
Persistent URL Cache Functions

FindCloseUrlCache Function

Closes the specified cache enumeration handle.

Syntax

BOOL FindCloseUrlCache(

IN HANDLE hEnumHandle

);

Parameters

hEnumHandle

Handle returned by a previous call to the FindFirstUrlCacheEntry function.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get extended error information, call GetLastError.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented only as an ANSI function.

Windows
Use Windows 95 and later. Implemented only as an ANSI function.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Caching,
Microsoft Win32 Internet Functions Reference,
Persistent URL Cache Functions
FindFirstUrlCacheEntry Function

Begins the enumeration of the Internet cache.

Syntax

HANDLE FindFirstUrlCacheEntry(

IN LPCTSTR lpszUrlSearchPattern,

OUT LPINTERNET_CACHE_ENTRY_INFO lpFirstCacheEntryInfo,

IN OUT LPDWORD lpdwFirstCacheEntryInfoBufferSize

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

lpszUrlSearchPattern

Address of a string that contains the source name pattern to search for. This can be set to "cookie:" or "visited:" to enumerate the cookies and URL History entries in the cache. If this parameter is NULL, the function uses *.*.

lpFirstCacheEntryInfo

Address of an INTERNET_CACHE_ENTRY_INFO structure.

lpdwFirstCacheEntryInfoBufferSize

Address of an unsigned long integer variable that specifies the size of the lpFirstCacheEntryInfo buffer, in TCHARs. When the function returns, the variable contains the number of TCHARs copied to the buffer, or the required size, in bytes, needed to retrieve the cache entry.

Return Value

Returns a handle that the application can use in the FindNextUrlCacheEntry function to retrieve subsequent entries in the cache. If the function fails, the return value is NULL. To get extended error information, call GetLastError.

ERROR_INSUFFICIENT_BUFFER indicates that the size of lpFirstCacheEntryInfo as specified by lpdwFirstCacheEntryInfoBufferSize is not sufficient to contain all the information. The value returned in lpdwFirstCacheEntryInfoBufferSize indicates the buffer size necessary to contain all the information.

Remarks

FindFirstUrlCacheEntry and FindNextUrlCacheEntry return variable size information. If ERROR_INSUFFICIENT_BUFFER is returned, the application should allocate a buffer of the size specified by lpdwFirstCacheEntryInfoBufferSize. For more information, see Appendix B: Using Buffers in the Win32 Internet Functions Overview.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Caching,
Microsoft Win32 Internet Functions Reference,
Persistent URL Cache Functions

FindFirstUrlCacheEntryEx Function

Starts a filtered enumeration of the Internet cache.

Syntax

HANDLE FindFirstUrlCacheEntryEx(

IN LPCSTR lpszUrlSearchPattern,

IN DWORD dwFlags,

IN DWORD dwFilter,

IN GROUPID GroupId

OUT LPINTERNET_CACHE_ENTRY_INFO lpFirstCacheEntryInfo,

IN OUT LPDWORD lpdwFirstCacheEntryInfoBufferSize,

OUT LPVOID lpReserved,

IN OUT LPDWORD pcbReserved2,

IN LPVOID lpReserved3

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

lpszUrlSearchPattern

String that contains the search pattern. Search patterns are currently not supported, so the value must be set to NULL to indicate all entries with the matching GROUPID.

dwFlags

Unsigned long integer value that contains the flags controlling the enumeration. No flags are currently implemented; this must be set to zero.

dwFilter

Unsigned long integer value that indicates the cache entry types that are allowed. This can be any combination of cache entry types:

COOKIE_CACHE_ENTRY
Cookie cache entry.

NORMAL_CACHE_ENTRY
Normal cache entry; can be deleted to recover space for new entries.

STICKY_CACHE_ENTRY
Sticky cache entry; exempt from scavenging.

TRACK_OFFLINE_CACHE_ENTRY
Not currently implemented.

TRACK_ONLINE_CACHE_ENTRY
Not currently implemented.

URLHISTORY_CACHE_ENTRY
Visited link cache entry.

GroupId

GROUPID value that indicates the cache group to enumerate. Set the value to zero to enumerate all entries that are not grouped.

lpFirstCacheEntryInfo

Address of the buffer to hold the INTERNET_CACHE_ENTRY_INFO structure in which the cache entry information will be stored.

lpdwFirstCacheEntryInfoBufferSize

Address of an unsigned long integer variable that indicates the size of lpFirstCacheEntryInfo, in TCHARs.

lpReserved

Reserved. Must be set to NULL.

pcbReserved2

Reserved. Must be set to NULL.

lpReserved3

Reserved. Must be set to NULL.

Return Value

Returns a valid handle if successful, or NULL otherwise. To get specific error information, call GetLastError. If the function finds no matching files, GetLastError returns ERROR_NO_MORE_FILES.

Remarks

At the end of the enumeration, the application should call FindCloseUrlCache.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 4.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Caching,
Microsoft Win32 Internet Functions Reference,
Persistent URL Cache Functions

FindFirstUrlCacheGroup Function

Initiates the enumeration of the cache groups in the Internet cache.

Syntax

HANDLE FindFirstUrlCacheGroup(

IN DWORD dwFlags,

IN DWORD dwFilter,

IN LPVOID lpSearchCondition,

IN DWORD dwSearchCondition,

OUT GROUPID *lpGroupId,

IN OUT LPVOID lpReserved

);

Parameters

dwFlags

Reserved. Must be set to zero.

dwFilter

Unsigned long integer value that indicates what filters to use. This can be one of the following values:

CACHEGROUP_SEARCH_ALL
Search all of the cache groups.

CACHEGROUP_SEARCH_BYURL
Not currently implemented.

lpSearchCondition

Reserved. Must be set to NULL.

dwSearchCondition

Reserved. Must be set to zero.

lpGroupId

Address of a GROUPID variable that contains the identification of the first cache group that matches the search criteria.

lpReserved

Reserved. Must be set to NULL.

Return Value

Returns a valid handle if successful, or NULL otherwise. To get specific error information, call GetLastError. If the function finds no matching files, GetLastError returns ERROR_NO_MORE_FILES.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented only as an ANSI function.

Windows
Use Windows 95 and later. Implemented only as an ANSI function.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 5

FindNextUrlCacheEntry Function

Retrieves the next entry in the Internet cache.

Syntax

BOOL FindNextUrlCacheEntry(

IN HANDLE hEnumHandle,

OUT LPINTERNET_CACHE_ENTRY_INFO lpNextCacheEntryInfo,

IN OUT LPWORD lpdwNextCacheEntryInfoBufferSize

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hEnumHandle

Enumeration handle obtained from a previous call to FindFirstUrlCacheEntry.

lpNextCacheEntryInfo

Address of an INTERNET_CACHE_ENTRY_INFO structure that receives information about the cache entry.

lpdwNextCacheEntryInfoBufferSize

Address of an unsigned long integer variable that specifies the size of the lpNextCacheEntryInfo buffer, in TCHARs. When the function returns, the variable contains the number of TCHARs copied to the buffer, or the size of the buffer (in bytes) required to retrieve the cache entry.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get extended error information, call GetLastError. Possible error values include:

PRIVATE
ERROR_INSUFFICIENT_BUFFER
The size of lpNextCacheEntryInfo as specified by lpdwNextCacheEntryInfoBufferSize is not sufficient to contain all the information. The value returned in lpdwNextCacheEntryInfoBufferSize indicates the buffer size necessary to contain all the information.

ERROR_NO_MORE_ITEMS
The enumeration completed.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Caching,
Microsoft Win32 Internet Functions Reference,
Persistent URL Cache Functions

FindNextUrlCacheEntryEx Function

Finds the next cache entry in a cache enumeration started by the FindFirstUrlCacheEntryEx function.

Syntax

BOOL FindNextUrlCacheEntryEx(

IN HANDLE hEnumHandle,

OUT LPINTERNET_CACHE_ENTRY_INFO lpFirstCacheEntryInfo,

IN OUT LPDWORD lpdwFirstCacheEntryInfoBufferSize,

OUT LPVOID lpReserved,

IN OUT LPDWORD pcbReserved2,

IN LPVOID lpReserved3

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

hEnumHandle

Handle returned by FindFirstUrlCacheEntryEx, which started a cache enumeration.

lpFirstCacheEntryInfo

Address of the buffer to hold the INTERNET_CACHE_ENTRY_INFO structure in which the cache entry information will be stored.

lpdwFirstCacheEntryInfoBufferSize

Address of an unsigned long integer value that indicates the size of the buffer in TCHAR.

lpReserved

Reserved. Must be set to NULL.

pcbReserved2

Reserved. Must be set to NULL.

lpReserved3

Reserved. Must be set to NULL.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get specific error information, call GetLastError.

Remarks

At the end of the enumeration, the application should call FindCloseUrlCache.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 4.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Caching,
Microsoft Win32 Internet Functions Reference,
Persistent URL Cache Functions

FindNextUrlCacheGroup Function

Retrieves the next cache group in a cache group enumeration started by FindFirstUrlCacheGroup.

Syntax

BOOL FindNextUrlCacheGroup(

IN HANDLE hFind,

OUT GROUPID *lpGroupId,

IN OUT LPVOID lpReserved

);

Parameters

hFind

Valid cache group enumeration handle returned by FindFirstUrlCacheGroup.

lpGroupId

Address of a GROUPID variable that contains the cache group identification.

lpReserved

Reserved. Must be set to NULL.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get specific error information, call GetLastError.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented only as an ANSI function.

Windows
Use Windows 95 and later. Implemented only as an ANSI function.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 5

GetUrlCacheEntryInfo Function

Retrieves information about a cache entry.

Syntax

BOOL GetUrlCacheEntryInfo(

IN LPCTSTR lpszUrlName,

IN LPINTERNET_CACHE_ENTRY_INFO lpCacheEntryInfo,

IN OUT LPDWORD lpdwCacheEntryInfoBufferSize

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

lpszUrlName

Address of a string that contains the name of the cache entry. The name string should not contain any escape characters.

lpCacheEntryInfo

Address of an INTERNET_CACHE_ENTRY_INFO structure that receives information about the cache entry.

lpdwCacheEntryInfoBufferSize

Address of an unsigned long integer variable that specifies the size of the lpCacheEntryInfo buffer, in TCHARs. When the function returns, the variable contains the number of TCHARs copied to the buffer, or the required size of the buffer, in bytes.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get extended error information, call GetLastError. Possible error values include:

PRIVATE
ERROR_FILE_NOT_FOUND
The specified cache entry is not found in the cache.

ERROR_INSUFFICIENT_BUFFER
The size of lpCacheEntryInfo as specified by lpdwCacheEntryInfoBufferSize is not sufficient to contain all the information. The value returned in lpdwCacheEntryInfoBufferSize indicates the buffer size necessary to contain all the information.

Remarks

GetUrlCacheEntryInfo does not do any URL parsing, so a URL containing an anchor (#) will not be found in the cache, even if the resource is cached. For example, if the URL http://example.com/example.htm#sample is passed, the function returns ERROR_FILE_NOT_FOUND even if http://example.com/example.htm is in the cache.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Caching,
Microsoft Win32 Internet Functions Reference,
Persistent URL Cache Functions

GetUrlCacheEntryInfoEx Function

Searches for the URL after translating any cached redirections that would be applied in offline mode by HttpSendRequest.

Syntax

BOOL GetUrlCacheEntryInfoEx(

IN LPCTSTR lpszUrl,

OUT LPINTERNET_CACHE_ENTRY_INFO lpCacheEntryInfo,

IN OUT LPDWORD lpdwCacheEntryInfoBufSize,

OUT LPTSTR lpszReserved,

IN OUT LPDWORD lpdwReserved,

LPVOID lpReserved,

DWORD dwFlags

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

lpszUrl

Address of a string that contains the name of the cache entry. The name string should not contain any escape characters.

lpCacheEntryInfo

Address of an INTERNET_CACHE_ENTRY_INFO structure that receives information about the cache entry.

lpdwCacheEntryInfoBufSize

Address of an unsigned long integer variable that specifies the size of the lpCacheEntryInfo buffer, in TCHARs. When the function returns, the variable contains the number of TCHARs copied to the buffer, or the required size of the buffer in bytes.

lpszReserved

Reserved. Must be set to NULL.

lpdwReserved

Reserved. Must be set to NULL.

lpReserved

Reserved. Must be set to NULL.

dwFlags

Reserved. Must be set to zero.

Return Value

Returns TRUE if the URL was located, or FALSE otherwise. Call GetLastError for specific error information. Possible errors include:

PRIVATE
ERROR_FILE_NOT_FOUND
The URL, after taking any cached redirections into account, was not found in the cache index.

ERROR_INSUFFICIENT_BUFFER
The buffer referenced by lpCacheEntryInfo was not large enough to hold the requested information. The size of the buffer needed will be returned to lpdwCacheEntryInfoBufSize.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 4.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Caching,
Microsoft Win32 Internet Functions Reference,
Persistent URL Cache Functions

GetUrlCacheGroupAttribute Function

Retrieves the attribute information of the specified cache group.

Syntax

BOOL GetUrlCacheGroupAttribute(

IN GROUPID gid,

IN DWORD dwFlags,

IN DWORD dwAttributes,

OUT LPINTERNET_CACHE_GROUP_INFO lpGroupInfo,

IN OUT LPDWORD lpdwGroupInfo,

IN OUT LPVOID lpReserved

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

gid

GROUPID of the cache group.

dwFlags

Reserved. Must be set to zero.

dwAttributes

Unsigned long integer value that contains the attributes to retrieve. This can be one of the following values:

CACHEGROUP_ATTRIBUTE_BASIC

CACHEGROUP_ATTRIBUTE_FLAG

CACHEGROUP_ATTRIBUTE_GET_ALL

CACHEGROUP_ATTRIBUTE_GROUPNAME

CACHEGROUP_ATTRIBUTE_QUOTA

CACHEGROUP_ATTRIBUTE_STORAGE

CACHEGROUP_ATTRIBUTE_TYPE

lpGroupInfo

Address of buffer that contains an INTERNET_CACHE_GROUP_INFO structure to store the requested information.

lpdwGroupInfo

Address of an unsigned long integer value that contains the size of the lpGroupInfo buffer.

lpReserved

Reserved. Must be set to NULL.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get specific error information, call GetLastError.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 5 (ANSI and Unicode)

ReadUrlCacheEntryStream Function

Reads the cached data from a stream that has been opened using the RetrieveUrlCacheEntryStream function.

Syntax

BOOL ReadUrlCacheEntryStream(

IN HANDLE hUrlCacheStream,

IN DWORD dwLocation,

IN OUT LPVOID lpBuffer,

IN OUT LPDWORD lpdwLen,

IN DWORD dwReserved

);

Parameters

hUrlCacheStream

HINTERNET handle that was returned by the RetrieveUrlCacheEntryStream function.

dwLocation

Unsigned long integer value that contains the offset to read from.

lpBuffer

Address of a buffer that receives the data.

lpdwLen

Address of an unsigned long integer variable that specifies the length of the lpBuffer buffer, in TCHARs. When the function returns, the variable contains the number of TCHARs copied to the buffer, or the required size of the buffer, in bytes.

dwReserved

Reserved. Must be set to zero.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get extended error information, call GetLastError.

Remarks

If the buffer size is not sufficient, GetLastError returns ERROR_INSUFFICIENT_BUFFER and sets lpdwLen to the size necessary to contain all the information.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented only as an ANSI function.

Windows
Use Windows 95 and later. Implemented only as an ANSI function.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0

See Also

Microsoft Win32 Internet Functions Overview,
Caching,
Microsoft Win32 Internet Functions Reference,
Persistent URL Cache Functions

RetrieveUrlCacheEntryStream Function

Provides the most efficient and implementation-independent way of accessing the cache data.

Syntax

HANDLE RetrieveUrlCacheEntryStream(

IN LPCTSTR lpszUrlName,

OUT LPINTERNET_CACHE_ENTRY_INFO lpCacheEntryInfo,

IN OUT LPDWORD lpdwCacheEntryInfoBufferSize,

IN BOOL fRandomRead,

IN DWORD dwReserved

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

lpszUrlName

Address of a string that contains the source name of the cache entry. This must be a unique name. The name string should not contain any escape characters.

lpCacheEntryInfo

Address of an INTERNET_CACHE_ENTRY_INFO structure that receives information about the cache entry.

lpdwCacheEntryInfoBufferSize

Address of an unsigned long integer variable that specifies the size of the lpCacheEntryInfo buffer, in TCHARs. When the function returns, the variable receives the number of TCHARs copied to the buffer, or the required size of the buffer, in bytes.

fRandomRead

Boolean value that indicates whether the stream is open for random access. Set the flag to TRUE to open the stream for random access.

dwReserved

Reserved. Must be set to zero.

Return Value

Returns a valid handle for use in the ReadUrlCacheEntryStream and UnlockUrlCacheEntryStream functions if successful, or NULL otherwise. To get extended error information, call GetLastError. Possible error values include:

PRIVATE
ERROR_FILE_NOT_FOUND
The cache entry specified by the source name is not found in the cache storage.

ERROR_INSUFFICIENT_BUFFER
The size of lpCacheEntryInfo as specified by lpdwCacheEntryInfoBufferSize is not sufficient to contain all the information. The value returned in lpdwCacheEntryInfoBufferSize indicates the buffer size necessary to contain all the information.

Remarks

RetrieveUrlCacheEntryStream does not do any URL parsing, so a URL containing an anchor (#) will not be found in the cache, even if the resource is cached. For example, if the URL http://example.com/example.htm#sample is passed, the function returns ERROR_FILE_NOT_FOUND even if http://example.com/example.htm is in the cache.

Cache clients that do not need URL data in the form of a file should use this function to access the data for a particular URL.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

See Also

Microsoft Win32 Internet Functions Overview,
Caching,
Microsoft Win32 Internet Functions Reference,
Persistent URL Cache Functions

RetrieveUrlCacheEntryFile Function

Locks the cache entry file associated with the specified URL.

Syntax

BOOL RetrieveUrlCacheEntryFile(

IN LPCTSTR lpszUrlName,

OUT LPINTERNET_CACHE_ENTRY_INFO lpCacheEntryInfo,

IN OUT LPDWORD lpdwCacheEntryInfoBufferSize,

IN DWORD dwReserved

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

lpszUrlName

Address of a string that contains the URL of the resource associated with the cache entry. This must be a unique name. The name string should not contain any escape characters.

lpCacheEntryInfo

Address of a cache entry information buffer. If the buffer is not sufficient, this function returns ERROR_INSUFFICIENT_BUFFER and sets lpdwCacheEntryInfoBufferSize to the number of bytes required.

lpdwCacheEntryInfoBufferSize

Address of an unsigned long integer variable that specifies the size of the lpCacheEntryInfo buffer, in TCHARs. When the function returns, the variable contains the size, in TCHARs, of the actual buffer used or the number of bytes required to retrieve the cache entry file. The caller should check the return value in this parameter. If the return size is less than or equal to the size passed in, all the relevant data has been returned.

dwReserved

Reserved. Must be set to zero.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get extended error information, call GetLastError. Possible error values include:

PRIVATE
ERROR_FILE_NOT_FOUND
The cache entry specified by the source name is not found in the cache storage.

ERROR_INSUFFICIENT_BUFFER
The size of the lpCacheEntryInfo buffer as specified by lpdwCacheEntryInfoBufferSize is not sufficient to contain all the information. The value returned in lpdwCacheEntryInfoBufferSize indicates the buffer size necessary to get all the information.

Remarks

RetrieveUrlCacheEntryFile does not do any URL parsing, so a URL containing an anchor (#) will not be found in the cache, even if the resource is cached. For example, if the URL http://example.com/example.htm#sample was passed, the function would return ERROR_FILE_NOT_FOUND even if http://example.com/example.htm is in the cache.

The file is locked for the caller when it is retrieved; the caller should unlock the file after it has been used up. The cache manager automatically unlocks the files after a certain interval. While the file is locked, the cache manager will not remove the file from the cache. It is important to note that this function can be efficient or expensive, depending on the internal implementation of the cache. For instance, if the URL data is stored in a packed file that contains data for other URLs, the cache will make a copy of the data to a file in a temporary directory maintained by the cache. The cache will eventually delete the copy. It is recommended that this function be used only in situations where a file name is needed to launch an application. RetrieveUrlCacheEntryStream and associated stream functions should be used in most cases.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Caching, Microsoft Win32 Internet Functions Reference,
Persistent URL
Cache Functions

SetUrlCacheEntryGroup Function

Adds entries to or removes entries from a cache group.

Syntax

BOOL SetUrlCacheEntryGroup(

IN LPCTSTR lpszUrlName,

IN DWORD dwFlags,

IN GROUPID GroupId,

IN LPBYTE pbGroupAttributes,

IN DWORD cbGroupAttributes,

IN LPVOID lpReserved

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

lpszUrlName

Address of a string value that contains the URL of the cached resource.

dwFlags

Unsigned long integer value that determines whether the entry is added to or removed from a cache group. This can be one of the following values:

INTERNET_CACHE_GROUP_ADD
Adds the cache entry to the cache group.

INTERNET_CACHE_GROUP_REMOVE
Removes the entry from the cache group.

GroupId

GROUPID value that indicates the cache group that the entry will be added to or removed from.

pbGroupAttributes

Reserved. Must be set to NULL.

cbGroupAttributes

Reserved. Must be set to zero.

lpReserved

Reserved. Must be set to NULL.

Return Value

Returns TRUE if successful, or FALSE otherwise.

Remarks

A cache entry can belong to more than one cache group.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 4.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Caching,
Microsoft Win32 Internet Functions Reference,
Persistent URL Cache Functions

SetUrlCacheEntryInfo Function

Sets the specified members of the INTERNET_CACHE_ENTRY_INFO structure.

Syntax

BOOL SetUrlCacheEntryInfo(

IN LPCTSTR lpszUrlName,

IN LPINTERNET_CACHE_ENTRY_INFO lpCacheEntryInfo,

IN DWORD dwFieldControl

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

lpszUrlName

Address of a string that contains the name of the cache entry. The name string should not contain any escape characters.

lpCacheEntryInfo

Address of an INTERNET_CACHE_ENTRY_INFO structure containing the values to be assigned to the cache entry designated by lpszUrlName.

dwFieldControl

Unsigned long integer value that contains a bitmask that indicates the members that are to be set. This can be a combination of the following values:

CACHE_ENTRY_ACCTIME_FC
Sets the last access time.

CACHE_ENTRY_ATTRIBUTE_FC
Sets the cache entry type.

CACHE_ENTRY_EXEMPT_DELTA_FC
Sets the exempt delta.

CACHE_ENTRY_EXPTIME_FC
Sets the expire time.

CACHE_ENTRY_HEADERINFO_FC
Not currently implemented.

CACHE_ENTRY_HITRATE_FC
Sets the hit rate.

CACHE_ENTRY_MODTIME_FC
Sets the last modified time.

CACHE_ENTRY_SYNCTIME_FC
Sets the last sync time.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get extended error information, call GetLastError. Possible error values include:

PRIVATE
ERROR_FILE_NOT_FOUND
The specified cache entry is not found in the cache.

ERROR_INVALID_PARAMETER
The value(s) to be set is invalid.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Caching,
Microsoft Win32 Internet Functions Reference,
Persistent URL Cache Functions

SetUrlCacheGroupAttribute Function

Sets the attribute information of the specified cache group.

Syntax

BOOL SetUrlCacheGroupAttribute(

IN GROUPID gid,

IN DWORD dwFlags,

IN DWORD dwAttributes,

IN LPINTERNET_CACHE_GROUP_INFO lpGroupInfo,

IN OUT LPVOID lpReserved

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

gid

GROUPID of the cache group.

dwFlags

Reserved. Must be set to zero.

dwAttributes

Unsigned long integer value that indicates what attributes to set. This can be one of the following values:

CACHEGROUP_ATTRIBUTE_FLAG

CACHEGROUP_ATTRIBUTE_GROUPNAME

CACHEGROUP_ATTRIBUTE_QUOTA

CACHEGROUP_ATTRIBUTE_STORAGE

CACHEGROUP_ATTRIBUTE_TYPE

CACHEGROUP_READWRITE_MASK

lpGroupInfo

Address of an INTERNET_CACHE_GROUP_INFO structure that contains the attribute information to store.

lpReserved

Reserved. Must be set to NULL.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get specific error information, call GetLastError.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 5 (ANSI and Unicode)

UnlockUrlCacheEntryFile Function

Unlocks the cache entry that was locked while the file was retrieved for use from the cache.

Syntax

BOOL UnlockUrlCacheEntryFile(

IN LPCTSTR lpszUrlName,

IN DWORD dwReserved

);

The actual syntax of this function varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Parameters

lpszUrlName

Address of a string that contains the source name of the cache entry that is being unlocked. The name string should not contain any escape characters.

dwReserved

Reserved. Must be set to zero.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get extended error information, call GetLastError. ERROR_FILE_NOT_FOUND indicates that the cache entry specified by the source name is not found in the cache storage.

Remarks

The application should not access the file after calling this function.

When this function returns, the cache manager is free to delete the cache entry.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode functions.

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Caching,
Microsoft Win32 Internet Functions Reference,
Persistent URL Cache Functions

UnlockUrlCacheEntryStream Function

Closes the stream that has been retrieved using the RetrieveUrlCacheEntryStream function.

Syntax

BOOL UnlockUrlCacheEntryStream(

IN HANDLE hUrlCacheStream,

IN DWORD dwReserved

);

Parameters

hUrlCacheStream

Handle that was returned by the RetrieveUrlCacheEntryStream function.

dwReserved

Reserved. Must be set to zero.

Return Value

Returns TRUE if successful, or FALSE otherwise. To get extended error information, call GetLastError.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented only as an ANSI function.

Windows
Use Windows 95 and later. Implemented only as an ANSI function.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0

See Also

Microsoft Win32 Internet Functions Overview,
Caching,
Microsoft Win32 Internet Functions Reference,
Persistent URL Cache Functions
Win32 Internet API Function Prototypes

The following section contains the function prototypes used by the Win32® Internet functions.

· GOPHER_ATTRIBUTE_ENUMERATOR

· INTERNET_STATUS_CALLBACK

GOPHER_ATTRIBUTE_ENUMERATOR Prototype

Prototype for a callback function that processes attribute information from a Gopher server. This callback function is installed by a call to the GopherGetAttribute function.

Syntax

typedef BOOL (CALLBACK * GOPHER_ATTRIBUTE_ENUMERATOR)(

LPGOPHER_ATTRIBUTE_TYPE lpAttributeInfo,

DWORD dwError

);

Parameters

lpAttributeInfo

Address of a buffer that contains a single GOPHER_ATTRIBUTE_TYPE structure. The lpBuffer parameter to GopherGetAttribute is used for storing this structure. The lpBuffer size must be equal to or greater than the value of MIN_GOPHER_ATTRIBUTE_LENGTH.

dwError

Unsigned long integer value that contains the error value. This parameter is NO_ERROR if the attribute was parsed and written to the buffer successfully. If a problem was encountered, an error value is returned.

Return Value

Returns TRUE to continue the enumeration, or FALSE to immediately stop it. This function is primarily used for returning the results of a Gopher+ ASK item.

Function Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode functions.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode functions.

Header
Wininet.h

Import library
Wininet.lib

Minimum availability
Internet Explorer 3.0

See Also

Microsoft Win32 Internet Functions Overview, Gopher Sessions, Microsoft Win32 Internet Functions Reference, Gopher Functions

INTERNET_STATUS_CALLBACK Prototype

Prototype for an application-defined status callback function.

Syntax

typedef VOID (CALLBACK * INTERNET_STATUS_CALLBACK)(

IN HINTERNET hInternet,

IN DWORD_PTR dwContext,

IN DWORD dwInternetStatus,

IN LPVOID lpvStatusInformation,

IN DWORD dwStatusInformationLength

);

Parameters

hInternet

Handle for which the callback function is being called.

dwContext

Address of an unsigned long integer value that contains the application-defined context value associated with hInternet.

dwInternetStatus

Unsigned long integer value that contains the status code that indicates why the callback function is being called. This can be one of the following values:

INTERNET_STATUS_CLOSING_CONNECTION

Closing the connection to the server. The lpvStatusInformation parameter is NULL.

INTERNET_STATUS_CONNECTED_TO_SERVER

Successfully connected to the socket address (SOCKADDR) pointed to by lpvStatusInformation.

INTERNET_STATUS_CONNECTING_TO_SERVER

Connecting to the socket address (SOCKADDR) pointed to by lpvStatusInformation.

INTERNET_STATUS_CONNECTION_CLOSED

Successfully closed the connection to the server. The lpvStatusInformation parameter is NULL.

INTERNET_STATUS_CTL_RESPONSE_RECEIVED

Not currently implemented.

INTERNET_STATUS_DETECTING_PROXY

Notifies the client application that a proxy has been detected.

INTERNET_STATUS_HANDLE_CLOSING

This handle value has been terminated.

INTERNET_STATUS_HANDLE_CREATED

Used by InternetConnect to indicate it has created the new handle. This lets the application call InternetCloseHandle from another thread, if the connect is taking too long. The lpvStatusInformation parameter contains the address of an INTERNET_ASYNC_RESULT structure.

INTERNET_STATUS_INTERMEDIATE_RESPONSE

Received an intermediate (100 level) status code message from the server.

INTERNET_STATUS_NAME_RESOLVED

Successfully found the IP address of the name contained in lpvStatusInformation.

INTERNET_STATUS_PREFETCH

Not currently implemented.

INTERNET_STATUS_RECEIVING_RESPONSE

Waiting for the server to respond to a request. The lpvStatusInformation parameter is NULL.

INTERNET_STATUS_REDIRECT

An HTTP request is about to automatically redirect the request. The lpvStatusInformation parameter points to the new URL. At this point, the application can read any data returned by the server with the redirect response and can query the response headers. It can also cancel the operation by closing the handle. This callback is not made if the original request specified INTERNET_FLAG_NO_AUTO_REDIRECT.

INTERNET_STATUS_REQUEST_COMPLETE

An asynchronous operation has been completed. The lpvStatusInformation parameter contains the address of an INTERNET_ASYNC_RESULT structure.

INTERNET_STATUS_REQUEST_SENT

Successfully sent the information request to the server. The lpvStatusInformation parameter points to a DWORD containing the number of bytes sent.

INTERNET_STATUS_RESOLVING_NAME

Looking up the IP address of the name contained in lpvStatusInformation.

INTERNET_STATUS_RESPONSE_RECEIVED

Successfully received a response from the server. The lpvStatusInformation parameter points to a DWORD containing the number of bytes received.

INTERNET_STATUS_SENDING_REQUEST

Sending the information request to the server. The lpvStatusInformation parameter is NULL.

INTERNET_STATUS_STATE_CHANGE
Moved between a secure (HTTPS) and a nonsecure (HTTP) site. This can be one of the following values:

INTERNET_STATE_CONNECTED
Connected state (mutually exclusive with disconnected state).

INTERNET_STATE_DISCONNECTED
Disconnected state. No network connection could be established.

INTERNET_STATE_DISCONNECTED_BY_USER

Disconnected by user request.

INTERNET_STATE_IDLE
No network requests are being made by the Win32® Internet functions.

INTERNET_STATE_BUSY
Network requests are being made by the Win32 Internet functions.

INTERNET_STATUS_USER_INPUT_REQUIRED

The request requires user input to be completed.

lpvStatusInformation

Address of a buffer that contains information pertinent to this call to the callback function.

dwStatusInformationLength

Unsigned long integer value that contains the size, in TCHAR, of the lpvStatusInformation buffer.

Remarks

Because callbacks are made during processing of the request, the application should spend as little time as possible in the callback function to avoid degrading data throughput on the network. For example, displaying a dialog box in a callback function can be such a lengthy operation that the server terminates the request.

The callback function can be called in a thread context different from the thread that initiated the request.

Function Information

PRIVATE
Windows NT
Use version 4.0

Windows
Use Windows 95 and later.

Header
Declared in Wininet.h

Import library
Link with Wininet.lib

Minimum availability
Internet Explorer 3.0

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Utilizing the Win32 Internet Functions Asynchronously,
Microsoft Win32 Internet Functions Reference,
INTERNET_ASYNC_RESULT,
Microsoft Win32 Internet Functions Tutorials,
Calling Win32 Functions Asynchronously,
Creating Status Callback Functions

Win32 Internet API Structures

The following section describes the Win32® Internet function data structures and their uses.

GOPHER_ATTRIBUTE_TYPE Structure

Contains the relevant information of a single Gopher attribute for an object.

Syntax

typedef struct {

DWORD CategoryId

DWORD AttributeId

union {

GOPHER_ADMIN_ATTRIBUTE Admin;

GOPHER_MOD_DATE_ATTRIBUTE ModDate;

GOPHER_SCORE_ATTRIBUTE Score;

GOPHER_SCORE_RANGE_ATTRIBUTE ScoreRange;

GOPHER_SITE_ATTRIBUTE Site;

GOPHER_ORGANIZATION_ATTRIBUTE Organization;

GOPHER_LOCATION_ATTRIBUTE Location;

GOPHER_GEOGRAPHICAL_LOCATION_ATTRIBUTE GeographicalLocation;

GOPHER_TIMEZONE_ATTRIBUTE TimeZone;

GOPHER_PROVIDER_ATTRIBUTE Provider;

GOPHER_VERSION_ATTRIBUTE Version;

GOPHER_ABSTRACT_ATTRIBUTE Abstract;

GOPHER_VIEW_ATTRIBUTE View;

GOPHER_VERONICA_ATTRIBUTE Veronica;

GOPHER_ASK_ATTRIBUTE_TYPE Ask;

GOPHER_UNKNOWN_ATTRIBUTE Unknown;

} AttributeType;

} GOPHER_ATTRIBUTE_TYPE, *LPGOPHER_ATTRIBUTE_TYPE;

Members

CategoryId

Unsigned long integer value that contains the Gopher name for the attribute. The possible values include:

GOPHER_CATEGORY_ID_ABSTRACT

GOPHER_CATEGORY_ID_ADMIN

GOPHER_CATEGORY_ID_ALL

GOPHER_CATEGORY_ID_INFO

GOPHER_CATEGORY_ID_UNKNOWN

GOPHER_CATEGORY_ID_VERONICA

GOPHER_CATEGORY_ID_VIEWS

AttributeId

Unsigned long integer value that contains the identifier of the structure contained in the AttributeType member. The possible values include:

GOPHER_ATTRIBUTE_ID_ABSTRACT

GOPHER_ATTRIBUTE_ID_ADMIN

GOPHER_ATTRIBUTE_ID_GEOG

GOPHER_ATTRIBUTE_ID_LOCATION

GOPHER_ATTRIBUTE_ID_MOD_DATE

GOPHER_ATTRIBUTE_ID_ORG

GOPHER_ATTRIBUTE_ID_PROVIDER

GOPHER_ATTRIBUTE_ID_RANGE

GOPHER_ATTRIBUTE_ID_SCORE

GOPHER_ATTRIBUTE_ID_SITE

GOPHER_ATTRIBUTE_ID_TIMEZONE

GOPHER_ATTRIBUTE_ID_TREEWALK

GOPHER_ATTRIBUTE_ID_TTL

GOPHER_ATTRIBUTE_ID_UNKNOWN

GOPHER_ATTRIBUTE_ID_VERSION

GOPHER_ATTRIBUTE_ID_VIEW

AttributeType

Union containing the actual setting for the Gopher attribute. The specific value of AttributeType depends on the AttributeId member. The definitions of the various attribute structures are available in Wininet.h.

Structure Information

PRIVATE
Windows NT
Use version 4.0. Implemented only as an ANSI structure.

Windows
Use Windows 95 and later. Implemented only as an ANSI structure.

Header
Wininet.h

Minimum availability
Internet Explorer 3.0

See Also

GopherGetAttribute

GOPHER_FIND_DATA Structure

Contains information retrieved by the GopherFindFirstFile and InternetFindNextFile functions.

Syntax

typedef struct {

TCHAR DisplayString[MAX_GOPHER_DISPLAY_TEXT + 1];

DWORD GopherType;

DWORD SizeLow;

DWORD SizeHigh;

FILETIME LastModificationTime;

TCHAR Locator[MAX_GOPHER_LOCATOR_LENGTH + 1];

} GOPHER_FIND_DATA, FAR *LPGOPHER_FIND_DATA;

The actual syntax of this structure varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Members

DisplayString

Array of characters that contains the friendly name of an object. An application can display this string to allow the user to select the object.

GopherType

Unsigned long integer value that contains the mask of flags that describe the item returned. This can be one of the following values:

GOPHER_TYPE_ASK
Ask+ item.

GOPHER_TYPE_BINARY
Binary file.

GOPHER_TYPE_BITMAP
Bitmap file.

GOPHER_TYPE_CALENDAR
Calendar file.

GOPHER_TYPE_CSO
CSO telephone book server.

GOPHER_TYPE_DIRECTORY
Directory of additional Gopher items.

GOPHER_TYPE_DOS_ARCHIVE
MS-DOS archive file.

GOPHER_TYPE_ERROR
Indicator of an error condition.

GOPHER_TYPE_GIF
GIF graphics file.

GOPHER_TYPE_GOPHER_PLUS
Gopher+ item.

GOPHER_TYPE_HTML
HTML document.

GOPHER_TYPE_IMAGE
Image file.

GOPHER_TYPE_INDEX_SERVER
Index server.

GOPHER_TYPE_INLINE
Inline file.

GOPHER_TYPE_MAC_BINHEX
Macintosh file in BINHEX format.

GOPHER_TYPE_MOVIE
Movie file.

GOPHER_TYPE_PDF
PDF file.

GOPHER_TYPE_REDUNDANT
Indicator of a duplicated server. The information contained within is a duplicate of the primary server. The primary server is defined as the last directory entry that did not have a GOPHER_TYPE_REDUNDANT type.

GOPHER_TYPE_SOUND
Sound file.

GOPHER_TYPE_TELNET
Telnet server.

GOPHER_TYPE_TEXT_FILE
ASCII text file.

GOPHER_TYPE_TN3270
TN3270 server.

GOPHER_TYPE_UNIX_UUENCODED
UUENCODED file.

GOPHER_TYPE_UNKNOWN
Item type is unknown.

SizeLow

Unsigned long integer value that contains the low 32 bits of the file size.

SizeHigh

Unsigned long integer value that contains the high 32 bits of the file size.

LastModificationTime

FILETIME value that contains the time when the file was last modified.

Locator

Array of characters that identifies the file. An application can pass the locator string to GopherOpenFile or GopherFindFirstFile.

Structure Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode structures.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode structures.

Header
Wininet.h

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

HTTP_VERSION_INFO Structure

Contains the global HTTP version.

Syntax

typedef struct{

DWORD dwMajorVersion;

DWORD dwMinorVersion;

Members

dwMajorVersion

Unsigned long integer value that contains the major version number. Must be 1.

dwMinorVersion

Unsigned long integer value that contains the minor version number. Can be either 1 or 0.

Structure Information

PRIVATE
Windows NT
Use version 4.0. Implemented only as an ANSI structure.

Windows
Use Windows 95 and later. Implemented only as an ANSI structure.

Header
Wininet.h

Minimum availability
Internet Explorer 3.0

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later

Minimum availability
Internet Explorer 4.0

INTERNET_ASYNC_RESULT Structure

Contains the result of a call to an asynchronous function. This structure is used with INTERNET_STATUS_CALLBACK.

Syntax

typedef struct {

 DWORD dwResult;

 DWORD dwError;

} INTERNET_ASYNC_RESULT, * LPINTERNET_ASYNC_RESULT;

Members

dwResult

Unsigned long integer value that references an HINTERNET handle, unsigned long integer, or Boolean return code from an asynchronous function.

dwError

Unsigned long integer value that contains the error message if dwResult indicates that the function failed. If the operation succeeded, this member usually contains ERROR_SUCCESS.

Remarks

The value of dwResult is determined by the value of the dwInternetStatus of the status callback function.

PRIVATE
Value of dwInternetStatus
Value of dwResult
INTERNET_STATUS_HANDLE_CREATED
Address of the HINTERNET handle

INTERNET_STATUS_REQUEST_COMPLETE
Address of the HINTERNET handle

Structure Information

PRIVATE
Windows NT
Use version 4.0. Implemented only as an ANSI structure.

Windows
Use Windows 95 and later. Implemented only as an ANSI structure.

Header
Wininet.h

Minimum availability
Internet Explorer 3.0

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later

Minimum availability
Internet Explorer 4.0

See Also

Microsoft Win32 Internet Functions Overview,
Utilizing the Win32 Internet Functions Asynchronously,
Microsoft Win32 Internet Functions Reference,
INTERNET_STATUS_CALLBACK,
Microsoft Win32 Internet Functions Tutorials,
Calling Win32 Functions Asynchronously

INTERNET_AUTH_NOTIFY_DATA Structure

Contains the notification data for an authentication request.

Syntax

typedef struct {

DWORD cbStruct;

DWORD dwOptions;

PFN_PUTHNOTIFY pfnNotify;

DWORD_PTR dwContext;

} INTERNET_AUTH_NOTIFY_DATA;

Members

cbStruct

Unsigned long integer value that contains the size of the structure.

dwOptions

Reserved; must be set to zero.

pfnNotify

Notification callback to retry InternetErrorDlg.

dwContext

Address of an unsigned long integer value that contains an application-defined value that is used to identify the application context to pass to the notification function.

Structure Information

PRIVATE
Windows NT
Use version 4.0. Implemented only as an ANSI structure.

Windows
Use Windows 95 and later. Implemented only as an ANSI structure.

Header
Wininet.h

Minimum availability
Internet Explorer 3.0

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later

Minimum availability
Internet Explorer 4.0

INTERNET_BUFFERS Structure

Contains both the data and header information.

Syntax

typedef struct _INTERNET_BUFFERS {

DWORD dwStructSize;

struct _INTERNET_BUFFERS% * Next;

LPCTSTR lpcszHeader;

DWORD dwHeadersLength;

DWORD dwHeadersTotal;

LPVOID lpvBuffer;

DWORD dwBufferLength;

DWORD dwBufferTotal;

DWORD dwOffsetLow;

DWORD dwOffsetHigh;

} INTERNET_BUFFERS, * LPINTERNET_BUFFERS;

The actual syntax of this structure varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Members

dwStructSize

Unsigned long integer value used for API versioning. This is set to the size of the INTERNET_BUFFERS structure.

Next

Address of the next INTERNET_BUFFERS structure.

lpcszHeader

Address of a string value that contains the headers. This value can be NULL.

dwHeadersLength

Unsigned long integer value that contains the length of the headers, in TCHARs, if lpcszHeader is not NULL.

dwHeadersTotal

Unsigned long integer value that contains the size of the headers if there is not enough memory in the buffer.

lpvBuffer

Address of the data buffer.

dwBufferLength

Unsigned long integer value that contains the length of the buffer, in TCHARs, if lpvBuffer is not NULL.

dwBufferTotal

Unsigned long integer value that contains the total size of the resource.

dwOffsetLow

Unsigned long integer value that is used for read ranges.

dwOffsetHigh

Unsigned long integer value that is used for read ranges.

Structure Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode structures.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode structures.

Header
Wininet.h

Minimum availability
Internet Explorer 4.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode structures.

Minimum availability
Internet Explorer 4.0

INTERNET_CACHE_ENTRY_INFO Structure

Contains information about an entry in the Internet cache.

Syntax

typedef struct _INTERNET_CACHE_ENTRY_INFO {

DWORD dwStructSize;

LPTSTR lpszSourceUrlName;

LPTSTR lpszLocalFileName;

DWORD CacheEntryType;

DWORD dwUseCount;

DWORD dwHitRate;

DWORD dwSizeLow;

DWORD dwSizeHigh;

FILETIME LastModifiedTime;

FILETIME ExpireTime;

FILETIME LastAccessTime;

FILETIME LastSyncTime;

LPBYTE lpHeaderInfo;

DWORD dwHeaderInfoSize;

LPTSTR lpszFileExtension;

union (DWORD dwReserved; DWORD dwExemptDelta;)

} INTERNET_CACHE_ENTRY_INFO, *LPINTERNET_CACHE_ENTRY_INFO;

The actual syntax of this structure varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Members

dwStructSize

Unsigned long integer value that contains the size, in TCHAR, of this structure. This value can be used to help determine the version of the cache system.

lpszSourceUrlName

Address of a string that contains the URL name. The string occupies memory area at the end of this structure.

lpszLocalFileName

Address of a string that contains the local file name. The string occupies memory area at the end of this structure.

CacheEntryType

Unsigned long integer value that contains the cache type bitmask. Currently, the cache entry type value of resources from the Internet is equal to zero. For History and Cookie entries, the cache entry type is a combination of two values. One value determines how the cache entry is handled; the second value indicates what is being cached.

The value that determines how the cache entry is handled can be one of the following:

EDITED_CACHE_ENTRY
Cache entry has been altered since it was downloaded from the Internet.

NORMAL_CACHE_ENTRY
Normal cache entry; can be deleted to recover space for new entries.

SPARSE_CACHE_ENTRY
Not currently implemented.

STICKY_CACHE_ENTRY
Sticky cache entry that is exempt from scavenging for amount of time specified by dwExemptDelta. The default value set by CommitUrlCacheEntry is one day.

TRACK_OFFLINE_CACHE_ENTRY

TRACK_ONLINE_CACHE_ENTRY

The value that indicates what is being cached can be one of the following:

COOKIE_CACHE_ENTRY
Cookie cache entry.

URLHISTORY_CACHE_ENTRY

Visited link cache entry.

dwUseCount

Unsigned long integer value that contains the current user count of the cache entry.

dwHitRate

Unsigned long integer value that contains the number of times the cache entry was retrieved.

dwSizeLow

Unsigned long integer value that contains the low order of the file size in TCHAR.

dwSizeHigh

Unsigned long integer value that contains the high-order double word of the file size in TCHAR.

LastModifiedTime

FILETIME structure that contains the last modified time of this URL, in Greenwich mean time format.

ExpireTime

FILETIME structure that contains the expiration time of this file, in Greenwich mean time format.

LastAccessTime

FILETIME structure that contains the last accessed time, in Greenwich mean time format.

LastSyncTime

FILETIME structure that contains the last time the cache was synchronized.

lpHeaderInfo

Address of a buffer that contains the header information. The buffer occupies memory at the end of this structure.

dwHeaderInfoSize

Unsigned long integer value that contains the size of the lpHeaderInfo buffer in TCHAR.

lpszFileExtension

Address of a string that contains the file extension used to retrieve the data as a file. The string occupies memory area at the end of this structure.

union (DWORD dwReserved; DWORD dwExemptDelta;)

Unsigned long integer value that contains either exemption time, in seconds, from the last accessed time, or zero.

Remarks

There is no cache entry size limit, so applications that need to enumerate the cache must be prepared to allocate variable-sized buffers. For more information, see Appendix B: Using Buffers.

Structure Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode structures.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode structures.

Header
Wininet.h

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode structures.

Minimum availability
Internet Explorer 4.0

INTERNET_CACHE_GROUP_INFO Structure

Contains the information for a particular cache group.

Syntax

typedef struct _INTERNET_CACHE_GROUP_INFO{

DWORD dwGroupSize;

DWORD dwGroupFlags;

DWORD dwGroupType;

DWORD dwDiskUsage;

DWORD dwDiskQuota;

DWORD dwOwnerStorage[GROUP_OWNER_STORAGE_SIZE];

TCHAR szGroupName[GROUPNAME_MAX_LENGTH];

} INTERNET_CACHE_GROUP_INFO, *LPINTERNET_CACHE_GROUP_INFO;

Members

dwGroupSize

Unsigned long integer value that contains the size, in TCHAR, of the structure.

dwGroupFlags

Unsigned long integer value that contains the group flags. Currently, the only value defined is CACHEGROUP_FLAG_NONPURGEABLE, which indicates that the cache entries in this group will not be removed by the cache manager.

dwGroupType

Unsigned long integer value that indicates the group type. Currently, the only value defined is CACHEGROUP_TYPE_INVALID.

dwDiskUsage

Unsigned long integer value that contains the current disk usage, in kilobytes, of this cache group.

dwDiskQuota

Unsigned long integer value that indicates the disk quota, in kilobytes, for this cache group.

dwOwnerStorage

Array of unsigned long integers that can be used by a client application to store information related to the group.

szGroupName

Array of characters that contains the group name.

Structure Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode structures.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode structures.

Header
Wininet.h

Minimum availability
Internet Explorer 5 (ANSI and Unicode)

INTERNET_CACHE_TIMESTAMPS Structure

Contains the LastModified and Expire times for a resource stored in the Internet cache.

Syntax

typedef struct _INTERNET_CACHE_TIMESTAMPS{

FILETIME ftExpires;

FILETIME ftLastModified;

} INTERNET_CACHE_TIMESTAMPS, *LPINTERNET_CACHE_TIMESTAMPS;

Members

ftExpires

FILETIME value that contains the Expires time.

ftLastModified

FILETIME value that contains the LastModified time.

Remarks

This structure is returned in the buffer when calling InternetQueryOption with the INTERNET_OPTION_CACHE_TIMESTAMPS flag.

Structure Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode structures.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode structures.

Header
Wininet.h

Minimum availability
Microsoft Internet Explorer 5

See Also

Microsoft Win32 Internet Functions Overview,
Microsoft Win32 Internet Functions Reference,
InternetQueryOption

INTERNET_CERTIFICATE_INFO Structure

Contains certificate information returned from the server. This structure is used by the InternetQueryOption function.

Syntax

typedef struct {

FILETIME ftExpiry;

FILETIME ftStart;

LPTSTR lpszSubjectInfo;

LPTSTR lpszIssuerInfo;

LPTSTR lpszProtocolName;

LPTSTR lpszSignatureAlgName;

LPTSTR lpszEncryptionAlgName;

DWORD dwKeySize;

} INTERNET_CERTIFICATE_INFO, * LPINTERNET_CERTIFICATE_INFO;

Members

ftExpiry

FILETIME structure that contains the date the certificate expires.

ftStart

FILETIME structure that contains the date the certificate becomes valid.

lpszSubjectInfo

Address of a buffer that contains the name of the organization, site, and server for which the certificate was issued.

lpszIssuerInfo

Address of a buffer that contains the name of the organization, site, and server that issued the certificate.

lpszProtocolName

Address of a buffer that contains the name of the protocol used to provide the secure connection.

lpszSignatureAlgName

Address of a buffer that contains the name of the algorithm used for signing the certificate.

lpszEncryptionAlgName

Address of a buffer that contains the name of the algorithm used for doing encryption over the secure channel (SSL/PCT) connection.

dwKeySize

Unsigned long integer value that contains the size, in TCHAR, of the key.

Remarks

Applications requesting this information must free pointers that are allocated and placed in the returned structure.

Structure Information

PRIVATE
Windows NT
Use version 4.0. Implemented only as an ANSI structure.

Windows
Use Windows 95 and later. Implemented only as an ANSI structure.

Header
Wininet.h

Minimum availability
Microsoft Internet Explorer 3.0

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later

Minimum availability
Internet Explorer 4.0

INTERNET_CONNECTED_INFO Structure

Contains the information to set the global online/offline state.

Syntax

typedef struct {

DWORD dwConnectedState;

DWORD dwFlags

} INTERNET_CONNECTED_INFO, * LPINTERNET_CONNECTED_INFO;

Members

dwConnectedState

Unsigned long integer value that contains the state information. This can be one of the following values:

INTERNET_STATE_CONNECTED
Connected to network. Replaces INTERNET_STATE_ONLINE.

INTERNET_STATE_DISCONNECTED
Disconnected from network. Replaces INTERNET_STATE_OFFLINE.

INTERNET_STATE_DISCONNECTED_BY_USER

Disconnected by user request. Replaces INTERNET_STATE_OFFLINE_USER.

INTERNET_STATE_IDLE
No network requests are being made by Win32® Internet functions.

INTERNET_STATE_BUSY
Network requests are being made by the Win32 Internet functions.

dwFlags

Unsigned long integer value that controls the transition between states. This can be ISO_FORCE_DISCONNECTED, which puts Win32 Internet functions into offline mode. All outstanding requests will be aborted with a canceled error.

Structure Information

PRIVATE
Windows NT
Use version 4.0. Implemented only as an ANSI structure.

Windows
Use Windows 95 and later. Implemented only as an ANSI structure.

Header
Wininet.h

Minimum availability
Internet Explorer 4.0

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later

Minimum availability
Internet Explorer 4.0

INTERNET_PER_CONN_OPTION Structure

Contains the value of an option.

Syntax

typedef struct {

DWORD dwOption;

union {

DWORD dwValue;

LPTSTR pszValue;

FILETIME ftValue;

} Value;

} INTERNET_PER_CONN_OPTION, *LPINTERNET_PER_CONN_OPTION;

The actual syntax of this structure varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Members

dwOption

Unsigned long integer value that contains the option to be queried or set. This can be one of the following values:

INTERNET_PER_CONN_AUTOCONFIG_URL

Sets or retrieves a string containing the URL to the automatic configuration script.

INTERNET_PER_CONN_AUTODISCOVERY_FLAGS

Sets or retrieves the automatic discovery settings. The Value parameter will contain one or more of the following values:

AUTO_PROXY_FLAG_ALWAYS_DETECT

Always automatically detect settings.

AUTO_PROXY_FLAG_CACHE_INIT_RUN

Indicates that the cached results of the automatic proxy configuration script should be used, instead of actually running the script, unless the cached file has expired.

AUTO_PROXY_FLAG_DETECTION_RUN
Automatic detection has been run at least once on this connection.

AUTO_PROXY_FLAG_DETECTION_SUSPECT

Not currently supported.

AUTO_PROXY_FLAG_DONT_CACHE_PROXY_RESULT

Do not allow the caching of the result of the automatic proxy configuration script.

AUTO_PROXY_FLAG_MIGRATED
The setting was migrated from a Microsoft® Internet Explorer 4.0 installation and automatic detection should be attempted once.

AUTO_PROXY_FLAG_USER_SET
The user has explicitly set the automatic detection.

INTERNET_PER_CONN_FLAGS
Sets or retrieves the connection type. The Value parameter will contain one or more of the following values:

PROXY_TYPE_DIRECT
The connection does not use a proxy server.

PROXY_TYPE_PROXY
The connection uses an explicitly set proxy server.

PROXY_TYPE_AUTO_PROXY_URL
The connection downloads and processes an automatic configuration script at a specified URL.

PROXY_TYPE_AUTO_DETECT
The connection automatically detects settings.

INTERNET_PER_CONN_PROXY_BYPASS
Sets or retrieves a string containing the URLs that do not use the proxy server.

INTERNET_PER_CONN_PROXY_SERVER
Sets or retrieves a string containing the proxy servers.

Value

Union of an unsigned long integer value (dwValue), an address of a string value (pszValue), and a FILETIME structure (ftValue) that contains the value for the option.

Remarks

In Microsoft® Internet Explorer 5, only the ANSI versions of InternetQueryOption and InternetSetOption will work with the INTERNET_PER_CONN_OPTION structure. The Unicode versions will support using the INTERNET_PER_CONN_OPTION structure in later versions of Internet Explorer.

For queries that return strings, InternetQueryOption allocates the memory for the pszValue member of the structure. The calling application must free this memory using the GlobalFree function when it has finished using the string.

Structure Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode structures.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode structures.

Header
Wininet.h

Minimum availability
Internet Explorer 5

See Also

InternetQueryOption,
InternetSetOption,
INTERNET_PER_CONN_OPTION_LIST

INTERNET_PER_CONN_OPTION_LIST Structure

Contains the list of options for a particular Internet connection.

Syntax

typedef struct {

DWORD dwSize;

LPTSTR pszConnection;

DWORD dwOptionCount;

DWORD dwOptionError;

LPINTERNET_PER_CONN_OPTION pOptions;

} INTERNET_PER_CONN_OPTION_LIST, *LPINTERNET_PER_CONN_OPTION_LIST;

The actual syntax of this structure varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Members

dwSize

Unsigned long integer value that contains the size of the INTERNET_PER_CON_OPTION_LIST structure.

pszConnection

Address of a string value that contains the name of the RAS connection or NULL, which indicates the default or LAN connection, to set or query options on.

dwOptionCount

Unsigned long integer value that contains the number of options to query or set.

dwOptionError

Unsigned long integer value that contains the options that failed if an error occurs.

pOptions

Address of an array of INTERNET_PER_CONN_OPTION structures containing the options to query or set.

Remarks

In Microsoft® Internet Explorer 5, only the ANSI versions of InternetQueryOption and InternetSetOption will work with the INTERNET_PER_CONN_OPTION_LIST structure. The Unicode versions will support using the INTERNET_PER_CONN_OPTION_LIST structure in later versions of Internet Explorer.

Structure Information

PRIVATE
Windows NT
Use version 4.0. Implemented as an ANSI structure.

Windows
Use Windows 95 and later. Implemented as an ANSI structure.

Header
Wininet.h

Minimum availability
Microsoft® Internet Explorer 5

See Also

InternetQueryOption,
InternetSetOption,
INTERNET_PER_CONN_OPTION

INTERNET_PROXY_INFO Structure

Contains information that is supplied with the INTERNET_OPTION_PROXY value to get or set proxy information on a handle obtained from a call to the InternetOpen function.

Syntax

typedef struct {

DWORD dwAccessType;

LPCTSTR lpszProxy;

LPCTSTR lpszProxyBypass;

} INTERNET_PROXY_INFO, * LPINTERNET_PROXY_INFO;

Members

dwAccessType

Unsigned long integer value that contains the access type. This can be one of the following values:

INTERNET_OPEN_TYPE_DIRECT
Internet accessed through a direct connection.

INTERNET_OPEN_TYPE_PRECONFIG
Applies only when setting proxy information.

INTERNET_OPEN_TYPE_PROXY
Internet accessed using a proxy.

lpszProxy

Address of a string value that contains the proxy server list.

lpszProxyBypass

Address of a string value that contains the proxy bypass list.

Structure Information

PRIVATE
Windows NT
Use version 4.0. Implemented only as an ANSI structure.

Windows
Use Windows 95 and later. Implemented only as an ANSI structure.

Header
Wininet.h

Minimum availability
Internet Explorer 3.0

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later

Minimum availability
Internet Explorer 4.0

INTERNET_VERSION_INFO Structure

Contains the HTTP version number of the server. This structure is used when passing the INTERNET_OPTION_VERSION flag to the InternetQueryOption function.

Syntax

typedef struct {

DWORD dwMajorVersion;

DWORD dwMinorVersion;

} INTERNET_VERSION_INFO, * LPINTERNET_VERSION_INFO;

Members

dwMajorVersion

Unsigned long integer value that contains the major version number.

dwMinorVersion

Unsigned long integer value that contains the minor version number.

Structure Information

PRIVATE
Windows NT
Use version 4.0. Implemented only as an ANSI structure.

Windows
Use Windows 95 and later. Implemented only as an ANSI structure.

Header
Wininet.h

Minimum availability
Internet Explorer 3.0

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later

Minimum availability
Internet Explorer 4.0

URL_COMPONENTS Structure

Contains the constituent parts of a URL. This structure is used with the InternetCrackUrl and InternetCreateUrl functions.

Syntax

typedef struct {

DWORD dwStructSize;

LPTSTR lpszScheme;

DWORD dwSchemeLength;

INTERNET_SCHEME nScheme;

LPTSTR lpszHostName;

DWORD dwHostNameLength;

INTERNET_PORT nPort;

LPTSTR lpszUserName;

DWORD dwUserNameLength;

LPTSTR lpszPassword;

DWORD dwPasswordLength;

LPTSTR lpszUrlPath;

DWORD dwUrlPathLength;

LPTSTR lpszExtraInfo;

DWORD dwExtraInfoLength;

} URL_COMPONENTS, *LPURL_COMPONENTS;

The actual syntax of this structure varies between its ANSI and Unicode implementations. For more information, see Win32 Internet Functions Syntax.

Members

dwStructSize

Unsigned long integer value that contains the size, in TCHAR, of this structure. Used for version checking. The size of this structure must be set to initialize this structure properly.

lpszScheme

Address of a string value that contains the scheme name.

dwSchemeLength

Unsigned long integer value that contains the length of the scheme name in TCHAR.

nScheme

INTERNET_SCHEME value that indicates the Internet protocol scheme.

lpszHostName

Address of a string value that contains the host name.

dwHostNameLength

Unsigned long integer value that contains the length of the host name in TCHAR.

nPort

Converted port number.

lpszUserName

Address of a string value that contains the user name.

dwUserNameLength

Unsigned long integer value that contains the length of the user name in TCHAR.

lpszPassword

Address of a string value that contains the password.

dwPasswordLength

Unsigned long integer value that contains the length of the password in TCHAR.

lpszUrlPath

Address of a string value that contains the URL path.

dwUrlPathLength

Unsigned long integer value that contains the length of the URL path in TCHAR.

lpszExtraInfo

Address of a string value that contains the extra information (for example, ?something or #something).

dwExtraInfoLength

Unsigned long integer value that contains the length of the extra information in TCHAR.

Remarks

For InternetCrackUrl, if a pointer member and its corresponding length member are both zero, that component is not returned. If the pointer member is NULL but the length member is not zero, both the pointer and length members are returned. If both pointer and corresponding length members are nonzero, the pointer member points to a buffer where the component is copied. The component can be un-escaped, depending on the dwFlags parameter of InternetCrackUrl.

For InternetCreateUrl, the pointer members should be NULL if the component is not required. If the corresponding length member is zero, the pointer member is the address of a zero-terminated string. If the length member is not zero, it is the string length of the corresponding pointer member.

Structure Information

PRIVATE
Windows NT
Use version 4.0. Implemented as ANSI and Unicode structures.

Windows
Use Windows 95 and later. Implemented as ANSI and Unicode structures.

Header
Wininet.h

Minimum availability
Internet Explorer 3.0 (ANSI only), 5 (ANSI and Unicode)

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later. Implemented as ANSI and Unicode structures.

Minimum availability
Internet Explorer 4.0

Win32 Internet API Enumerated Types

The following list contains a link to the enumerated type used by the Win32® Internet functions.

INTERNET_SCHEME Enumerated Type

Defines the flags used with the nScheme member of the URL_COMPONENTS structure.

Syntax

typedef enum {

INTERNET_SCHEME_PARTIAL = -2,

INTERNET_SCHEME_UNKNOWN = -1,

INTERNET_SCHEME_DEFAULT = 0,

INTERNET_SCHEME_FTP,

INTERNET_SCHEME_GOPHER,

INTERNET_SCHEME_HTTP,

INTERNET_SCHEME_HTTPS,

INTERNET_SCHEME_FILE,

INTERNET_SCHEME_NEWS,

INTERNET_SCHEME_MAILTO,

INTERNET_SCHEME_SOCKS,

INTERNET_SCHEME_JAVASCRIPT,

INTERNET_SCHEME_VBSCRIPT,

INTERNET_SCHEME_FIRST = INTERNET_SCHEME_FTP,

INTERNET_SCHEME_LAST = INTERNET_SCHEME_VBSCRIPT

} INTERNET_SCHEME, * LPINTERNET_SCHEME;

Elements

INTERNET_SCHEME_PARTIAL
Partial URL.

INTERNET_SCHEME_UNKNOWN
Unknown URL scheme.

INTERNET_SCHEME_DEFAULT
Default URL scheme.

INTERNET_SCHEME_FTP
FTP URL scheme (ftp:).

INTERNET_SCHEME_GOPHER
Gopher URL scheme (gopher:).

INTERNET_SCHEME_HTTP
HTTP URL scheme (http:).

INTERNET_SCHEME_HTTPS
HTTPS URL scheme (https:).

INTERNET_SCHEME_FILE
File URL scheme (file:).

INTERNET_SCHEME_NEWS
News URL scheme (news:).

INTERNET_SCHEME_MAILTO
Mail URL scheme (mailto:).

INTERNET_SCHEME_SOCKS
Socks URL scheme (socks:).

INTERNET_SCHEME_JAVASCRIPT
JScript URL scheme (javascript:).

INTERNET_SCHEME_VBSCRIPT
VBScript URL scheme (vbscript:).

INTERNET_SCHEME_FIRST
Lowest known scheme value.

INTERNET_SCHEME_LAST
Highest known scheme value.

Enumerated Type Information

PRIVATE
Windows NT
Use version 4.0. Implemented only as an ANSI structure.

Windows
Use Windows 95 and later. Implemented only as an ANSI structure.

Header
Wininet.h

Minimum availability
Internet Explorer 3.0

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later

Minimum availability
Internet Explorer 4.0
Win32 Internet API Constants

The Win32® Internet functions use the following constants:
· API Flags

· HTTP Status Codes

· Option Flags

· Query Info Flags

· Cache Group Constants

· Gopher Type Values

· Error Messages

API Flags

Many of the Microsoft® Win32® Internet functions accept an array of unsigned long integer flags as a parameter. The following is a brief description of the defined flags.

INTERNET_FLAG_ASYNC

Makes only asynchronous requests on handles descended from the handle returned from this function. Only the InternetOpen function uses this flag.

INTERNET_FLAG_CACHE_ASYNC

Allows a lazy cache write.

INTERNET_FLAG_CACHE_IF_NET_FAIL

Returns the resource from the cache if the network request for the resource fails due to an ERROR_INTERNET_CONNECTION_RESET or ERROR_INTERNET_CANNOT_CONNECT error. This flag is used by HttpOpenRequest.

INTERNET_FLAG_DONT_CACHE
Does not add the returned entity to the cache. This is identical to the preferred value, INTERNET_FLAG_NO_CACHE_WRITE.

INTERNET_FLAG_EXISTING_CONNECT

Attempts to use an existing InternetConnect object if one exists with the same attributes required to make the request. This is useful only with FTP operations, since FTP is the only protocol that typically performs multiple operations during the same session. The Win32 Internet API caches a single connection handle for each HINTERNET handle generated by InternetOpen. Only the InternetOpenUrl function uses this flag.

INTERNET_FLAG_FORMS_SUBMIT
Indicates that this is a Forms submission.

INTERNET_FLAG_FROM_CACHE
Does not make network requests. All entities are returned from the cache. If the requested item is not in the cache, a suitable error, such as ERROR_FILE_NOT_FOUND, is returned. Only the InternetOpen function uses this flag.

INTERNET_FLAG_FWD_BACK
Indicates that the function should use the copy of the resource that is currently in the Internet cache. The expiration date and other information about the resource is not checked. If the requested item is not found in the Internet cache, the system will attempt to locate the resource on the network. This value was introduced in Microsoft Internet Explorer 5 and is associated with the Forward and Back button operations of Internet Explorer.

INTERNET_FLAG_HYPERLINK
Forces a reload if there was no Expires time and no LastModified time returned from the server when determining whether to reload the item from the network. This flag can be used by GopherFindFirstFile, GopherOpenFile, FtpFindFirstFile, FtpGetFile, FtpOpenFile, FtpPutFile, HttpOpenRequest, and InternetOpenUrl.

INTERNET_FLAG_IGNORE_CERT_CN_INVALID

Disables Win32 Internet function checking of SSL/PCT-based certificates that are returned from the server against the host name given in the request. Win32 Internet functions use a simple check against certificates by comparing for matching host names and simple wildcarding rules. This flag can be used by HttpOpenRequest and InternetOpenUrl (for HTTP requests).

INTERNET_FLAG_IGNORE_CERT_DATE_INVALID

Disables Win32 Internet function checking of SSL/PCT-based certificates for proper validity dates. This flag can be used by HttpOpenRequest and InternetOpenUrl (for HTTP requests).

INTERNET_FLAG_IGNORE_REDIRECT_TO_HTTP

Disables the ability of the Win32 Internet functions to detect this special type of redirect. When this flag is used, Win32 Internet functions transparently allow redirects from HTTPS to HTTP URLs. This flag can be used by HttpOpenRequest and InternetOpenUrl (for HTTP requests).

INTERNET_FLAG_IGNORE_REDIRECT_TO_HTTPS

Disables the ability of the Win32 Internet functions to detect this special type of redirect. When this flag is used, Win32 Internet functions transparently allow redirects from HTTP to HTTPS URLs. This flag can be used by HttpOpenRequest and InternetOpenUrl (for HTTP requests).

INTERNET_FLAG_KEEP_CONNECTION

Uses keep-alive semantics, if available, for the connection. This flag is used by HttpOpenRequest and InternetOpenUrl (for HTTP requests). This flag is required for Microsoft Network (MSN), NT LAN Manager (NTLM), and other types of authentication.

INTERNET_FLAG_MAKE_PERSISTENT

No longer supported.

INTERNET_FLAG_MUST_CACHE_REQUEST

Identical to the preferred value, INTERNET_FLAG_NEED_FILE. Causes a temporary file to be created if the file cannot be cached. This flag can be used by GopherFindFirstFile, GopherOpenFile, FtpFindFirstFile, FtpGetFile, FtpOpenFile, FtpPutFile, HttpOpenRequest, and InternetOpenUrl.

INTERNET_FLAG_NEED_FILE

Causes a temporary file to be created if the file cannot be cached. This flag can be used by GopherFindFirstFile, GopherOpenFile, FtpFindFirstFile, FtpGetFile, FtpOpenFile, FtpPutFile, HttpOpenRequest, and InternetOpenUrl.

INTERNET_FLAG_NO_AUTH

Does not attempt authentication automatically. This flag can be used by HttpOpenRequest and InternetOpenUrl (for HTTP requests).

INTERNET_FLAG_NO_AUTO_REDIRECT

Does not automatically handle redirection in HttpSendRequest. This flag can also be used by InternetOpenUrl for HTTP requests.

INTERNET_FLAG_NO_CACHE_WRITE

Does not add the returned entity to the cache. This flag is used by GopherFindFirstFile, GopherOpenFile, HttpOpenRequest, and InternetOpenUrl.

INTERNET_FLAG_NO_COOKIES

Does not automatically add cookie headers to requests, and does not automatically add returned cookies to the cookie database. This flag can be used by HttpOpenRequest and InternetOpenUrl (for HTTP requests).

INTERNET_FLAG_NO_UI

Disables the cookie dialog box. This flag can be used by HttpOpenRequest and InternetOpenUrl (HTTP requests only).

INTERNET_FLAG_OFFLINE

Identical to INTERNET_FLAG_FROM_CACHE. Does not make network requests. All entities are returned from the cache. If the requested item is not in the cache, a suitable error, such as ERROR_FILE_NOT_FOUND, is returned. Only the InternetOpen function uses this flag.

INTERNET_FLAG_PASSIVE

Uses passive FTP semantics. Only InternetConnect and InternetOpenUrl use this flag. InternetConnect uses this flag for FTP requests, and InternetOpenUrl uses this flag for FTP files and directories.

INTERNET_FLAG_PRAGMA_NOCACHE

Forces the request to be resolved by the origin server, even if a cached copy exists on the proxy. The InternetOpenUrl function (on HTTP and HTTPS requests only) and HttpOpenRequest function use this flag.

INTERNET_FLAG_RAW_DATA

Returns the data as a GOPHER_FIND_DATA structure when retrieving Gopher directory information, or as a WIN32_FIND_DATA structure when retrieving FTP directory information. If this flag is not specified or if the call was made through a CERN proxy, InternetOpenUrl returns the HTML version of the directory. Only the InternetOpenUrl function uses this flag.

INTERNET_FLAG_READ_PREFETCH

This flag is currently disabled.

INTERNET_FLAG_RELOAD

Forces a download of the requested file, object, or directory listing from the origin server, not from the cache. The GopherFindFirstFile, GopherOpenFile, FtpFindFirstFile, FtpGetFile, FtpOpenFile, FtpPutFile, HttpOpenRequest, and InternetOpenUrl functions utilize this flag.

INTERNET_FLAG_RESYNCHRONIZE

Reloads HTTP resources if the resource has been modified since the last time it was downloaded. All FTP and Gopher resources are reloaded. This flag can be used by GopherFindFirstFile, GopherOpenFile, FtpFindFirstFile, FtpGetFile, FtpOpenFile, FtpPutFile, HttpOpenRequest, and InternetOpenUrl.

INTERNET_FLAG_SECURE

Uses secure transaction semantics. This translates to using Secure Sockets Layer/Private Communications Technology (SSL/PCT) and is only meaningful in HTTP requests. This flag is used by HttpOpenRequest and InternetOpenUrl, but this is redundant if https:// appears in the URL.

INTERNET_FLAG_TRANSFER_ASCII

Transfers file as ASCII (FTP only). This flag can be used by FtpOpenFile, FtpGetFile, and FtpPutFile.

INTERNET_FLAG_TRANSFER_BINARY

Transfers file as binary (FTP only). This flag can be used by FtpOpenFile, FtpGetFile, and FtpPutFile.

INTERNET_NO_CALLBACK

Indicates that no callbacks should be made for that API. This is used for the dxContext parameter of the Win32 Internet functions that allow asynchronous operations.

WININET_API_FLAG_ASYNC

Forces asynchronous operations.

WININET_API_FLAG_SYNC

Forces synchronous operations.

WININET_API_FLAG_USE_CONTEXT

Forces the API to use the context value, even if it is set to zero.

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later

Minimum availability
Internet Explorer 4.0

HTTP Status Codes

The following table contains the constants and corresponding values for the HTTP status codes returned by servers on the Internet.

	PRIVATE
Constant
	Value
	Description

	HTTP_STATUS_CONTINUE
	100
	The request can be continued.

	HTTP_STATUS_SWITCH_PROTOCOLS
	101
	The server has switched protocols in an upgrade header.

	HTTP_STATUS_OK
	200
	The request completed successfully.

	HTTP_STATUS_CREATED
	201
	The request has been fulfilled and resulted in the creation of a new resource.

	HTTP_STATUS_ACCEPTED
	202
	The request has been accepted for processing, but the processing has not been completed.

	HTTP_STATUS_PARTIAL
	203
	The returned meta information in the entity-header is not the definitive set available from the origin server.

	HTTP_STATUS_NO_CONTENT
	204
	The server has fulfilled the request, but there is no new information to send back.

	HTTP_STATUS_RESET_CONTENT
	205
	The request has been completed, and the client program should reset the document view that caused the request to be sent to allow the user to easily initiate another input action.

	HTTP_STATUS_PARTIAL_CONTENT
	206
	The server has fulfilled the partial GET request for the resource.

	HTTP_STATUS_AMBIGUOUS
	300
	The server couldn't decide what to return.

	HTTP_STATUS_MOVED
	301
	The requested resource has been assigned to a new permanent URI (Uniform Resource Identifier), and any future references to this resource should be done using one of the returned URIs.

	HTTP_STATUS_REDIRECT
	302
	The requested resource resides temporarily under a different URI (Uniform Resource Identifier).

	HTTP_STATUS_REDIRECT_METHOD
	303
	The response to the request can be found under a different URI (Uniform Resource Identifier) and should be retrieved using a GET method on that resource.

	HTTP_STATUS_NOT_MODIFIED
	304
	The requested resource has not been modified.

	HTTP_STATUS_USE_PROXY
	305
	The requested resource must be accessed through the proxy given by the location field.

	HTTP_STATUS_REDIRECT_KEEP_VERB
	307
	The redirected request keeps the same verb. HTTP/1.1 behavior.

	HTTP_STATUS_BAD_REQUEST
	400
	The request could not be processed by the server due to invalid syntax.

	HTTP_STATUS_DENIED
	401
	The requested resource requires user authentication.

	HTTP_STATUS_PAYMENT_REQ
	402
	Not currently implemented in the HTTP protocol.

	HTTP_STATUS_FORBIDDEN
	403
	The server understood the request, but is refusing to fulfill it.

	HTTP_STATUS_NOT_FOUND
	404
	The server has not found anything matching the requested URI (Uniform Resource Identifier).

	HTTP_STATUS_BAD_METHOD
	405
	The method used is not allowed.

	HTTP_STATUS_NONE_ACCEPTABLE
	406
	No responses acceptable to the client were found.

	HTTP_STATUS_PROXY_AUTH_REQ
	407
	Proxy authentication required.

	HTTP_STATUS_REQUEST_TIMEOUT
	408
	The server timed out waiting for the request.

	HTTP_STATUS_CONFLICT
	409
	The request could not be completed due to a conflict with the current state of the resource. The user should resubmit with more information.

	HTTP_STATUS_GONE
	410
	The requested resource is no longer available at the server, and no forwarding address is known.

	HTTP_STATUS_LENGTH_REQUIRED
	411
	The server refuses to accept the request without a defined content length.

	HTTP_STATUS_PRECOND_FAILED
	412
	The precondition given in one or more of the request header fields evaluated to false when it was tested on the server.

	HTTP_STATUS_REQUEST_TOO_LARGE
	413
	The server is refusing to process a request because the request entity is larger than the server is willing or able to process.

	HTTP_STATUS_URI_TOO_LONG
	414
	The server is refusing to service the request because the request URI (Uniform Resource Identifier) is longer than the server is willing to interpret.

	HTTP_STATUS_UNSUPPORTED_MEDIA
	415
	The server is refusing to service the request because the entity of the request is in a format not supported by the requested resource for the requested method.

	HTTP_STATUS_RETRY_WITH
	449
	The request should be retried after doing the appropriate action.

	HTTP_STATUS_SERVER_ERROR
	500
	The server encountered an unexpected condition that prevented it from fulfilling the request.

	HTTP_STATUS_NOT_SUPPORTED
	501
	The server does not support the functionality required to fulfill the request.

	HTTP_STATUS_BAD_GATEWAY
	502
	The server, while acting as a gateway or proxy, received an invalid response from the upstream server it accessed in attempting to fulfill the request.

	HTTP_STATUS_SERVICE_UNAVAIL
	503
	The service is temporarily overloaded.

	HTTP_STATUS_GATEWAY_TIMEOUT
	504
	The request was timed out waiting for a gateway.

	HTTP_STATUS_VERSION_NOT_SUP
	505
	The server does not support, or refuses to support, the HTTP protocol version that was used in the request message.

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later

Minimum availability
Internet Explorer 4.0

Option Flags

The following list contains the options supported by InternetQueryOption and InternetSetOption. All valid option flags have a value greater than or equal to INTERNET_FIRST_OPTION and less than or equal to INTERNET_LAST_OPTION.

INTERNET_OPTION_ASYNC

Not currently implemented.

INTERNET_OPTION_ASYNC_ID

Not implemented.

INTERNET_OPTION_ASYNC_PRIORITY

Not currently implemented.

INTERNET_OPTION_BYPASS_EDITED_ENTRY

Sets or retrieves the Boolean value that determines if the system should check the network for newer content and overwrite edited cache entries if a newer version is found. If set to TRUE, the system will check the network for newer content and overwrite the edited cache entry with the newer version. The default is FALSE, which indicates that the edited cache entry should be used without checking the network. This is used by InternetQueryOption and InternetSetOption. It is valid only in Microsoft® Internet Explorer version 5 and later.

INTERNET_OPTION_CACHE_STREAM_HANDLE

No longer supported.

INTERNET_OPTION_CACHE_TIMESTAMPS

Retrieves an INTERNET_CACHE_TIMESTAMPS structure that contains the LastModified time and Expires time from the resource stored in the Internet cache. This value is used by InternetQueryOption.

INTERNET_OPTION_CALLBACK

Sets or retrieves the address of the callback function defined for this handle. This option can be used on all HINTERNET handles. Used by InternetQueryOption and InternetSetOption.

INTERNET_OPTION_CALLBACK_FILTER

Not currently implemented.

INTERNET_OPTION_CODEPAGE

Not currently implemented.

INTERNET_OPTION_CONNECT_BACKOFF

Not currently implemented.

INTERNET_OPTION_CONNECT_LIMIT

Not currently implemented.

INTERNET_OPTION_CONNECT_RETRIES

Sets or retrieves an unsigned long integer value that contains the retry count to use for Internet connection requests. If a connection attempt still fails after the specified number of tries, the request is canceled. The default is five retries. This option can be used on any HINTERNET handle, including a NULL handle. It is used by InternetQueryOption and InternetSetOption.

INTERNET_OPTION_CONNECT_TIME

Not currently implemented.

INTERNET_OPTION_CONNECT_TIMEOUT

Sets or retrieves an unsigned long integer value that contains the time-out value, in milliseconds, to use for Internet connection requests. If a connection request takes longer than this time-out value, the request is canceled. This option can be used on any HINTERNET handle, including a NULL handle. It is used by InternetQueryOption and InternetSetOption.

INTERNET_OPTION_CONNECTED_STATE

Sets or retrieves an unsigned long integer value that contains the connected state. This is used by InternetQueryOption and InternetSetOption.

INTERNET_OPTION_CONTEXT_VALUE

Sets or retrieves a DWORD_PTR that contains the address of the context value associated with this Internet handle. This option can be used on any HINTERNET handle. This is used by InternetQueryOption and InternetSetOption. Previously, this set the context value to the address stored in the DWORD(lpBuffer) pointer. This has been corrected so that the value stored in the buffer will be used and the INTERNET_OPTION_CONTEXT_VALUE flag will be assigned a new value. The old value, 10, has been preserved so that applications written for the old behavior are still supported.

INTERNET_OPTION_CONTROL_RECEIVE_TIMEOUT

Identical to INTERNET_OPTION_RECEIVE_TIMEOUT. This is used by InternetQueryOption and InternetSetOption.

INTERNET_OPTION_CONTROL_SEND_TIMEOUT

Identical to INTERNET_OPTION_SEND_TIMEOUT. This is used by InternetQueryOption and InternetSetOption.

INTERNET_OPTION_DATA_RECEIVE_TIMEOUT

Not implemented.

INTERNET_OPTION_DATA_SEND_TIMEOUT

Not implemented.

INTERNET_OPTION_DATAFILE_NAME

Retrieves a string value that contains the name of the file backing a downloaded entity. This flag is valid after InternetOpenUrl, FtpOpenFile, GopherOpenFile, or HttpOpenRequest has completed. It is used by InternetQueryOption and InternetSetOption.

INTERNET_OPTION_DIGEST_AUTH_UNLOAD

Causes the system to log off the Digest authentication SSPI package, purging all of the credentials created for the process. No buffer is required for this option. It is used by InternetSetOption.

INTERNET_OPTION_DISABLE_AUTODIAL

Not currently implemented.

INTERNET_OPTION_DISCONNECTED_TIMEOUT

Not currently implemented.

INTERNET_OPTION_END_BROWSER_SESSION

Flushes entries not in use from the password cache on the hard drive. Also resets the cache time used when the synchronization mode is once-per-session. No buffer is required for this option. This is used by InternetSetOption.

INTERNET_OPTION_ERROR_MASK

Sets an unsigned long integer value that contains the error masks that can be handled by the client application. This can be a combination of the following values:

INTERNET_ERROR_MASK_COMBINED_SEC_CERT

Indicates that the client application can handle security certificate error codes.

INTERNET_ERROR_MASK_INSERT_CDROM

Indicates that the client application can handle the ERROR_INTERNET_INSERT_CDROM error code.

INTERNET_ERROR_MASK_LOGIN_FAILURE_DISPLAY_ENTITY_BODY

Indicates that the client application can handle the ERROR_INTERNET_LOGIN_FAILURE_DISPLAY_ENTITY_BODY error code.

INTERNET_ERROR_MASK_NEED_MSN_SSPI_PKG

Not currently implemented.

INTERNET_OPTION_EXTENDED_ERROR

Retrieves an unsigned long integer value that contains a Microsoft® Windows® Sockets error code that was mapped to the ERROR_INTERNET_ error messages last returned in this thread context. This option is used on a NULL HINTERNET handle by InternetQueryOption.

INTERNET_OPTION_FROM_CACHE_TIMEOUT

Sets or retrieves an unsigned long integer value that contains the amount of time the system should wait for a response to a network request before checking the cache for a copy of the resource. If a network request takes longer than the time specified and the requested resource is available in the cache, the resource will be retrieved from the cache. This is used by InternetQueryOption and InternetSetOption.

INTERNET_OPTION_HANDLE_TYPE

Retrieves an unsigned long integer value that contains the type of the Internet handle passed in. This is used by InternetQueryOption on any HINTERNET handle. Possible return values include:

PRIVATE
INTERNET_HANDLE_TYPE_CONNECT_FTP

INTERNET_HANDLE_TYPE_CONNECT_GOPHER

INTERNET_HANDLE_TYPE_CONNECT_HTTP

INTERNET_HANDLE_TYPE_FILE_REQUEST

INTERNET_HANDLE_TYPE_FTP_FILE

INTERNET_HANDLE_TYPE_FTP_FILE_HTML

INTERNET_HANDLE_TYPE_FTP_FIND

INTERNET_HANDLE_TYPE_FTP_FIND_HTML

INTERNET_HANDLE_TYPE_GOPHER_FILE

INTERNET_HANDLE_TYPE_GOPHER_FILE_HTML

INTERNET_HANDLE_TYPE_GOPHER_FIND

INTERNET_HANDLE_TYPE_GOPHER_FIND_HTML

INTERNET_HANDLE_TYPE_HTTP_REQUEST

INTERNET_HANDLE_TYPE_INTERNET

INTERNET_OPTION_HTTP_VERSION

Sets or retrieves an HTTP_VERSION_INFO structure that contains the HTTP version being supported. This must be used on a NULL handle. This is used by InternetQueryOption and InternetSetOption.

INTERNET_OPTION_IDLE_STATE

Not currently implemented.

INTERNET_OPTION_IGNORE_OFFLINE

Sets or retrieves whether the global offline flag should be ignored. No buffer is required for this option. This is used by InternetQueryOption and InternetSetOption. This value was introduced in Internet Explorer 5.

INTERNET_OPTION_KEEP_CONNECTION

Not currently implemented.

INTERNET_OPTION_LISTEN_TIMEOUT

Not currently implemented.

INTERNET_OPTION_MAX_CONNS_PER_SERVER

Sets or retrieves an unsigned long integer value that contains the maximum number of connections allowed per server. This is used by InternetQueryOption and InternetSetOption. This value was introduced in Internet Explorer 5.

INTERNET_OPTION_MAX_CONNS_PER_1_0_SERVER

Sets or retrieves an unsigned long integer value that contains the maximum number of connections allowed per HTTP/1.0 server. This is used by InternetQueryOption and InternetSetOption. This value was introduced in Internet Explorer 5.

INTERNET_OPTION_OFFLINE_MODE

Not currently implemented.

INTERNET_OPTION_OFFLINE_SEMANTICS

Not currently implemented.

INTERNET_OPTION_PARENT_HANDLE

Retrieves the parent handle to this handle. This option can be used on any HINTERNET handle by InternetQueryOption.

INTERNET_OPTION_PASSWORD

Sets or retrieves a string value that contains the password associated with a handle returned by InternetConnect. This is used by InternetQueryOption and InternetSetOption.

INTERNET_OPTION_PER_CONNECTION_OPTION

Sets or retrieves an INTERNET_PER_CONN_OPTION_LIST structure that specifies a list of options for a particular connection. This is used by InternetQueryOption and InternetSetOption. This option is only valid in Internet Explorer version 5 and later.

INTERNET_OPTION_POLICY

Not currently implemented.

INTERNET_OPTION_PROXY

Sets or retrieves an INTERNET_PROXY_INFO structure that contains the proxy information on an existing InternetOpen handle when the HINTERNET handle is not NULL. If the HINTERNET handle is NULL, the function sets or queries the global proxy information. This option can be used on the HINTERNET handle returned by InternetOpen. It is used by InternetQueryOption and InternetSetOption.

INTERNET_OPTION_PROXY_PASSWORD

Sets or retrieves a string value that contains the password currently being used to access the proxy. This is used by InternetQueryOption and InternetSetOption.

INTERNET_OPTION_PROXY_USERNAME

Sets or retrieves a string value that contains the user name currently being used to access the proxy. This is used by InternetQueryOption and InternetSetOption.

INTERNET_OPTION_READ_BUFFER_SIZE

Sets or retrieves an unsigned long integer value that contains the size of the read buffer. This option can be used on HINTERNET handles returned by FtpOpenFile, FtpFindFirstFile, and InternetConnect (FTP session only). This option is used by InternetQueryOption and InternetSetOption.

INTERNET_OPTION_RECEIVE_THROUGHPUT

Not currently implemented.

INTERNET_OPTION_RECEIVE_TIMEOUT

Sets or retrieves an unsigned long integer value that contains the time-out value, in milliseconds, to receive a response to a request. If the response takes longer than this time-out value, the request is canceled. This option can be used on any HINTERNET handle, including a NULL handle. It is used by InternetQueryOption and InternetSetOption.

INTERNET_OPTION_REFRESH

Causes the proxy information to be reread from the registry for a handle. No buffer is required. This option can be used on the HINTERNET handle returned by InternetOpen. It is used by InternetSetOption.

INTERNET_OPTION_RESET_URLCACHE_SESSION

Starts a new cache session for the process. No buffer is required. This is used by InternetSetOption.

INTERNET_OPTION_REQUEST_FLAGS

Retrieves an unsigned long integer value that contains the special status flags that indicate the status of the download currently in progress. This is used by InternetQueryOption. The INTERNET_OPTION_REQUEST_FLAGS option can be one of the following values:

PRIVATE
INTERNET_REQFLAG_ASYNC
Not currently implemented.

INTERNET_REQFLAG_CACHE_WRITE_DISABLED
Internet request cannot be cached (an HTTPS request, for example).

INTERNET_REQFLAG_FROM_CACHE
Response came from the cache.

INTERNET_REQFLAG_NET_TIMEOUT
Internet request timed out.

INTERNET_REQFLAG_NO_HEADERS
Original response contained no headers.

INTERNET_REQFLAG_PASSIVE
Not currently implemented.

INTERNET_REQFLAG_VIA_PROXY
Request was made through a proxy.

INTERNET_OPTION_REQUEST_PRIORITY

Sets or retrieves an unsigned long integer value that contains the priority of requests competing for a connection on an HTTP handle. This is used by InternetQueryOption and InternetSetOption.

INTERNET_OPTION_SECONDARY_CACHE_KEY

Sets or retrieves a string value that contains the secondary cache key. This is used by InternetQueryOption and InternetSetOption.

INTERNET_OPTION_SECURITY_CERTIFICATE

Retrieves the certificate for an SSL/PCT (Secure Sockets Layer/Private Communications Technology) server into a formatted string. This is used by InternetQueryOption.

INTERNET_OPTION_SECURITY_CERTIFICATE_STRUCT

Retrieves the certificate for an SSL/PCT server into the INTERNET_CERTIFICATE_INFO structure. This is used by InternetQueryOption.

INTERNET_OPTION_SECURITY_FLAGS

Retrieves an unsigned long integer value that contains the security flags for a handle. This option is used by InternetQueryOption. It can be a combination of these values:

PRIVATE
SECURITY_FLAG_128BIT
Identical to the preferred value SECURITY_FLAG_STRENGTH_STRONG. This is only returned in a call to InternetQueryOption.

SECURITY_FLAG_40BIT
Identical to the preferred value SECURITY_FLAG_STRENGTH_WEAK. This is only returned in a call to InternetQueryOption.

SECURITY_FLAG_56BIT
Identical to the preferred value SECURITY_FLAG_STRENGTH_MEDIUM. This is only returned in a call to InternetQueryOption.

SECURITY_FLAG_FORTEZZA
Indicates Fortezza has been used to provide secrecy, authentication, and/or integrity for the specified connection.

SECURITY_FLAG_IETFSSL4
Not currently implemented.

SECURITY_FLAG_IGNORE_CERT_CN_INVALID

Ignores the ERROR_INTERNET_SEC_CERT_CN_INVALID error message.

SECURITY_FLAG_IGNORE_CERT_DATE_INVALID

Ignores the ERROR_INTERNET_SEC_CERT_DATE_INVALID error message.

SECURITY_FLAG_IGNORE_REDIRECT_TO_HTTP
Ignores the ERROR_INTERNET_HTTPS_TO_HTTP_ON_REDIR error message.

SECURITY_FLAG_IGNORE_REDIRECT_TO_HTTPS
Ignores the ERROR_INTERNET_HTTP_TO_HTTPS_ON_REDIR error message.

SECURITY_FLAG_IGNORE_REVOCATION
Ignores certificate revocation problems.

SECURITY_FLAG_IGNORE_UNKNOWN_CA
Ignores unknown certificate authority problems.

SECURITY_FLAG_IGNORE_WRONG_USAGE
Ignores incorrect usage problems.

SECURITY_FLAG_NORMALBITNESS
Identical to the value SECURITY_FLAG_STRENGTH_WEAK. This is only returned in a call to InternetQueryOption.

SECURITY_FLAG_PCT
Not currently implemented.

SECURITY_FLAG_PCT4
Not currently implemented.

SECURITY_FLAG_SECURE
Uses secure transfers. This is only returned in a call to InternetQueryOption.

SECURITY_FLAG_SSL
Not currently implemented.

SECURITY_FLAG_SSL3
Not currently implemented.

SECURITY_FLAG_STRENGTH_MEDIUM
Uses medium (56-bit) encryption. This is only returned in a call to InternetQueryOption.

SECURITY_FLAG_STRENGTH_STRONG
Uses strong (128-bit) encryption. This is only returned in a call to InternetQueryOption.

SECURITY_FLAG_STRENGTH_WEAK
Uses weak (40-bit) encryption. This is only returned in a call to InternetQueryOption.

SECURITY_FLAG_UNKNOWNBIT
The bit size used in the encryption is unknown. This is only returned in a call to InternetQueryOption.

INTERNET_OPTION_SECURITY_KEY_BITNESS

Retrieves an unsigned long integer value that contains the bit size of the encryption key. The larger the number, the greater the encryption strength being used. This is used by InternetQueryOption.

INTERNET_OPTION_SECURITY_SELECT_CLIENT_CERT

Sets an unsigned long integer value that contains the client certification. This is used by InternetSetOption.

INTERNET_OPTION_SEND_THROUGHPUT

Not currently implemented.

INTERNET_OPTION_SEND_TIMEOUT

Sets or retrieves an unsigned long integer value that contains the time-out value, in milliseconds, to send a request. If the send takes longer than this time-out value, the send is canceled. This option can be used on any HINTERNET handle, including a NULL handle. It is used by InternetQueryOption and InternetSetOption.

INTERNET_OPTION_SETTINGS_CHANGED

Informs the system that the registry settings have been changed so that it will check the settings on the next call to InternetConnect. This is used by InternetSetOption.

INTERNET_OPTION_URL

Retrieves a string value that contains the full URL of a downloaded resource. If the original URL contained any extra information (such as search strings or anchors), or if the call was redirected, the URL returned will differ from the original. This option is valid on HINTERNET handles returned by InternetOpenUrl, FtpOpenFile, GopherOpenFile, or HttpOpenRequest. It is used by InternetQueryOption.

INTERNET_OPTION_USER_AGENT

Sets or retrieves the user agent string on handles supplied by InternetOpen and used in subsequent HttpSendRequest functions, as long as it is not overridden by a header added by HttpAddRequestHeaders or HttpSendRequest. This is used by InternetQueryOption and InternetSetOption.

INTERNET_OPTION_USERNAME

Sets or retrieves a string that contains the user name associated with a handle returned by InternetConnect. This is used by InternetQueryOption and InternetSetOption.

INTERNET_OPTION_VERSION

Retrieves an INTERNET_VERSION_INFO structure that contains the version number of Wininet.dll. This option can be used on a NULL HINTERNET handle by InternetQueryOption.

INTERNET_OPTION_WRITE_BUFFER_SIZE

Sets or retrieves an unsigned long integer value that contains the size of the write buffer. This option can be used on HINTERNET handles returned by FtpOpenFile and InternetConnect (FTP session only). It is used by InternetQueryOption and InternetSetOption.

Query Info Flags

The following lists contain the attributes and modifiers used by HttpQueryInfo and IWinInetHttpInfo::QueryInfo.

Attributes

The attribute flags are used by HttpQueryInfo (or IWinInetHttpInfo::QueryInfo) to indicate what information to retrieve. Most of the attribute flags map directly to a specific HTTP header. There are also some special flags, such as HTTP_QUERY_RAW_HEADERS, that are not related to a specific header.

HTTP_QUERY_ACCEPT

Retrieves the acceptable media types for the response.

HTTP_QUERY_ACCEPT_CHARSET

Retrieves the acceptable character sets for the response.

HTTP_QUERY_ACCEPT_ENCODING

Retrieves the acceptable content-coding values for the response.

HTTP_QUERY_ACCEPT_LANGUAGE

Retrieves the acceptable natural languages for the response.

HTTP_QUERY_ACCEPT_RANGES

Retrieves the types of range requests that are accepted for a resource.

HTTP_QUERY_AGE

Retrieves the Age response-header field, which contains the sender's estimate of the amount of time since the response was generated at the origin server.

HTTP_QUERY_ALLOW

Receives the methods supported by the server.

HTTP_QUERY_AUTHORIZATION

Retrieves the authorization credentials used for a request.

HTTP_QUERY_CACHE_CONTROL

Retrieves the cache control directives.

HTTP_QUERY_CONNECTION

Retrieves any options that are specified for a particular connection and must not be communicated by proxies over further connections.

HTTP_QUERY_CONTENT_BASE

Retrieves the base URI (Uniform Resource Identifier) for resolving relative URLs within the entity.

HTTP_QUERY_CONTENT_DESCRIPTION

Obsolete. Maintained for legacy application compatibility only.

HTTP_QUERY_CONTENT_DISPOSITION

Obsolete. Maintained for legacy application compatibility only.

HTTP_QUERY_CONTENT_ENCODING

Retrieves any additional content codings that have been applied to the entire resource.

HTTP_QUERY_CONTENT_ID

Retrieves the content identification.

HTTP_QUERY_CONTENT_LANGUAGE

Retrieves the language that the content is in.

HTTP_QUERY_CONTENT_LENGTH

Retrieves the size of the resource, in bytes.

HTTP_QUERY_CONTENT_LOCATION

Retrieves the resource location for the entity enclosed in the message.

HTTP_QUERY_CONTENT_MD5

Retrieves an MD5 digest of the entity-body for the purpose of providing an end-to-end message integrity check (MIC) for the entity-body. For more information, see RFC1864, The Content-MD5 Header Field, at ftp://ftp.isi.edu/in-notes/rfc1864.txt PRIVATE "TYPE=PICT;ALT=Non-MS link".

HTTP_QUERY_CONTENT_RANGE

Retrieves the location in the full entity-body where the partial entity-body should be inserted and the total size of the full entity-body.

HTTP_QUERY_CONTENT_TRANSFER_ENCODING

Receives the additional content coding that has been applied to the resource.

HTTP_QUERY_CONTENT_TYPE

Receives the content type of the resource (such as text/html).

HTTP_QUERY_COOKIE

Retrieves any cookies associated with the request.

HTTP_QUERY_COST

No longer supported.

HTTP_QUERY_CUSTOM

Causes HttpQueryInfo to search for the header name specified in lpvBuffer and store the header information in lpvBuffer.

HTTP_QUERY_DATE

Receives the date and time at which the message was originated.

HTTP_QUERY_DERIVED_FROM

No longer supported.

HTTP_QUERY_ECHO_HEADERS

Not currently implemented.

HTTP_QUERY_ECHO_HEADERS_CRLF

Not currently implemented.

HTTP_QUERY_ECHO_REPLY

Not currently implemented.

HTTP_QUERY_ECHO_REQUEST

Not currently implemented.

HTTP_QUERY_ETAG

Retrieves the entity tag for the associated entity.

HTTP_QUERY_EXPECT

Retrieves the Expect header, which indicates whether the client application should expect 100 series responses.

HTTP_QUERY_EXPIRES

Receives the date and time after which the resource should be considered outdated.

HTTP_QUERY_FORWARDED

Obsolete. Maintained for legacy application compatibility only.

HTTP_QUERY_FROM

Retrieves the e-mail address for the human user who controls the requesting user agent if the From header is given.

HTTP_QUERY_HOST

Retrieves the Internet host and port number of the resource being requested.

HTTP_QUERY_IF_MATCH

Retrieves the contents of the If-Match request-header field.

HTTP_QUERY_IF_MODIFIED_SINCE

Retrieves the contents of the If-Modified-Since header.

HTTP_QUERY_IF_NONE_MATCH

Retrieves the contents of the If-None-Match request-header field.

HTTP_QUERY_IF_RANGE

Retrieves the contents of the If-Range request-header field. This header allows the client application to check if the entity related to a partial copy of the entity in the client application's cache has not been updated. If the entity has not been updated, send the parts that the client application is missing. If the entity has been updated, send the entire updated entity.

HTTP_QUERY_IF_UNMODIFIED_SINCE

Retrieves the contents of the If-Unmodified-Since request-header field.

HTTP_QUERY_LINK

Obsolete. Maintained for legacy application compatibility only.

HTTP_QUERY_LAST_MODIFIED

Receives the date and time at which the server believes the resource was last modified.

HTTP_QUERY_LOCATION

Retrieves the absolute URI (Uniform Resource Identifier) used in a Location response-header.

HTTP_QUERY_MAX

Not a query flag. Indicates the maximum value of an HTTP_QUERY_* value.

HTTP_QUERY_MAX_FORWARDS

Retrieves the number of proxies or gateways that can forward the request to the next inbound server.

HTTP_QUERY_MESSAGE_ID

No longer supported.

HTTP_QUERY_MIME_VERSION

Receives the version of the MIME protocol that was used to construct the message.

HTTP_QUERY_ORIG_URI

Obsolete. Maintained for legacy application compatibility only.

HTTP_QUERY_PRAGMA

Receives the implementation-specific directives that might apply to any recipient along the request/response chain.

HTTP_QUERY_PROXY_AUTHENTICATE

Retrieves the authentication scheme and realm returned by the proxy.

HTTP_QUERY_PROXY_AUTHORIZATION

Retrieves the header that is used to identify the user to a proxy that requires authentication. This header can only be retrieved before the request is sent to the server.

HTTP_QUERY_PROXY_CONNECTION

Retrieves the Proxy-Connection header.

HTTP_QUERY_PUBLIC

Receives methods available at this server.

HTTP_QUERY_RANGE

Retrieves the byte range of an entity.

HTTP_QUERY_RAW_HEADERS

Receives all the headers returned by the server. Each header is terminated by "\0". An additional "\0" terminates the list of headers.

HTTP_QUERY_RAW_HEADERS_CRLF

Receives all the headers returned by the server. Each header is separated by a carriage return/line feed (CR/LF) sequence.

HTTP_QUERY_REFERER

Receives the URI (Uniform Resource Identifier) of the resource where the requested URI was obtained.

HTTP_QUERY_REFRESH

Obsolete. Maintained for legacy application compatibility only.

HTTP_QUERY_REQUEST_METHOD

Receives the verb that is being used in the request, typically GET or POST.

HTTP_QUERY_RETRY_AFTER

Retrieves the amount of time the service is expected to be unavailable.

HTTP_QUERY_SERVER

Retrieves information about the software used by the origin server to handle the request.

HTTP_QUERY_SET_COOKIE

Receives the value of the cookie set for the request.

HTTP_QUERY_STATUS_CODE

Receives the status code returned by the server. For a list of possible values, see HTTP Status Codes.

HTTP_QUERY_STATUS_TEXT

Receives any additional text returned by the server on the response line.

HTTP_QUERY_TITLE

Obsolete. Maintained for legacy application compatibility only.

HTTP_QUERY_TRANSFER_ENCODING

Retrieves the type of transformation that has been applied to the message body so it can be safely transferred between the sender and recipient.

HTTP_QUERY_UNLESS_MODIFIED_SINCE

Retrieves the Unless-Modified-Since header.

HTTP_QUERY_UPGRADE

Retrieves the additional communication protocols that are supported by the server.

HTTP_QUERY_URI

Receives some or all of the Uniform Resource Identifiers (URIs) by which the Request-URI resource can be identified.

HTTP_QUERY_USER_AGENT

Retrieves information about the user agent that made the request.

HTTP_QUERY_VARY

Retrieves the header that indicates that the entity was selected from a number of available representations of the response using server-driven negotiation.

HTTP_QUERY_VERSION

Receives the last response code returned by the server.

HTTP_QUERY_VIA

Retrieves the intermediate protocols and recipients between the user agent and the server on requests, and between the origin server and the client on responses.

HTTP_QUERY_WARNING

Retrieves additional information about the status of a response that might not be reflected by the response status code.

HTTP_QUERY_WWW_AUTHENTICATE

Retrieves the authentication scheme and realm returned by the server.

Modifiers

The modifier flags are used in conjunction with an attribute flag to modify the request. Modifier flags either modify the format of the data returned or indicate where HttpQueryInfo (or IWinInetHttpInfo::QueryInfo) should search for the information.

HTTP_QUERY_FLAG_COALESCE

Combines the values from headers with the same name into the output buffer.

HTTP_QUERY_FLAG_NUMBER

Returns the data as a 32-bit number for headers whose value is a number, such as the status code.

HTTP_QUERY_FLAG_REQUEST_HEADERS

Queries request headers only.

HTTP_QUERY_FLAG_SYSTEMTIME

Returns the header value as a standard Win32® SYSTEMTIME structure, which does not require the application to parse the data. Use for headers whose value is a date/time string, such as "Last-Modified-Time".

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later

Minimum availability
Internet Explorer 4.0

Cache Group Constants

The following list contains the constants used by the Win32® Internet cache group functions.

CACHEGROUP_ATTRIBUTE_BASIC

Retrieves the flags, type, and disk quota attributes of the cache group. This is used by the GetUrlCacheGroupAttribute function.

CACHEGROUP_ATTRIBUTE_FLAG

Sets or retrieves the flags associated with the cache group. This is used by the GetUrlCacheGroupAttribute and SetUrlCacheGroupAttribute functions.

CACHEGROUP_ATTRIBUTE_GET_ALL

Retrieves all the attributes of the cache group. This is used by the GetUrlCacheGroupAttribute function.

CACHEGROUP_ATTRIBUTE_GROUPNAME

Sets or retrieves the group name of the cache group. This is used by the GetUrlCacheGroupAttribute and SetUrlCacheGroupAttribute functions.

CACHEGROUP_ATTRIBUTE_QUOTA

Sets or retrieves the disk quota associated with the cache group. This is used by the GetUrlCacheGroupAttribute and SetUrlCacheGroupAttribute functions.

CACHEGROUP_ATTRIBUTE_STORAGE

Sets or retrieves the group owner storage associated with the cache group. This is used by the GetUrlCacheGroupAttribute and SetUrlCacheGroupAttribute functions.

CACHEGROUP_ATTRIBUTE_TYPE

Sets or retrieves the cache group type. This is used by the GetUrlCacheGroupAttribute and SetUrlCacheGroupAttribute functions.

CACHEGROUP_FLAG_FLUSHURL_ONDELETE

Indicates that all the cache entries associated with the cache group should be deleted, unless the entry belongs to another cache group.

CACHEGROUP_FLAG_GIDONLY

Indicates that the function should only create a unique GROUPID for the cache group and not create the actual group.

CACHEGROUP_FLAG_NONPURGEABLE

Indicates that the cache group cannot be purged.

CACHEGROUP_READWRITE_MASK

Sets the type, disk quota, group name, and owner storage attributes of the cache group. This is used by the SetUrlCacheGroupAttribute function.

CACHEGROUP_SEARCH_ALL

Indicates that all of the cache groups in the user's system should be enumerated.

CACHEGROUP_SEARCH_BYURL

Not currently implemented.

CACHEGROUP_TYPE_INVALID

Indicates that the cache group type is invalid.

GROUP_OWNER_STORAGE_SIZE

Length of the group owner storage array.

GROUPNAME_MAX_LENGTH

Maximum number of characters allowed for a cache group name.

Gopher Type Values

The following list contains the possible Gopher type values.

GOPHER_TYPE_ASK
Ask+ item.

GOPHER_TYPE_BINARY
Binary file.

GOPHER_TYPE_BITMAP
Bitmap file.

GOPHER_TYPE_CALENDAR
Calendar file.

GOPHER_TYPE_CSO
CSO telephone book server.

GOPHER_TYPE_DIRECTORY
Directory of additional Gopher items.

GOPHER_TYPE_DOS_ARCHIVE
MS-DOS® archive file.

GOPHER_TYPE_ERROR
Indicator of an error condition.

GOPHER_TYPE_GIF
GIF graphics file.

GOPHER_TYPE_GOPHER_PLUS
Gopher+ item.

GOPHER_TYPE_HTML
HTML document.

GOPHER_TYPE_IMAGE
Image file.

GOPHER_TYPE_INDEX_SERVER
Index server.

GOPHER_TYPE_INLINE
Inline file.

GOPHER_TYPE_MAC_BINHEX
Macintosh® file in BINHEX format.

GOPHER_TYPE_MOVIE
Movie file.

GOPHER_TYPE_PDF
PDF file.

GOPHER_TYPE_REDUNDANT
Indicator of a duplicated server. The information contained within is a duplicate of the primary server. The primary server is defined as the last directory entry that did not have a GOPHER_TYPE_REDUNDANT type.

GOPHER_TYPE_SOUND
Sound file.

GOPHER_TYPE_TELNET
Telnet server.

GOPHER_TYPE_TEXT_FILE
ASCII text file.

GOPHER_TYPE_TN3270
TN3270 server.

GOPHER_TYPE_UNIX_UUENCODED
UUENCODED file.

GOPHER_TYPE_UNKNOWN
Item type is unknown.

Error Messages

The Win32® Internet functions return Win32 error messages where appropriate. The following error messages are specific to the Win32 Internet functions.

ERROR_FTP_DROPPED

The FTP operation was not completed because the session was aborted.

ERROR_FTP_NO_PASSIVE_MODE

Passive mode is not available on the server.

ERROR_FTP_TRANSFER_IN_PROGRESS

The requested operation cannot be made on the FTP session handle because an operation is already in progress.

ERROR_GOPHER_ATTRIBUTE_NOT_FOUND

The requested attribute could not be located.

ERROR_GOPHER_DATA_ERROR

An error was detected while receiving data from the Gopher server.

ERROR_GOPHER_END_OF_DATA

The end of the data has been reached.

ERROR_GOPHER_INCORRECT_LOCATOR_TYPE

The type of the locator is not correct for this operation.

ERROR_GOPHER_INVALID_LOCATOR

The supplied locator is not valid.

ERROR_GOPHER_NOT_FILE

The request must be made for a file locator.

ERROR_GOPHER_NOT_GOPHER_PLUS

The requested operation can be made only against a Gopher+ server, or with a locator that specifies a Gopher+ operation.

ERROR_GOPHER_PROTOCOL_ERROR

An error was detected while parsing data returned from the Gopher server.

ERROR_GOPHER_UNKNOWN_LOCATOR

The locator type is unknown.

ERROR_HTTP_COOKIE_DECLINED

The HTTP cookie was declined by the server.

ERROR_HTTP_COOKIE_NEEDS_CONFIRMATION

The HTTP cookie requires confirmation.

ERROR_HTTP_DOWNLEVEL_SERVER

The server did not return any headers.

ERROR_HTTP_HEADER_ALREADY_EXISTS

The header could not be added because it already exists.

ERROR_HTTP_HEADER_NOT_FOUND

The requested header could not be located.

ERROR_HTTP_INVALID_HEADER

The supplied header is invalid.

ERROR_HTTP_INVALID_QUERY_REQUEST

The request made to HttpQueryInfo is invalid.

ERROR_HTTP_INVALID_SERVER_RESPONSE

The server response could not be parsed.

ERROR_HTTP_NOT_REDIRECTED

The HTTP request was not redirected.

ERROR_HTTP_REDIRECT_FAILED

The redirection failed because either the scheme changed (for example, HTTP to FTP) or all attempts made to redirect failed (default is five attempts).

ERROR_HTTP_REDIRECT_NEEDS_CONFIRMATION

The redirection requires user confirmation.

ERROR_INTERNET_ASYNC_THREAD_FAILED

The application could not start an asynchronous thread.

ERROR_INTERNET_BAD_AUTO_PROXY_SCRIPT

There was an error in the automatic proxy configuration script.

ERROR_INTERNET_BAD_OPTION_LENGTH

The length of an option supplied to InternetQueryOption or InternetSetOption is incorrect for the type of option specified.

ERROR_INTERNET_BAD_REGISTRY_PARAMETER

A required registry value was located but is an incorrect type or has an invalid value.

ERROR_INTERNET_CANNOT_CONNECT

The attempt to connect to the server failed.

ERROR_INTERNET_CHG_POST_IS_NON_SECURE

The application is posting and attempting to change multiple lines of text on a server that is not secure.

ERROR_INTERNET_CLIENT_AUTH_CERT_NEEDED

The server is requesting client authentication.

ERROR_INTERNET_CLIENT_AUTH_NOT_SETUP

Client authorization is not set up on this computer.

ERROR_INTERNET_CONNECTION_ABORTED

The connection with the server has been terminated.

ERROR_INTERNET_CONNECTION_RESET

The connection with the server has been reset.

ERROR_INTERNET_DIALOG_PENDING

Another thread has a password dialog box in progress.

ERROR_INTERNET_DISCONNECTED

The Internet connection has been lost.

ERROR_INTERNET_EXTENDED_ERROR

An extended error was returned from the server. This is typically a string or buffer containing a verbose error message. Call InternetGetLastResponseInfo to retrieve the error text.

ERROR_INTERNET_FAILED_DUETOSECURITYCHECK

The function failed due to a security check.

ERROR_INTERNET_FORCE_RETRY

The Win32 Internet function needs to redo the request.

ERROR_INTERNET_FORTEZZA_LOGIN_NEEDED

The requested resource requires Fortezza authentication.

ERROR_INTERNET_HANDLE_EXISTS

The request failed because the handle already exists.

ERROR_INTERNET_HTTP_TO_HTTPS_ON_REDIR

The application is moving from a non-SSL to an SSL connection because of a redirect.

ERROR_INTERNET_HTTPS_TO_HTTP_ON_REDIR

The application is moving from an SSL to an non-SSL connection because of a redirect.

ERROR_INTERNET_HTTPS_HTTP_SUBMIT_REDIR

The data being submitted to an SSL connection is being redirected to a non-SSL connection.

ERROR_INTERNET_INCORRECT_FORMAT

The format of the request is invalid.

ERROR_INTERNET_INCORRECT_HANDLE_STATE

The requested operation cannot be carried out because the handle supplied is not in the correct state.

ERROR_INTERNET_INCORRECT_HANDLE_TYPE

The type of handle supplied is incorrect for this operation.

ERROR_INTERNET_INCORRECT_PASSWORD

The request to connect and log on to an FTP server could not be completed because the supplied password is incorrect.

ERROR_INTERNET_INCORRECT_USER_NAME

The request to connect and log on to an FTP server could not be completed because the supplied user name is incorrect.

ERROR_INTERNET_INSERT_CDROM

The request requires a CD-ROM to be inserted in the CD-ROM drive to locate the resource requested.

ERROR_INTERNET_INTERNAL_ERROR

An internal error has occurred.

ERROR_INTERNET_INVALID_CA

The function is unfamiliar with the Certificate Authority that generated the server's certificate.

ERROR_INTERNET_INVALID_OPERATION

The requested operation is invalid.

ERROR_INTERNET_INVALID_OPTION

A request to InternetQueryOption or InternetSetOption specified an invalid option value.

ERROR_INTERNET_INVALID_PROXY_REQUEST

The request to the proxy was invalid.

ERROR_INTERNET_INVALID_URL

The URL is invalid.

ERROR_INTERNET_ITEM_NOT_FOUND

The requested item could not be located.

ERROR_INTERNET_LOGIN_FAILURE

The request to connect and log on to an FTP server failed.

ERROR_INTERNET_LOGIN_FAILURE_DISPLAY_ENTITY_BODY

The MS-Logoff digest header has been returned from the Web site. This header specifically instructs the digest package to purge credentials for the associated realm. This error will only be returned if INTERNET_ERROR_MASK_LOGIN_FAILURE_DISPLAY_ENTITY_BODY has been set.

ERROR_INTERNET_MIXED_SECURITY

The content is not entirely secure. Some of the content being viewed may have come from unsecured servers.

ERROR_INTERNET_NAME_NOT_RESOLVED

The server name could not be resolved.

ERROR_INTERNET_NEED_MSN_SSPI_PKG

Not currently implemented.

ERROR_INTERNET_NEED_UI

A user interface or other blocking operation has been requested.

ERROR_INTERNET_NO_CALLBACK

An asynchronous request could not be made because a callback function has not been set.

ERROR_INTERNET_NO_CONTEXT

An asynchronous request could not be made because a zero context value was supplied.

ERROR_INTERNET_NO_DIRECT_ACCESS

Direct network access cannot be made at this time.

ERROR_INTERNET_NOT_INITIALIZED

Initialization of the Win32 Internet API has not occurred. Indicates that a higher-level function, such as InternetOpen, has not been called yet.

ERROR_INTERNET_NOT_PROXY_REQUEST

The request cannot be made via a proxy.

ERROR_INTERNET_OPERATION_CANCELLED

The operation was canceled, usually because the handle on which the request was operating was closed before the operation completed.

ERROR_INTERNET_OPTION_NOT_SETTABLE

The requested option cannot be set, only queried.

ERROR_INTERNET_OUT_OF_HANDLES

No more handles could be generated at this time.

ERROR_INTERNET_POST_IS_NON_SECURE

The application is posting data to a sever that is not secure.

ERROR_INTERNET_PROTOCOL_NOT_FOUND

The requested protocol could not be located.

ERROR_INTERNET_PROXY_SERVER_UNREACHABLE

The designated proxy server cannot be reached.

ERROR_INTERNET_REDIRECT_SCHEME_CHANGE

The function could not handle the redirection, because the scheme changed (for example, HTTP to FTP).

ERROR_INTERNET_REGISTRY_VALUE_NOT_FOUND

A required registry value could not be located.

ERROR_INTERNET_REQUEST_PENDING

The required operation could not be completed because one or more requests are pending.

ERROR_INTERNET_RETRY_DIALOG

The dialog box should be retried.

ERROR_INTERNET_SEC_CERT_CN_INVALID

SSL certificate common name (host name field) is incorrect—for example, if you entered www.server.com and the common name on the certificate says www.different.com.

ERROR_INTERNET_SEC_CERT_DATE_INVALID

SSL certificate date that was received from the server is bad. The certificate is expired.

ERROR_INTERNET_SEC_CERT_ERRORS

The SSL certificate contains errors.

ERROR_INTERNET_SEC_CERT_NO_REV

ERROR_INTERNET_SEC_CERT_REV_FAILED

ERROR_INTERNET_SEC_CERT_REVOKED

SSL certificate was revoked.

ERROR_INTERNET_SEC_INVALID_CERT

SSL certificate is invalid.

ERROR_INTERNET_SECURITY_CHANNEL_ERROR

The application experienced an internal error loading the SSL libraries.

ERROR_INTERNET_SERVER_UNREACHABLE

The Web site or server indicated is unreachable.

ERROR_INTERNET_SHUTDOWN

The Win32 Internet function support is being shut down or unloaded.

ERROR_INTERNET_TCPIP_NOT_INSTALLED

The required protocol stack is not loaded and the application cannot start WinSock.

ERROR_INTERNET_TIMEOUT

The request has timed out.

ERROR_INTERNET_UNABLE_TO_CACHE_FILE

The function was unable to cache the file.

ERROR_INTERNET_UNABLE_TO_DOWNLOAD_SCRIPT

The automatic proxy configuration script could not be downloaded. The INTERNET_FLAG_MUST_CACHE_REQUEST flag was set.

ERROR_INTERNET_UNRECOGNIZED_SCHEME

The URL scheme could not be recognized, or is not supported.

ERROR_INVALID_HANDLE

The handle that was passed to the API has been either invalidated or closed. (Win32 error code)

ERROR_NO_MORE_FILES

No more files have been found. (Win32 error code)

ERROR_NO_MORE_ITEMS

No more items have been found. (Win32 error code)

INTERNET_ERROR_BASE

Not an error code. Base value used for the Internet error codes.

Windows CE

PRIVATE
Windows CE
Use version 2.12 and later

Minimum availability
Internet Explorer 4.0

Microsoft Win32 Internet Functions Tutorials

This section contains the tutorials for the Win32® Internet functions.
· Creating Status Callback Functions
· Calling Win32 Internet Functions Asynchronously

· Retrieving HTTP Headers

· Setting and Retrieving Internet Options

Creating Status Callback Functions

This tutorial describes how to create a status callback function that can be used to monitor the status of an Internet request that was initiated using the Microsoft® Win32® Internet functions.

Status callback functions receive status callbacks on any Internet requests that originated from any Win32 Internet function that was passed a nonzero context value.

· Requirements and Dependencies

· Implementation Steps

· Related Information

Requirements and Dependencies

Application developers who want to create a status callback function must have an understanding of C/C++ programming, a familiarity with Win32 programming, and a familiarity with the Win32 Internet functions.

To compile programs using any of the Win32 Internet functions, make sure the Wininet.h header file is in the include directory and the Wininet.lib library file is in the library directory of the C/C++ compiler you are using.

Implementation Steps

The following steps are necessary for creating a status callback function:

· Define the context value

· Create the status callback function

Defining the Context Value

The context value can be any unsigned long integer value. Ideally, the context value should identify what request has just been completed and the location of any associated resources (if needed).

One of the most useful ways to use the context value is to pass the address of a structure and cast it as a DWORD. The structure can be used to store information about the request, so that it will be passed to the status callback function.

The following structure is an example of a possible context value. The members of the structure have been chosen with the InternetOpenUrl function in mind.

typedef struct{

HWND hWindow; // window handle

int nStatusList // ID of the list box control to hold the callbacks

HINTERNET hResource; // HINTERNET handle created by InternetOpenUrl

char szMemo[512]; // string to store status memo

} REQUEST_CONTEXT;

In this example, the status callback function would have access to the window handle, which would allow it to display a user interface; the HINTERNET handle created by InternetOpenUrl, which could be passed to another function that can download the resource; and an array of characters that can be used to pass information about the request.

The members of the structure can be changed to fit the needs of a particular application, so do not feel constrained by this example.

Creating the Status Callback Function

The status callback function must follow the format of INTERNET_STATUS_CALLBACK. To do this:

1. Write a function declaration for your status callback function.

The following example shows a sample declaration.

void __stdcall CallMaster(HINTERNET, DWORD, DWORD, LPVOID, DWORD);

2. Determine what your status callback function will do. For applications that are using the Win32 Internet functions asynchronously, the status callback function must handle the INTERNET_STATUS_REQUEST_COMPLETE value, which indicates an asynchronous request is complete. The status callback function can also be used to track the progress of an Internet request.

In general, using a switch function using dwInternetStatus as the switch value and the status values for the case statements works the best. Depending on the types of functions your application is calling, you can ignore some of the status values. For a definition of the different status values, see the listing under the dwInternetStatus parameter of INTERNET_STATUS_CALLBACK.

The following switch statement is an example of how to handle status callbacks.

switch (dwInternetStatus)

{

case INTERNET_STATUS_REQUEST_COMPLETE:

// Some code.

break;

default:

// Some code.

break;

}

3. Create the code to handle the status values.

The code to handle each of the status values depends heavily on what you are using the status callback function for. For applications that are just tracking the progress of a request, writing a string to a list box might be all you need. For asynchronous operations, the code must handle some of the data returned in the callback. For details on asynchronous operations, see the Calling Win32 Functions Asynchronously article.

The following status callback function uses a switch function to determine what the status value is and creates a string that includes the name of the status value and the previous function called (which is stored in the szMemo member of the REQUEST_CONTEXT structure).

void __stdcall CallMaster(

HINTERNET hInternet,

DWORD dwContext,

DWORD dwInternetStatus,

LPVOID lpvStatusInformation,

DWORD dwStatusInformationLength

)

{

// Copy that context value to a pointer so I don't have to keep

// casting the context value as a REQUEST_CONTEXT pointer.

REQUEST_CONTEXT *cpContext;

cpContext = (REQUEST_CONTEXT*)dwContext;

char szStatusText[80];

switch (dwInternetStatus)

{

case INTERNET_STATUS_CLOSING_CONNECTION:

sprintf(szStatusText,"%s CLOSING_CONNECTION", cpContext-szMemo);

break;

case INTERNET_STATUS_CONNECTED_TO_SERVER:

sprintf(szStatusText,"%s CONNECTED_TO_SERVER", cpContext-szMemo);

break;

case INTERNET_STATUS_CONNECTING_TO_SERVER:

sprintf(szStatusText,"%s CONNECTING_TO_SERVER", cpContext-szMemo);

break;

case INTERNET_STATUS_CONNECTION_CLOSED:

sprintf(szStatusText,"%s CONNECTION_CLOSED", cpContext-szMemo);

break;

case INTERNET_STATUS_HANDLE_CLOSING:

sprintf(szStatusText,"%s HANDLE_CLOSING", cpContext-szMemo);

 break;

case INTERNET_STATUS_HANDLE_CREATED:

sprintf(szStatusText,"%s HANDLE_CREATED", cpContext-szMemo);

 break;

case INTERNET_STATUS_INTERMEDIATE_RESPONSE:

 sprintf(szStatusText,"%s INTERMEDIATE_RESPONSE", cpContext-szMemo);

 break;

case INTERNET_STATUS_NAME_RESOLVED:

sprintf(szStatusText,"%s NAME_RESOLVED", cpContext-szMemo);

break;

case INTERNET_STATUS_RECEIVING_RESPONSE:

sprintf(szStatusText,"%s RECEIVING_RESPONSE", cpContext-szMemo);

break;

case INTERNET_STATUS_RESPONSE_RECEIVED:

sprintf(szStatusText,"%s RESPONSE_RECEIVED", cpContext-szMemo);

break;

case INTERNET_STATUS_REDIRECT:

sprintf(szStatusText,"%s REDIRECT", cpContext-szMemo);

break;

case INTERNET_STATUS_REQUEST_COMPLETE:

sprintf(szStatusText,"%s REQUEST_COMPLETE", cpContext-szMemo);

break;

case INTERNET_STATUS_REQUEST_SENT:

sprintf(szStatusText,"%s REQUEST_SENT", cpContext-szMemo);

break;

case INTERNET_STATUS_RESOLVING_NAME:

sprintf(szStatusText,"%s RESOLVING_NAME", cpContext-szMemo);

break;

case INTERNET_STATUS_SENDING_REQUEST:

sprintf(szStatusText,"%s SENDING_REQUEST", cpContext-szMemo);

break;

case INTERNET_STATUS_STATE_CHANGE:

sprintf(szStatusText,"%s STATE_CHANGE", cpContext-szMemo);

break;

default:

sprintf(szStatusText,"%s Unknown Status %d Given",

 cpContext-szMemo, dwInternetStatus);

break;

}

SendDlgItemMessage(cpContext-hWindow,cpContext-nStatusList,

 LB_ADDSTRING,0,(LPARAM)szStatusText);

}

4. Use the InternetSetStatusCallback function to set the status callback function on the HINTERNET handle for which you want to receive status callbacks.

The following example demonstrates how to set a status callback function.

HINTERNET hOpen; // root HINTERNET handle

INTERNET_STATUS_CALLBACK iscCallback; // holder for the callback function

// Create the root HINTERNET handle.

hOpen = InternetOpen("Test Application", INTERNET_OPEN_TYPE_PRECONFIG,

 NULL, NULL, 0);

// Set the status callback function.

iscCallback = InternetSetStatusCallback(hOpen,

 (INTERNET_STATUS_CALLBACK)CallMaster);

The following tutorial covers one use of a status callback function:

Calling Win32 Functions Asynchronously

The following references are related to status callback functions:

InternetSetStatusCallback

Calling Win32 Internet Functions Asynchronously

This tutorial describes how to handle multiple Internet requests using the Microsoft® Win32® Internet functions asynchronously.

The code from the AsyncDemo sample is used in this tutorial. AsyncDemo submits two Internet requests. The plain-text version of the resource and the returned headers are displayed in edit boxes.

· Requirements and Dependencies

· Implementation Steps

· Related Information

Requirements and Dependencies

Application developers who want to implement Win32 Internet functions asynchronously must have an understanding of C/C++ programming, a familiarity with Win32 programming, a familiarity with the Win32 Internet functions, and an understanding of status callback functions.

To compile programs using any of the Win32 Internet functions, make sure the Wininet.h header file is in the include directory and the Wininet.lib library file is in the library directory of the C/C++ compiler you are using.

Implementation Steps

The AsyncDemo sample is a Microsoft Windows®-based application that displays a dialog box with two buttons, a list box to hold the status callback information, and two sets of three edit boxes (one edit box for the URL, one edit box for the header information, and one edit box for the resource). The dialog box is defined in the Resource.rc file in the same directory as the sample code.

The following image shows the dialog box used by the AsyncDemo sample.

To implement the Win32 Internet functions asynchronously:

5. Create a context value.

6. Create the skeleton of the status callback function

7. Create the code to handle the status values

8. Start the Internet session in asynchronous mode

9. Set the status callback function

10. Start a request with the context value

Creating a Context Value

For asynchronous Internet requests, the Win32 Internet functions require the provision of a nonzero context value. The context value provides a way for your status callback function to track what request the status callback is coming from, and it can be used to provide access to any resources it needs to process the callback.

A context value can be any variable that can be cast as a DWORD value. One possibility is to pass the address of a structure that contains the resources needed by your application.

In the AsyncDemo sample, the following structure is used as the context value.

typedef struct {

HWND hWindow; // main window handle

int nURL; // ID of the edit box with the URL

int nHeader; // ID of the edit box for the header info

int nResource; // ID of the edit box for the resource

HINTERNET hOpen; // HINTERNET handle created by InternetOpen

HINTERNET hResource; // HINTERNET handle created by InternetOpenUrl

char szMemo[512]; // string to store status memo

HANDLE hThread; // thread handle

DWORD dwThreadID; // thread ID

} REQUEST_CONTEXT;

Creating the Skeleton of the Status Callback Function

Other than INTERNET_STATUS_REQUEST_COMPLETE, you have a choice of which status values to capture. If you want to display the progress of your requests, your application should capture all the status values. If you want to be able to stop downloads that are taking a long time, your application should capture the INTERNET_STATUS_HANDLE_CREATED callback, which includes the HINTERNET handle for the request in the lpbStatusInformation buffer.

For more details on status callback functions, see Creating Status Callback Functions.

Creating the Code to Handle the Status Values

The AsyncDemo sample captures all the callbacks and writes a string to a list box in the dialog box. For the INTERNET_STATUS_REQUEST_COMPLETE callbacks, the AsyncDemo sample creates a separate thread to take care of getting the header information and downloading the resource.

The following example is the callback function used in the AsyncDemo sample.

void __stdcall Juggler(HINTERNET hInternet,

 DWORD dwContext,

 DWORD dwInternetStatus,

 LPVOID lpvStatusInformation,

 DWORD dwStatusInformationLength)

{

REQUEST_CONTEXT *cpContext;

char szBuffer[256];

cpContext= (REQUEST_CONTEXT*)dwContext;

switch (dwInternetStatus)

{

case INTERNET_STATUS_CLOSING_CONNECTION:

// Write the callback information to the buffer.

sprintf(szBuffer,"%s: CLOSING_CONNECTION (%d)",

 cpContext-szMemo, dwStatusInformationLength);

break;

case INTERNET_STATUS_CONNECTED_TO_SERVER:

 // Write the callback information to the buffer.

 sprintf(szBuffer,"%s: CONNECTED_TO_SERVER (%d)",

 cpContext-szMemo, dwStatusInformationLength);

 break;

case INTERNET_STATUS_CONNECTING_TO_SERVER:

 // Write the callback information to the buffer.

 sprintf(szBuffer,"%s: CONNECTING_TO_SERVER (%d)",

 cpContext-szMemo, dwStatusInformationLength);

 break;

case INTERNET_STATUS_CONNECTION_CLOSED:

 // Write the callback information to the buffer.

 sprintf(szBuffer,"%s: CONNECTION_CLOSED (%d)",

 cpContext-szMemo, dwStatusInformationLength);

 break;

case INTERNET_STATUS_HANDLE_CLOSING:

 // Write the callback information to the buffer.

 cpContext-szMemo, dwStatusInformationLength);

 break;

case INTERNET_STATUS_HANDLE_CREATED:

 // Write the callback information to the buffer.

 sprintf(szBuffer,"%s: HANDLE_CREATED (%d)",

 cpContext-szMemo, dwStatusInformationLength);

 break;

case INTERNET_STATUS_INTERMEDIATE_RESPONSE:

 // Write the callback information to the buffer.

 sprintf(szBuffer,"%s: INTERMEDIATE_RESPONSE (%d)",

 cpContext-szMemo, dwStatusInformationLength);

 break;

case INTERNET_STATUS_NAME_RESOLVED:

 // Write the callback information to the buffer.

 sprintf(szBuffer,"%s: NAME_RESOLVED (%d)",

 cpContext-szMemo, dwStatusInformationLength);

 break;

case INTERNET_STATUS_RECEIVING_RESPONSE:

 // Write the callback information to the buffer.

 sprintf(szBuffer,"%s: RECEIVING_RESPONSE (%d)",

 cpContext-szMemo, dwStatusInformationLength);

 break;

case INTERNET_STATUS_RESPONSE_RECEIVED:

 // Write the callback information to the buffer.

 sprintf(szBuffer,"%s: RESPONSE_RECEIVED (%d)",

 cpContext-szMemo, dwStatusInformationLength);

 break;

case INTERNET_STATUS_REDIRECT:

 // Write the callback information to the buffer.

 sprintf(szBuffer,"%s: REDIRECT (%d)",

 cpContext-szMemo, dwStatusInformationLength);

 break;

case INTERNET_STATUS_REQUEST_COMPLETE:

 // Check for errors.

 if (LPINTERNET_ASYNC_RESULT(lpvStatusInformation)-dwError == 0)

 {

// Check if the completed request is from AsyncDirect.

if (strcmp(cpContext-szMemo, "AsyncDirect"))

{

// Set the resource handle to the HINTERNET handle

// returned in the callback.

cpContext-hResource = HINTERNET(

LPINTERNET_ASYNC_RESULT(lpvStatusInformation)-dwResult);

// Write the callback information to the buffer.

sprintf(szBuffer,"%s: REQUEST_COMPLETE (%d)",

cpContext-szMemo, dwStatusInformationLength);

// Create a thread to handle the header and

// resource download.

cpContext-hThread = CreateThread(NULL, 0,

 (LPTHREAD_START_ROUTINE)Threader,LPVOID(cpContext),

 0,&cpContext-dwThreadID);

}

else

{

sprintf(szBuffer,"%s(%d): REQUEST_COMPLETE (%d)",

 cpContext-szMemo,

 cpContext-nURL, dwStatusInformationLength);

}

}

else

{

sprintf(szBuffer,

 "%s: REQUEST_COMPLETE (%d) Error (%d) encountered",

 cpContext-szMemo, dwStatusInformationLength,

 GetLastError());

}

break;

case INTERNET_STATUS_REQUEST_SENT:

// Write the callback information to the buffer.

sprintf(szBuffer,"%s: REQUEST_SENT (%d)",

 cpContext-szMemo, dwStatusInformationLength);

break;

case INTERNET_STATUS_RESOLVING_NAME:

// Write the callback information to the buffer.

sprintf(szBuffer,"%s: RESOLVING_NAME (%d)",

 cpContext-szMemo, dwStatusInformationLength);

break;

case INTERNET_STATUS_SENDING_REQUEST:

// Write the callback information to the buffer.

sprintf(szBuffer,"%s: SENDING_REQUEST (%d)",

 cpContext-szMemo, dwStatusInformationLength);

break;

case INTERNET_STATUS_STATE_CHANGE:

// Write the callback information to the buffer.

 sprintf(szBuffer,"%s: STATE_CHANGE (%d)",

 cpContext-szMemo, dwStatusInformationLength);

 break;

default:

 // Write the callback information to the buffer.

 sprintf(szBuffer,"%s: Unknown: Status %d Given",

 dwInternetStatus);

 break;

}

// Add the callback information to the callback list box.

SendDlgItemMessage(cpContext-hWindow,IDC_CallbackList,

 LB_ADDSTRING,0,(LPARAM)szBuffer);

}

Starting the Internet Session in Asynchronous Mode

To start an Internet session in asynchronous mode, call InternetOpen with the INTERNET_FLAG_ASYNC flag set.

The following example shows the call to InternetOpen from the WinMain function in the AsyncDemo sample.

HINTERNET hOpen // root HINTERNET handle

hOpen = InternetOpen(lpszAgent, INTERNET_OPEN_TYPE_PRECONFIG,

 NULL, NULL, INTERNET_FLAG_ASYNC);

Setting the Status Callback Function

To set the status callback function on the HINTERNET handle that your application needs to receive status callbacks on, your application must call the InternetSetStatusCallback function. InternetSetStatusCallback takes the HINTERNET handle and the application's status callback function and returns INTERNET_STATUS_CALLBACK.

The following example demonstrates a call to InternetSetStatusCallback from the WinMain function in the AsyncDemo sample.

iscCallback = InternetSetStatusCallback(hOpen,

 (INTERNET_STATUS_CALLBACK)Juggler);

Starting a Request with the Context Value

Currently, the following Win32 Internet functions can be called asynchronously:

· FtpCreateDirectory

· FtpDeleteFile

· FtpFindFirstFile

· FtpGetCurrentDirectory

· FtpGetFile

· FtpOpenFile

· FtpPutFile

· FtpRemoveDirectory

· FtpRenameFile

· FtpSetCurrentDirectory

· GopherFindFirstFile

· GopherOpenFile

· HttpEndRequest

· HttpOpenRequest

· HttpSendRequestEx

· InternetConnect

· InternetOpenUrl

· InternetReadFileEx

Note: The FtpCreateDirectory, FtpRemoveDirectory, FtpSetCurrentDirectory, FtpGetCurrentDirectory, FtpDeleteFile, and FtpRenameFile functions use the context value provided in the call to the InternetConnect function.

For each function that is called asynchronously, your status callback function needs a way to detect which function was called and to determine what it should do with the request.

For simplicity, the AsyncDemo sample uses the InternetOpenUrl function to retrieve an Internet resource. Since InternetOpenUrl is the only Win32 Internet function that the AsyncDemo sample is calling asynchronously, the sample does not need to track calls by other functions (such as InternetConnect).

The following example shows the call to InternetOpenUrl from the AsyncDirect function in the AsyncDemo sample.

prcContext->hResource = InternetOpenUrl(hOpen, szURL,

 NULL, 0, 0, (DWORD)&test);

Related Information

The following topics relate to the asynchronous implementation of the Win32 Internet functions.

· AsyncDemo sample<!-- @ED a-sneill: Need to fix this. --><!--@ bradya: fixed -->

· Creating Status Callback Functions

· Using the Win32 Internet Functions Asynchronously

Retrieving HTTP Headers

This tutorial describes how to retrieve header information from HTTP requests by applications using Win32® Internet functions.

· Requirements and Dependencies

· Implementation Steps

Requirements and Dependencies

Application developers who want to retrieve HTTP header information from requests made by a Win32 Internet function must have an understanding of C/C++ programming, a familiarity with Win32 programming, HTTP/1.1, and a familiarity with the Win32 Internet functions.

To compile programs using any of the Win32 Internet functions, make sure the Wininet.h header file is in the include directory and the Wininet.lib library file is in the library directory of the C/C++ compiler you are using.

There are two ways to retrieve the header information:

· Use one of the Query Info Flag constants associated with the HTTP header that your application needs.

· Use the HTTP_QUERY_CUSTOM attribute flag and pass the name of the HTTP header.

Using the constant associated with the HTTP header that your application needs is faster internally, but there might be HTTP headers that do not have a constant associated with them. For those cases, the method using the HTTP_QUERY_CUSTOM attribute flag is available.

Both methods use the HttpQueryInfo function. HttpQueryInfo takes the HINTERNET handle on which the HTTP request was made, one attribute, a buffer, a DWORD value containing the buffer size, and an index value. A modifier can also be added to the attribute passed to HttpQueryInfo to indicate what format the data should be returned in.

Retrieving Headers Using a Constant

To use the HttpQueryInfo function to retrieve an HTTP header using a constant, follow these steps:

11. Call HttpQueryInfo with a constant from the Attributes list, a NULL buffer, and the variable holding the buffer size set to zero. Also, if your application needs the data in a particular format, you can add a constant from the Modifiers list.

12. If the requested HTTP header exists, the call to HttpQueryInfo should fail, GetLastError should return ERROR_INSUFFICIENT_BUFFER, and the variable passed for the lpdwBufferLength parameter should be set to the number of bytes required.

13. Allocate a buffer with the number of bytes required.

14. Retry the call to HttpQueryInfo.

The following sample demonstrates a call to HttpQueryInfo using the HTTP_QUERY_RAW_HEADERS_CRLF constant, which is a special value that requests all of the returned HTTP headers.

LPVOID lpOutBuffer=NULL;

DWORD dwSize = 0;

retry:

// This call will fail on the first pass, since no buffer is allocated.

if(!HttpQueryInfo(hHttp,HTTP_QUERY_RAW_HEADERS_CRLF,

 (LPVOID)lpOutBuffer,&dwSize,NULL))

{

if (GetLastError()==ERROR_HTTP_HEADER_NOT_FOUND)

{

// Code to handle the case where the header isn't available.

return TRUE;

}

else

{

// Check for an insufficient buffer.

if (GetLastError()==ERROR_INSUFFICIENT_BUFFER)

{

// Allocate the necessary buffer.

lpOutBuffer = new char[dwSize];

// Retry the call.

goto retry;

}

else

{

// Error handling code.

return FALSE;

}

}

}

Retrieving Headers Using HTTP_QUERY_CUSTOM

To use the HttpQueryInfo function to retrieve an HTTP header using HTTP_QUERY_CUSTOM, follow these steps:

15. Allocate a buffer that is large enough to hold the string name of the HTTP header.

16. Write the string name of the HTTP header into the buffer.

17. Call HttpQueryInfo with HTTP_QUERY_CUSTOM, the buffer containing the string name of the HTTP header, and the variable holding the buffer size. Also, if your application needs the data in a particular format, you can add a constant from the Modifiers list.

18. If the call to HttpQueryInfo fails and GetLastError returns ERROR_INSUFFICIENT_BUFFER, reallocate a buffer with the number of bytes required.

19. Write the string name of the HTTP header into the buffer again.

20. Retry the call to HttpQueryInfo.

The following sample demonstrates a call to HttpQueryInfo using the HTTP_QUERY_CUSTOM constant to request the Content-Type HTTP header.

LPVOID lpOutBuffer;

DWORD dwSize = 20;

sprintf((LPSTR)lpOutBuffer,"Content-Type");

retry:

if(!HttpQueryInfo(hHttp,HTTP_QUERY_CUSTOM,

 (LPVOID)lpOutBuffer,&dwSize,NULL))

{

if (GetLastError()==ERROR_HTTP_HEADER_NOT_FOUND)

{

// Code to handle the case where the header isn't available.

return TRUE;

}

else

{

// Check for an insufficient buffer.

if (GetLastError()==ERROR_INSUFFICIENT_BUFFER)

{

// Allocate the necessary buffer.

lpOutBuffer = new char[dwSize];

// Rewrite the header name in the buffer.

sprintf((LPSTR)lpOutBuffer,"Content-Type");

// Retry the call.

goto retry;

}

else

{

// Error handling code.

return FALSE;

}

}

}

Setting and Retrieving Internet Options

This tutorial describes how to set and retrieve Internet options using the Win32 Internet functions InternetSetOption and InternetQueryOption.

Internet options can be set on or retrieved from a specified HINTERNET handle or Microsoft® Internet Explorer's current settings.

· Requirements and Dependancies

· General Steps

· Scope of HINTERNET Handle

· Setting Individual Options

· Retreiving Individual Options

· Seting Options for a Connection

· Related Topics

Requirements and Dependencies

Application developers who want to set and retrieve Internet options programatically must have an understanding of C/C++ programming, a familiarity with Win32 programming, a familiarity with the Win32 Internet functions, and an understanding of the HINTERNET handles.

To compile programs using any of the Win32 Internet functions, make sure the Wininet.h header file is in the include directory and the Wininet.lib library file is in the library directory of the C/C++ compiler you are using.

General Steps

To set or retrieve Internet options using the Win32 Internet functions, you will need to take care of:

21. Choosing Internet Options

22. Choosing the HINTERNET handle

23. Setting or retrieving the Options

Choosing Internet Options

Since there are so many Internet options, choosing the right options can be a little tricky. Many Internet options affect the behavior of the Win32 Internet functions and Microsoft® Internet Explorer. For example, you can:

· Handle basic server and proxy authentication by setting usernames and passwords.

· Set or retrive the user agent string used by servers to identify the capabilities of the client application or browser.

· Retrieve the handle type of the specified HINTERNET handle.

For a list of the Internet options that can be accessed by using the Win32 Internet functions, see the Option Flags page in the Win32 Internet Functions Reference.

Beginning with Internet Explorer 5, some options can be set or retrieved from a specific Internet connection using the INTERNET_PER_CONN_OPTION_LIST and INTERNET_PER_CONN_OPTION structures. For a list of options that can be set or retrieved from a specific Internet connection, see the dwOptions member of the INTERNET_PER_CONN_OPTION structure.

Choosing the HINTERNET handle

The HINTERNET handle used to set or retrieve Internet options determines the scope of the operation.

For example, client applications that need to use a proxy that requires authentication, probably don't want to set the proxy username and password everytime the application tries to access an Internet resource. If all requests to all servers are handled by the same proxy, setting the proxy username and password on a INTERNET_HANDLE_TYPE_INTERNET type HINTERNET handle (in other words, an HINTERNET handle created by a call to InternetOpen) would allow any calls derived from this HINTERNET handle to use the same proxy username and password. Setting the proxy username and password everytime an HINTERNET handle is created by InternetConnect or InternetOpenUrl would require a lot of extra overhead that isn't really necessary.

Setting or Retrieving the Options

Now that you've determined what Internet options and HINTERNET handle you want to use, its time to set or retrieve those Internet options. To set or retrieve options using the Win32 Internet functions, client applications need to call either InternetQueryOption or InternetSetOption. For details on how use them, see:

· Setting Individual Options

· Retrieving Individual Options

· Seting Connection Options

· Retrieving Connection Options

Scope of HINTERNET Handle

The HINTERNET handle used to set or retrieve Internet options is the determining factor for for what actions the options will be valid for.

In general, HINTERNET handles have three levels:

· The root HINTERNET handle (created by a call to InternetOpen) would contain all the Internet options that affect this instance of the Win32 Internet functions.

· HINTERNET handles that connect to a server (created by a call to InternetConnect)

· HINTERNET handles that are associated with a resource or enumeration of resources on a particluar server.

In addition to the various HINTERNET handles, application can also use NULL to set or retrieve the default values of the Internet options used by Internet Explorer and the Win32 Internet functions. Setting Internet options when using NULL as the handle will change the default values of the options, which is currently stored in the registry. Client applications should not use Microsoft Win32 registry functions to change the default values of the Internet options, since the implementation of how the options are stored may be altered in upcoming versions of the Win32 Internet functions.

The following table lists the type of HINTERNET handles and the scope that of the Internet options associated with them.

	PRIVATE
Handle Type
	Scope

	NULL
	The default option settings for Internet Explorer.

	INTERNET_HANDLE_TYPE_CONNECT_FTP
	The option settings for this connection to an FTP server. These options will affect any operations initiated from this HINTERNET handle, like file downloads.

	INTERNET_HANDLE_TYPE_CONNECT_GOPHER
	The option settings for this connection to a Gopher server. These options will affect any operations initiated from this HINTERNET handle, like file downloads.

	INTERNET_HANDLE_TYPE_CONNECT_HTTP
	The option settings for this connection to an HTTP server. These options will affect any operations initiated from this HINTERNET handle, like file downloads.

	INTERNET_HANDLE_TYPE_FILE_REQUEST
	The option settings assocated with this file request.

	INTERNET_HANDLE_TYPE_FTP_FILE
	The option settings associated with this FTP resource download.

	INTERNET_HANDLE_TYPE_FTP_FILE_HTML
	The option settings associated with this FTP resource download that is being formatted in HTML.

	INTERNET_HANDLE_TYPE_FTP_FIND
	The option settings associated with this search of files on an FTP server.

	INTERNET_HANDLE_TYPE_FTP_FIND_HTML
	The option settings associated with this search of files on an FTP server that is being formatted in HTML.

	INTERNET_HANDLE_TYPE_GOPHER_FILE
	The option settings associated with this Gopher resource download.

	INTERNET_HANDLE_TYPE_GOPHER_FILE_HTML
	The option settings associated with this Gopher resource download that is being formatted in HTML.

	INTERNET_HANDLE_TYPE_GOPHER_FIND
	The option settings associated with this search of files on an Gopher server.

	INTERNET_HANDLE_TYPE_GOPHER_FIND_HTML
	The option settings associated with this search of files on an Gopher server that is being formatted in HTML.

	INTERNET_HANDLE_TYPE_HTTP_REQUEST
	The option settings assocated with this HTTP request.

	INTERNET_HANDLE_TYPE_INTERNET
	The option settings associated with this instance of the Win32 Internet functions.

Setting Individual Options

After determining the Internet options you want to set and the scope of that you want affected by these options, setting Internet options is pretty easy. All you would need to do is call the InternetSetOption function with desired HINTERNET handle, Internet option flag, and a buffer containing the information you want set.

The following example demonstrates how to set the proxy username and password on a specified HINTERNET handle.

//hOpen is the HINTERNET handle created by Internet Open

//strUsername is a string buffer that contains the proxy username

InternetSetOption(hOpen, INTERNET_OPTION_PROXY_USERNAME,

 strUsername, strlen(strUsername)+1);

//strPassword is the buffer that contains the proxy password

InternetSetOption(hOpen, INTERNET_OPTION_PROXY_PASSWORD,

 strPassword, strlen(strPassword)+1);

Retrieving Individual Options

Internet options can be retrieved using the InternetQueryOption function. To retrieve Internet options, do the following steps:

24. Determine the buffer size necessary to retrieve the Internet option information.

The buffer size can be determined by using NULL for the address of the buffer and passing it a
buffer size of 0.

DWORD dwSize=0;

InternetQueryOption(NULL,INTERNET_OPTION_USERAGENT,NULL,&dwSize);

The value returned by InternetQueryOption will be the amount of memory needed, in TCHAR, to retrieve the information.

25. Allocate a memory for the buffer.

lpszData = new char[dwSize];

26. Retrieve the information.

InternetQueryOption(NULL, INTERNET_OPTION_USERAGENT,lpszData,&dwSize);

27. Free the memory.

delete [] lpszData;

Complete Sample

The following is the complete sample used in the previous section. This sample demonstrates how to retrieve the default user agent string.

DWORD dwSize;

//This call determines the buffer size needed

InternetQueryOption(NULL,INTERNET_OPTION_USERAGENT,NULL,&dwSize);

//allocate the necessary memory

lpszData = new char[dwSize];

//Call InternetQueryOption again with the buffer provided

InternetQueryOption(NULL, INTERNET_OPTION_USERAGENT,lpszData,&dwSize);

//Insert code to user the user agent string information

//Free the allocated memory

delete [] lpszData;

Setting Connection Options

Begining with Internet Explorer 5, Internet options can be set for on a specific connection. Previously, all connections shared the same Internet option settings. To set options for a particular connection, you will need to do the following steps:

28. Create a INTERNET_PER_CONN_OPTION_LIST structure.

29. Allocate the memory for the individual Internet options that you want to set for the connection.

30. Set the options in INTERNET_PER_CONN_OPTION structures.

31. Set the options using InternetSetOption.

The following sample demonstrates how to set proxy information for a LAN connection.

BOOL SetConnectionOptions()

{

INTERNET_PER_CONN_OPTION_LIST list;

BOOL bReturn;

DWORD dwBufSize = sizeof(list);

// fill out list struct

list.dwSize = sizeof(list);

// NULL == LAN, otherwise connectoid name

list.pszConnection = NULL;

// set three options

list.dwOptionCount = 3;

list.pOptions = new INTERNET_PER_CONN_OPTION[3];

// make sure the memory was allocated

if(NULL == list.pOptions)

{

//return FALSE if the memory wasn't allocated

return FALSE;

}

// set flags

list.pOptions[0].dwOption = INTERNET_PER_CONN_FLAGS;

list.pOptions[0].Value.dwValue = PROXY_TYPE_DIRECT | PROXY_TYPE_PROXY;

// set proxy name

list.pOptions[1].dwOption = INTERNET_PER_CONN_PROXY_SERVER;

list.pOptions[1].Value.pszValue = "http://proxy:80";

// set proxy override

list.pOptions[2].dwOption = INTERNET_PER_CONN_PROXY_BYPASS;

list.pOptions[2].Value.pszValue = "local";

// set the options on the connection

bReturn = InternetSetOption(NULL,

 INTERNET_OPTION_PER_CONNECTION_OPTION, &list, dwBufSize);

//free the allocated memory

delete [] list.pOptions;

return bReturn;

}

Retrieving Connection Options

Begining with Internet Explorer 5, Internet options can be retrieved from a specific connection. To retrieve options from a particular connection, you will need to do the following steps:

32. Create a INTERNET_PER_CONN_OPTION_LIST structure.

33. Allocate the memory for the individual Internet options that you want to retrieve from the connection.

34. Specify the options using INTERNET_PER_CONN_OPTION structures.

35. Retrieve the options using InternetQueryOption.

36. Utilize the option information.

37. Free the memory that was allocated to hold the option information using the GlobalFree function.

Related Topics

The following overviews are related to setting and retrieving Internet options:

· Handling Authentication

· Appendix A: HINTERNET Handles

- 214 -
- 213-

